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This paper is concerned with a kind of nonzero sum differential game of mean-field backward stochastic differential equations with
jump (MF-BSDEJ), in which the coefficient contains not only the state process but also its marginal distribution. Moreover, the cost
functional is also of mean-field type. It is required that the control is adapted to a subfiltration of the filtration generated by the
underlying Brownian motion and Poisson randommeasure. We establish a necessary condition in the form of maximum principle
with Pontryagin’s type for open-loop Nash equilibrium point of this type of partial information game and then give a verification
theoremwhich is a sufficient condition for Nash equilibrium point.The theoretical results are applied to study a partial information
linear-quadratic (LQ) game.

1. Introduction

Game theory had been an active area of research and a use-
ful tool in many applications, particularly in biology and
economics. The study of differential games was originally
stated by Isaacs [1] and then summed up and developed
by Basar and Olsder [2], Yeung and Petrosyan [3], and so
forth. Berkovitz [4], Fleming [5], Elliott and Kalton [6],
and Friedman [7] established the foundations for zero sum
differential games andVaraiya [8] andElliott andDavis [9] for
stochastic differential games. Next, the advances in stochastic
differential games continue to appear over a large number of
fields. Please refer to Hamadène [10], Hamadène et al. [11],
Altman [12], Wu and Yu [13], Yu and Ji [14], and Wang and
Yu [15] for more information.

For the partial information two-person zero sum (or
nonzero sum) stochastic differential games, the objective is
to find a saddle point (or equilibrium point) for which the
controller has less information than the complete informa-
tion filtration {F

𝑡
}
𝑡≥0

. Recently, An andØksendal [16, 17] and
An et al. [18] established a maximum principle for partial
information differential games of stochastic differential equa-
tions with jump (SDEJ). Wang and Yu [19] developed some

results for optimal control of BSDEs and established a max-
imum principle for partial information differential games
of backward stochastic differential equations (BSDEs). They
established a necessary condition in the form of maximum
principle with Pontryagin’s type for open-loop Nash equilib-
riumpoint of this type of partial information game and gave a
verification theorem which is a sufficient condition for Nash
equilibrium point. Meng and Tang [20] and Hui and Xiao
[21] established amaximumprinciple for differential games of
forward-backward SDE under partial information. Øksendal
and Sulem [22] established a general maximum principle for
forward-backward stochastic differential games for Itô-Lévy
processes with partial information and applied the theory to
optimal portfolio and consumption problems under model
uncertainty, in markets modeled by Itô-Lévy processes.

To the best of our knowledge, there are few results about
the partial information differential games of the discontin-
uous mean-field backward stochastic system. In the present
paper we will research this topic. This paper is concerned
with a new kind of nonzero sum differential game of mean-
field backward stochastic differential equations with jump
(MF-BSDEJ) under partial information. It is required that the
control is adapted to a subfiltration of the filtration generated
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by the underlying Brownian motion and Poisson random
measure. We establish a necessary condition in the form
of maximum principle with Pontryagin’s type for open-loop
Nash equilibrium point of this type of partial information
game and then give a verification theoremwhich is a sufficient
condition for Nash equilibrium point. We note that the state
system and the cost function in [22] are not mean-field, and
the game systems in [15, 19] are BSDEs.The theoretical results
are applied to study a partial information linear-quadratic
(LQ) game.

The rest of this paper is organized as follows. In Section 2,
we state our partial information differential game of MF-
BSDEJ and the main assumptions. Section 3 is devoted to
the necessary optimality conditions. In Section 4, we obtain
the sufficient maximum principle of differential game of MF-
BSDEJ under partial information. In Section 5, we give a
partial information linear-quadratic (LQ) game as example
to show the applications of our theoretical results.

2. Statement of the Problems

Let (Ω,F, 𝑃) be a completed probability space. We suppose
that the filtration {F

𝑡
}
𝑡≥0

is generated by the following two
mutually independent processes: a 𝑑-dimensional standard
Brownian motion {𝐵(𝑡)}

𝑡≥0
and a Poisson random measure

𝑁 onR
+
×𝐸, where 𝐸 ⊂ R𝑙 is a nonempty open set equipped

with its Borel field B(𝐸), with compensator 𝑁̂(𝑑𝑒 𝑑𝑡) =

𝜋(𝑑𝑒)𝑑𝑡, such that 𝑁̃(𝐴 × [0, 𝑡]) = (𝑁 − 𝑁̂)(𝐴 × [0, 𝑡])
𝑡≥0

is a martingale for ∀𝐴 ∈ B(𝐸) satisfying 𝜋(𝐴) < ∞. 𝜋 is
assumed to be a 𝜎-finite measure on (𝐸,B(𝐸)) and called
the characteristic measure. Let N denote the class of 𝑃-null
elements ofF. For each 𝑡 ∈ [0, 𝑇], we defineF

𝑡
= F𝑊
𝑡
∨F𝑁
𝑡
,

where for any process {𝜂(𝑡)}, F𝜂
𝑠,𝑡

= 𝜎{𝜂(𝑟) − 𝜂(𝑠); 𝑠 ≤ 𝑟 ≤

𝑡} ∨N,F𝜂
𝑡
= F
𝜂

0,𝑡
.

Let (Ω2,F2, 𝑃2) = (Ω×Ω,F⊗F, 𝑃⊗𝑃) be the completion
of the product probability space of the above (Ω,F, 𝑃) with
itself, where we define F2

𝑡
= F
𝑡
⊗ F
𝑡
with 𝑡 ∈ [0, 𝑇] and

F
𝑡
⊗ F
𝑡
being the completion of F

𝑡
× F
𝑡
. It is worthy of

noting that any random variable 𝜉 = 𝜉(𝜔) defined on Ω can
be extended naturally toΩ2 as 𝜉󸀠(𝜔, 𝜔󸀠) = 𝜉(𝜔)with (𝜔, 𝜔󸀠) ∈
Ω
2. For 𝐻 = R𝑛 and so on, let 𝐿1(Ω2,F2, 𝑃2; 𝐻) be the set

of random variable 𝜉 : Ω
2
→ 𝐻 which is F2-measurable

such that E2|𝜉| ≡ ∫
Ω
2
|𝜉(𝜔
󸀠
, 𝜔)|𝑃(𝑑𝜔

󸀠
)𝑃(𝑑𝜔) < ∞. For any

𝜂 ∈ 𝐿
1
(Ω
2
,F2, 𝑃2; 𝐻), we denote

E
󸀠
𝜂 (𝜔, ⋅) ≐ ∫

Ω

𝜂 (𝜔, 𝜔
󸀠
) 𝑃 (𝑑𝜔

󸀠
) . (1)

Particularly, for example, if 𝜂
1
(𝜔, 𝜔
󸀠
) = 𝜂
1
(𝜔
󸀠
), then

E
󸀠
𝜂
1
= ∫
Ω

𝜂
1
(𝜔
󸀠
) 𝑃 (𝑑𝜔

󸀠
) = E𝜂

1
. (2)

We introduce the following notations:

𝑀
2
(0, 𝑇;R

𝑛
)

= {V (𝑡, 𝜔) : V (𝑡, 𝜔) is an R
𝑛-valued,

F
𝑡
-measurable process

such that E∫
𝑇

0

|V (𝑡, 𝜔)|2𝑑𝑡 < ∞} ,

𝐹
2

𝑁
(0, 𝑇;R

𝑛
)

= {𝑟 (𝑡, 𝑒, 𝜔) : 𝑟 (𝑡, 𝑒, 𝜔) is an R
𝑛-valued,

F
𝑡
-measurable process

such thatE∫
𝑇

0

∫
E
|𝑟 (𝑡, 𝑒, 𝜔)|

2
𝜋 (𝑑𝑒) 𝑑𝑡<∞} ,

𝐿
2

𝜋(⋅)
(R
𝑛
)

= {𝑟 (𝑒) : 𝑟 (𝑒) is an R
𝑛-valued,

B (E) -measurable function

such that ‖𝑟‖ = (∫
E
|𝑟 (𝑒)|
2
𝜋 (𝑑𝑒))

1/2

<∞} ,

𝐿
2
(Ω,F

𝑇
, 𝑃;R
𝑛
)

= {𝜉 : 𝜉 is an R
𝑛-valued,

F
𝑇
-measurable random variable

such that E󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

< ∞} .

(3)

We use the usual inner product ⟨⋅, ⋅⟩ and Euclidean norm
| ⋅ | in R𝑛, R𝑛×𝑑, and R𝑛×𝑙. The notation “𝑇” appearing in
the superscripts denotes the transpose of a matrix. All the
equalities and inequalities mentioned in this paper are in the
sense of 𝑑𝑡 × 𝑑𝑃 almost surely on [0, 𝑇] × Ω.

This work is interested in a class of partial information
nonzero sum differential games of MF-BSDEJ, which is
inspirited by some interesting financial phenomena. For
simplicity, we only consider the case of two players, which is
similar for 𝑛 players. Let us now give a detailed formulation
of the problem. Consider the following MF-BSDEJ:

− 𝑑𝑦
V
(𝑡) = E

󸀠
𝑓 (𝑡, 𝑦

V
(𝑡) , 𝑧

V
(𝑡) , 𝑟

V
(𝑡, ⋅) , (𝑦

V
(𝑡))
󸀠

,

(𝑧
V
(𝑡))
󸀠

, (𝑟
V
(𝑡, ⋅))
󸀠

, V (𝑡)) 𝑑𝑡

− 𝑧
V
(𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
V
(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
V
(𝑇) = 𝜉,

(4)

where 𝜉 ∈ 𝐿
2
(Ω,F

𝑇
, 𝑃;R𝑛), 𝑓 : [0, 𝑇] × R𝑛 × R𝑛×𝑑 ×

𝐿
2

𝜋(⋅)
(R𝑛) × R𝑛 × R𝑛×𝑑 × 𝐿2

𝜋(⋅)
(R𝑛) × R𝑘1 × R𝑘2 → R𝑛, V

1
(⋅)

and V
2
(⋅) are the control processes of Player 1 and Player 2,

and V(⋅) = (V
1
(⋅), V
2
(⋅)). We always use the subscript 1 (resp.,

the subscript 2) to characterize the variables corresponding
to Player 1 (resp., Player 2). The mean-field backward game
system (4) has themeaning that the two playerswork together
to achieve a goal 𝜉 at the terminal time 𝑇.
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To study our problem, we give some assumptions on V
1
(⋅),

V
2
(⋅), and 𝑓. Let 𝑈

𝑖
be a nonempty convex subset of R𝑘𝑖 (𝑖 =

1, 2) and E𝑖
𝑡
⊆ F
𝑡
(𝑖 = 1, 2) a given subfiltration which

represents the information available to Player 𝑖 at time 𝑡 ∈

[0, 𝑇], respectively. Now we introduce the admissible control
set

U
𝑖
= {V
𝑖
: [0, 𝑇] × Ω 󳨀→ 𝑈

𝑖
| V
𝑖
is E𝑖
𝑡
-adapted,

E∫
𝑇

0

󵄨󵄨󵄨󵄨V𝑖 (𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡 < ∞} , 𝑖 = 1, 2.

(5)

Each element ofU
𝑖
is called an open-loop admissible control

for Player 𝑖 (𝑖 = 1, 2). AndU
1
×U
2
is called the set of open-

loop admissible controls for the players.
We assume that

(H1) 𝑓 is continuously differentiable with respect to
(𝑦, 𝑧, 𝑟, 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
, V
1
, V
2
). Moreover, the norm of𝑓

𝑦
,𝑓
𝑧
,

𝑓
𝑟
, 𝑓
𝑦
󸀠 , 𝑓
𝑧
󸀠 , 𝑓
𝑟
󸀠 , 𝑓V
1

, 𝑓V
2

is bounded by 𝑐 > 0.

Now, if both V
1
(⋅) and V

2
(⋅) are admissible controls

and assumption (H1) holds, then MF-BSDEJ (4) admits a
unique solution (𝑦V1 ,V2(⋅), 𝑧V1 ,V2(⋅), 𝑟V1 ,V2(⋅, ⋅)) ∈ 𝑀2(0, 𝑇;R𝑛) ×
𝑀
2
(0, 𝑇;R𝑛×𝑑) ×𝐹2

𝑁
(0, 𝑇;R𝑛) (see Shen and Siu [23]). Ensur-

ing to achieve the goal 𝜉, the players have their own benefits,
which are described by the following cost functionals:

𝐽
𝑖
(V (⋅))

= E [∫
𝑇

0

E
󸀠
𝑙
𝑖
(𝑡, 𝑦

V
(𝑡) , 𝑧

V
(𝑡) , 𝑟

V
(𝑡, ⋅) , (𝑦

V
(𝑡))
󸀠

, (𝑧
V
(𝑡))
󸀠

,

(𝑟
V
(𝑡, ⋅))
󸀠

, V (𝑡)) 𝑑𝑡 + Φ
𝑖
(𝑦

V
(0)) ] ,

(6)

where V(⋅) = (V
1
(⋅), V
2
(⋅)), 𝑙
𝑖
: [0, 𝑇] ×R𝑛 ×R𝑛×𝑑 × 𝐿2

𝜋(⋅)
(R𝑛) ×

R𝑛×R𝑛×𝑑×𝐿2
𝜋(⋅)
(R𝑛)×R𝑘1×R𝑘2 → R, Φ

𝑖
:R𝑛 → R, 𝑖 = 1, 2,

satisfying the condition

E [∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
E
󸀠
𝑙
𝑖
(𝑡, 𝑦

V
(𝑡) , 𝑧

V
(𝑡) , 𝑟

V
(𝑡, ⋅) , (𝑦

V
(𝑡))
󸀠

,

(𝑧
V
(𝑡))
󸀠

, (𝑟
V
(𝑡, ⋅))
󸀠

, V (𝑡))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

+
󵄨󵄨󵄨󵄨Φ𝑖 (𝑦

V
(0))

󵄨󵄨󵄨󵄨 ] < ∞, 𝑖 = 1, 2.

(7)

We also assume that

(H2) 𝑙
𝑖
is continuously differentiable in (𝑦, 𝑧, 𝑟, 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
,

V
1
, V
2
) and its partial derivatives are continuous in

(𝑦, 𝑧, 𝑟, 𝑦
󸀠
, 𝑧
󸀠
, 𝑟
󸀠
, V
1
, V
2
) and bounded by 𝑐(1 + |𝑦| +

|𝑧| + ‖𝑟‖ + |𝑦
󸀠
| + |𝑧
󸀠
| + ‖𝑟

󸀠
‖ + |V

1
| + |V
2
|). Moreover,

Φ
𝑖
is continuously differentiable and Φ

𝑖𝑦
is bounded

by 𝑐(1 + |𝑦|).

Suppose each player hopes tominimize her/his cost func-
tional 𝐽

𝑖
(V
1
(⋅), V
2
(⋅)) by selecting an appropriate admissible

control V
𝑖
(⋅) (𝑖 = 1, 2). Then the problem is to find a pair of

admissible controls (𝑢
1
(⋅), 𝑢
2
(⋅)) ∈ U

1
×U
2
such that

𝐽
1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V
1
(⋅)∈U

1

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) ,

𝐽
2
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V
2
(⋅)∈U

2

𝐽
2
(𝑢
1
(⋅) , V
2
(⋅)) .

(8)

We call the problem above a backward nonzero sum stochas-
tic differential game, where the word backward means that
the game system is described by a MF-BSDEJ. For sim-
plicity, we denote it by Problem BNZ. If we can find an
admissible control 𝑢(⋅) = (𝑢

1
(⋅), 𝑢
2
(⋅)) satisfying (8), then

we call it an equilibrium point of Problem BNZ and denote
the corresponding state trajectory by (𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅)) =

(𝑦
𝑢
(⋅), 𝑧
𝑢
(⋅), 𝑟
𝑢
(⋅, ⋅)).

3. A Partial Information Necessary
Maximum Principle

For the convex admissible control set, the classical way to
derive necessary optimality conditions is to use the con-
vex perturbation method. Let 𝑢(⋅) = (𝑢

1
(⋅), 𝑢
2
(⋅)) be an

equilibrium point of Problem BNZ and let (𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅))
be the corresponding optimal trajectory. Let (V

1
(⋅), V
2
(⋅)) be

such that (𝑢
1
(⋅) + V

1
(⋅), 𝑢
2
(⋅) + V

2
(⋅)) ∈ U

1
× U
2
. Since U

1

and U
2
are convex, for any 0 ≤ 𝜌 ≤ 1, (𝑢𝜌

1
(⋅), 𝑢
𝜌

2
(⋅)) =

(𝑢
1
(⋅) + 𝜌V

1
(⋅), 𝑢
1
(⋅) + 𝜌V

1
(⋅)) is also in U

1
× U
2
. As

illustrated before, we denote by (𝑦
𝑢
𝜌

1 (⋅), 𝑧
𝑢
𝜌

1 (⋅), 𝑟
𝑢
𝜌

1 (⋅, ⋅)) and
(𝑦
𝑢
𝜌

2 (⋅), 𝑧
𝑢
𝜌

2 (⋅), 𝑟
𝑢
𝜌

2 (⋅, ⋅)) the corresponding state trajectories of
game system (4) along with the controls (𝑢𝜌

1
(⋅), 𝑢
2
(⋅)) and

(𝑢
1
(⋅), 𝑢
𝜌

2
(⋅)).

For convenience, we introduce the notations

𝜑 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦
󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , 𝑢

1
(𝑡) , 𝑢
2
(𝑡)) ,

𝜑
V
(𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , V

1
(𝑡) , V
2
(𝑡)) ,

𝜑
𝑢
𝜌

1 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦
󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , 𝑢

𝜌

1
(𝑡) , 𝑢
2
(𝑡)) ,

𝜑
𝑢
𝜌

2 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦
󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , 𝑢

1
(𝑡) , 𝑢
𝜌

2
(𝑡)) ,

(9)

where 𝜑 denotes one of 𝑓 and 𝑙.
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We introduce the variational equations as follows:

− 𝑑𝑦
1

𝑖
(𝑡)

= E
󸀠
[𝑓
𝑦
(𝑡, ⋅) 𝑦

1

𝑖
(𝑡) + 𝑓

𝑧
(𝑡, ⋅) 𝑧

1

𝑖
(𝑡)

+ ∫
E
𝑓
𝑟
(𝑡, 𝑒) 𝑟

1

𝑖
(𝑡, 𝑒) 𝜋 (𝑑𝑒)

+ 𝑓
𝑦
󸀠 (𝑡, ⋅) (𝑦

1

𝑖
(𝑡))
󸀠

+ 𝑓
𝑧
󸀠 (𝑡, ⋅) (𝑧

1

𝑖
(𝑡))
󸀠

+ ∫
E
𝑓
𝑟
󸀠 (𝑡, 𝑒) (𝑟

1

𝑖
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒) + 𝑓V
𝑖
(𝑡, ⋅) V

𝑖
(𝑡) ] 𝑑𝑡

− 𝑧
1

𝑖
(𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
1

𝑖
(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
1

𝑖
(𝑇) = 0, (𝑖 = 1, 2) .

(10)

By (H1), it is easy to know that (10) admits unique
adapted solution (𝑦

1

𝑖
(𝑡), 𝑧
1

𝑖
(𝑡), 𝑟
1

𝑖
(𝑡, ⋅)) ∈ 𝑀

2
(0, 𝑇;R𝑛) ×

𝑀
2
(0, 𝑇;R𝑛×𝑑) × 𝐹2

𝑁
(0, 𝑇;R𝑛), 𝑖 = 1, 2.

For 𝑡 ∈ [0, 𝑇], 𝜌 > 0, we set

𝑦
𝜌

𝑖
(𝑡) =

𝑦
𝑢
𝜌

𝑖 (𝑡) − 𝑦 (𝑡)

𝜌
− 𝑦
1

𝑖
(𝑡) ,

𝑧̃
𝜌

𝑖
(𝑡) =

𝑧
𝑢
𝜌

𝑖 (𝑡) − 𝑧 (𝑡)

𝜌
− 𝑧
1

𝑖
(𝑡) ,

𝑟
𝜌

𝑖
(𝑡, ⋅) =

𝑟
𝑢
𝜌

𝑖 (𝑡, ⋅) − 𝑟 (𝑡, ⋅)

𝜌
− 𝑟
1

𝑖
(𝑡, ⋅) , (𝑖 = 1, 2) .

(11)

We have the following.

Lemma 1. Let assumptions (H1) and (H2) hold. Then, for 𝑖 =
1, 2,

lim
𝜌→0

sup
0≤𝑡≤𝑇

E
󵄨󵄨󵄨󵄨𝑦
𝜌

𝑖
(𝑡)
󵄨󵄨󵄨󵄨
2

= 0, (12)

lim
𝜌→0

E∫
𝑇

0

󵄨󵄨󵄨󵄨𝑧̃
𝜌

𝑖
(𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝑡 = 0,

lim
𝜌→0

E∫
𝑇

0

󵄩󵄩󵄩󵄩𝑟
𝜌

𝑖
(𝑡)
󵄩󵄩󵄩󵄩
2

𝑑𝑡 = 0.

(13)

Proof. For 𝑖 = 1, we have

− 𝑑𝑦
𝜌

1
(𝑡)

= [
1

𝜌
E
󸀠
(𝑓
𝑢
𝜌

1 (𝑡, ⋅) − 𝑓 (𝑡, ⋅))

− E
󸀠
(𝑓
𝑦
(𝑡, ⋅) 𝑦

1

1
(𝑡) + 𝑓

𝑧
(𝑡, ⋅) 𝑧

1

1
(𝑡)

+ ∫
E
𝑓
𝑟
(𝑡, 𝑒) 𝑟

1

1
(𝑡, 𝑒) 𝜋 (𝑑𝑒) + 𝑓

𝑦
󸀠 (𝑡, ⋅) (𝑦

1

1
(𝑡))
󸀠

+ 𝑓
𝑧
󸀠 (𝑡, ⋅) (𝑧

1

1
(𝑡))
󸀠

+ ∫
E
𝑓
𝑟
󸀠 (𝑡, 𝑒) (𝑟

1

1
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+𝑓V
1
(𝑡, ⋅) V

1
(𝑡)) ] 𝑑𝑡

− 𝑧̃
𝜌

1
(𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
𝜌

1
(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
𝜌

1
(𝑇) = 0,

(14)

or

− 𝑑𝑦
𝜌

1
(𝑡)

= E
󸀠
[𝐴
𝜌

1
(𝑡, ⋅) 𝑦

𝜌

1
(𝑡) + 𝐵

𝜌

1
(𝑡, ⋅) 𝑧̃

𝜌

1
(𝑡)

+ ∫
E
𝐶
𝜌

1
(𝑡, 𝑒) 𝑟

𝜌

1
(𝑡, 𝑒) 𝜋 (𝑑𝑒)

+ 𝐷
𝜌

1
(𝑡, ⋅) (𝑦

𝜌

1
(𝑡))
󸀠

+ 𝐸
𝜌

1
(𝑡, ⋅) (𝑧̃

𝜌

1
(𝑡))
󸀠

+∫
E
𝐹
𝜌

1
(𝑡, 𝑒) (𝑟

𝜌

1
(𝑡, 𝑒))
󸀠

𝜋 (𝑑𝑒) + 𝐺
𝜌

1
(𝑡, ⋅) ] 𝑑𝑡

− 𝑧̃
𝜌

1
(𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
𝜌

1
(𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
𝜌

1
(𝑇) = 0,

(15)

where we denote

(Θ)

= (𝑡, 𝑦 (𝑡) + 𝜆𝜌 (𝑦
1

1
(𝑡) + 𝑦

𝜌

1
(𝑡)) , 𝑧 (𝑡)

+ 𝜆𝜌 (𝑧
1

1
(𝑡) + 𝑧̃

𝜌

1
(𝑡)) , 𝑟 (𝑡, ⋅)

+ 𝜆𝜌 (𝑟
1

1
(𝑡, ⋅) + 𝑟

𝜌

1
(𝑡, ⋅)) , (𝑦 (𝑡))

󸀠

+ 𝜆𝜌 ((𝑦
1

1
(𝑡))
󸀠

+ (𝑦
𝜌

1
(𝑡))
󸀠

) , (𝑧 (𝑡))
󸀠

+ 𝜆𝜌 ((𝑧
1

1
(𝑡))
󸀠

+ (𝑧̃
𝜌

1
(𝑡))
󸀠

) , (𝑟 (𝑡, ⋅))
󸀠

+ 𝜆𝜌 ((𝑟
1

1
(𝑡, ⋅))
󸀠

+ (𝑟
𝜌

1
(𝑡, ⋅))
󸀠

) , 𝑢
1
(𝑡)

+ 𝜆𝜌V
1
(𝑡) , 𝑢
2
(𝑡) ) ,

𝐴
𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑦
(Θ) 𝑑𝜆, 𝐵

𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑧
(Θ) 𝑑𝜆,

𝐶
𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑟
(Θ) 𝑑𝜆, 𝐷

𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑦
󸀠 (Θ) 𝑑𝜆,

𝐸
𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑧
󸀠 (Θ) 𝑑𝜆, 𝐹

𝜌

1
(𝑡, ⋅) = ∫

1

0

𝑓
𝑟
󸀠 (Θ) 𝑑𝜆,

𝐺
𝜌

1
(𝑡, ⋅)

= ∫
1

0

(𝑓V
1
(Θ) − 𝑓V

1
(𝑡, ⋅)) V

1
(𝑡) 𝑑𝜆
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+ [𝐴
𝜌

1
(𝑡, ⋅) − 𝑓

𝑦
(𝑡, ⋅)] 𝑦

1

1
(𝑡) + [𝐵

𝜌

1
(𝑡, ⋅) − 𝑓

𝑧
(𝑡, ⋅)] 𝑧

1

1
(𝑡)

+ [𝐶
𝜌

1
(𝑡, ⋅) − 𝑓

𝑟
(𝑡, ⋅)] 𝑟

1

1
(𝑡, ⋅)

+ [𝐷
𝜌

1
(𝑡, ⋅) − 𝑓

𝑦
󸀠 (𝑡, ⋅)] (𝑦

1

1
(𝑡))
󸀠

+ [𝐸
𝜌

1
(𝑡, ⋅) − 𝑓

𝑧
󸀠 (𝑡, ⋅)] (𝑧

1

1
(𝑡))
󸀠

+ [𝐹
𝜌

1
(𝑡, ⋅) − 𝑓

𝑟
󸀠 (𝑡, ⋅)] (𝑟

1

1
(𝑡, ⋅))
󸀠

.

(16)

Applying Itô’s formula to |𝑦𝜌
1
(𝑡)|
2 on [𝑡, 𝑇], by virtue of (H1),

we get

E
󵄨󵄨󵄨󵄨𝑦
𝜌

1
(𝑡)
󵄨󵄨󵄨󵄨
2

+ E∫
𝑇

𝑡

(
󵄨󵄨󵄨󵄨𝑧̃
𝜌

1
(𝑠)
󵄨󵄨󵄨󵄨
2

+
󵄩󵄩󵄩󵄩𝑟
𝜌

1
(𝑠)
󵄩󵄩󵄩󵄩
2

) 𝑑𝑠

= 2EE
󸀠
∫
𝑇

𝑡

∫
E

󵄨󵄨󵄨󵄨⟨𝑦
𝜌

1
(𝑠) , 𝐴

𝜌

1
(𝑠, ⋅) 𝑦

𝜌

1
(𝑠) + 𝐵

𝜌

1
(𝑠, ⋅) 𝑧̃

𝜌

1
(𝑠)

+ ∫
E
𝐶
𝜌

1
(𝑠, 𝑒) 𝑟

𝜌

1
(𝑠, 𝑒) 𝜋 (𝑑𝑒)

+ 𝐷
𝜌

1
(𝑠, ⋅) (𝑦

𝜌

1
(𝑠))
󸀠

+ 𝐸
𝜌

1
(𝑠, ⋅) (𝑧̃

𝜌

1
(𝑠))
󸀠

+ ∫
E
𝐹
𝜌

1
(𝑠, 𝑒) (𝑟

𝜌

1
(𝑠, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+ 𝐺
𝜌

1
(𝑠, ⋅)⟩

󵄨󵄨󵄨󵄨 𝜋 (𝑑𝑒) 𝑑𝑠

≤ 𝐶
0
E∫
𝑇

𝑡

󵄨󵄨󵄨󵄨𝑦
𝜌

1
(𝑠)
󵄨󵄨󵄨󵄨
2

𝑑𝑠

+
1

2
E∫
𝑇

𝑡

(
󵄨󵄨󵄨󵄨𝑧̃
𝜌

1
(𝑠)
󵄨󵄨󵄨󵄨
2

+
󵄩󵄩󵄩󵄩𝑟
𝜌

1
(𝑠)
󵄩󵄩󵄩󵄩
2

) 𝑑𝑠

+ 𝐶
1
𝛼(E∫

𝑇

𝑡

󵄨󵄨󵄨󵄨𝐺
𝜌

1
(𝑠)
󵄨󵄨󵄨󵄨
2

)𝑑𝑠.

(17)

By Gronwall’s inequality, we easily obtain the desired result.
Similarly, we can show that the conclusion holds for 𝑖 = 2.

Since (𝑢
1
(⋅), 𝑢
2
(⋅)) is an equilibrium point of Problem

BNZ, then

𝜌
−1
[𝐽
1
(𝑢
𝜌

1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅))] ≥ 0, (18)

𝜌
−1
[𝐽
2
(𝑢
1
(⋅) , 𝑢
𝜌

2
(⋅)) − 𝐽

2
(𝑢
1
(⋅) , 𝑢
2
(⋅))] ≥ 0. (19)

From this and Lemma 1, we have the following variational
inequality.

Lemma 2. Let assumption (H1) hold. Then,

E∫
𝑇

0

E
󸀠
[𝑙
𝑖𝑦
(𝑡, ⋅) 𝑦

1

𝑖
(𝑡) + 𝑙

𝑖𝑧
(𝑡, ⋅) 𝑧

1

𝑖
(𝑡)

+ ∫
E
𝑙
𝑖𝑟
(𝑡) 𝑟
1

𝑖
(𝑡, 𝑒) 𝜋 (𝑑𝑒) + 𝑙

𝑖𝑦
󸀠 (𝑡, ⋅) (𝑦

1

𝑖
(𝑡))
󸀠

+ 𝑙
𝑖𝑧
󸀠 (𝑡, ⋅) (𝑧

1

𝑖
(𝑡))
󸀠

+ ∫
E
𝑙
𝑖𝑟
󸀠 (𝑡) (𝑟

1

𝑖
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+ 𝑙
𝑖V
𝑖
(𝑡, ⋅) V

𝑖
(𝑡)] 𝑑𝑡

+ E [Φ
𝑖𝑦
(𝑦 (0)) 𝑦

1

𝑖
(0)] ≥ 0, (𝑖 = 1, 2) .

(20)

Proof. For 𝑖 = 1, from (12), we derive

𝜌
−1
[Φ
1
(𝑦
𝑢
𝜌

1 (0)) − Φ
1
(𝑦 (0))]

= 𝜌
−1
E∫
1

0

Φ
1𝑦
(𝑦 (0) + 𝜆 (𝑦

𝑢
𝜌

1 (0) − 𝑦 (0)))

× (𝑦
𝑢
𝜌

1 (0) − 𝑦 (0)) 𝑑𝜆

󳨀→ E [Φ
1𝑦
(𝑦 (0)) 𝑦

1

1
(0)] , 𝜌 󳨀→ 0.

(21)

Similarly, we have

𝜌
−1
{E∫
𝑇

0

E
󸀠
[𝑙
𝑢
𝜌

1

1
(𝑡, ⋅) − 𝑙

1
(𝑡, ⋅)] 𝑑𝑡}

󳨀→ E∫
𝑇

0

E
󸀠
[𝑙
1𝑦
(𝑡, ⋅) 𝑦

1

1
(𝑡) + 𝑙

1𝑧
(𝑡, ⋅) 𝑧

1

1
(𝑡)

+ ∫
E
𝑙
1𝑟
(𝑡) 𝑟
1

1
(𝑡, 𝑒) 𝜋 (𝑑𝑒) + 𝑙

1𝑦
󸀠 (𝑡, ⋅) (𝑦

1

1
(𝑡))
󸀠

+ 𝑙
1𝑧
󸀠 (𝑡, ⋅) (𝑧

1

1
(𝑡))
󸀠

+ ∫
E
𝑙
1𝑟
󸀠 (𝑡) (𝑟

1

1
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+𝑙
1V
1
(𝑡, ⋅) V

1
(𝑡)] 𝑑𝑡,

𝜌 󳨀→ 0.

(22)

Let 𝜌 → 0 in (18); then, it follows that, for 𝑖 = 1, (20) holds.
Similarly, we can show that the conclusion holds for 𝑖 = 2.

We define the Hamiltonian function 𝐻
𝑖
: [0, 𝑇] × R𝑛 ×

R𝑛×𝑑×𝐿2
𝜋(⋅)
(R𝑛)×R𝑛×R𝑛×𝑑×𝐿2

𝜋(⋅)
(R𝑛)×R𝑘1 ×R𝑘2×R𝑛 → R,

𝑖 = 1, 2, as follows:

𝐻
𝑖
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
, V
1
, V
2
, 𝑝
𝑖
)

= − ⟨𝑓 (𝑡, 𝑦, 𝑧, 𝑟 (⋅) , 𝑦
󸀠
, 𝑧
󸀠
, 𝑟
󸀠
(⋅) , V
1
, V
2
) , 𝑝
𝑖
⟩

+ 𝑙
𝑖
(𝑡, 𝑦, 𝑧, 𝑟 (⋅) , 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
(⋅) , V
1
, V
2
) ,

𝑖 = 1, 2.

(23)
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Let

𝐻
𝑖
(𝑡, ⋅) = 𝐻

𝑖
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
, 𝑢
1
, 𝑢
2
, 𝑝
𝑖
) ,

𝐻
V
1
,V
2

𝑖
(𝑡, ⋅) = 𝐻

𝑖
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
, V
1
, V
2
, 𝑝
𝑖
) , 𝑖 = 1, 2.

(24)

We introduce the following adjoint equation:

𝑑𝑝
V
1
,V
2

𝑖
(𝑡)

= −E
󸀠
[𝐻

V
1
,V
2

𝑖𝑦
(𝑡, ⋅) + 𝐻

V
1
,V
2

𝑖𝑦
󸀠 (𝑡, ⋅)] 𝑑𝑡

− E
󸀠
[𝐻

V
1
,V
2

𝑖𝑧
(𝑡, ⋅) + 𝐻

V
1
,V
2

𝑖𝑧
󸀠 (𝑡, ⋅)] 𝑑𝑊 (𝑡)

− ∫
E
E
󸀠
[𝐻

V
1
,V
2

𝑖𝑟
(𝑡, 𝑒) + 𝐻

V
1
,V
2

𝑖𝑟
󸀠 (𝑡, 𝑒)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑝
V
1
,V
2

𝑖
(0) = −Φ

𝑖𝑦
(𝑦 (0)) , (𝑖 = 1, 2) .

(25)

Starting from the variational inequality (20), we can now
state necessary optimality conditions.

Theorem 3 (partial information necessary maximum princi-
ple). Suppose (H1) and (H2) hold. Suppose (𝑢

1
(⋅), 𝑢
2
(⋅)) is an

equilibrium point of Problem BNZ and (𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅)) is the
corresponding state trajectory. Then one has that

E [⟨𝐻
1V
1
(𝑡, ⋅) , V

1
− 𝑢
1
(𝑡)⟩ | E

1

𝑡
] ≥ 0

E [⟨𝐻
2V
2
(𝑡, ⋅) , V

2
− 𝑢
2
(𝑡)⟩ | E

2

𝑡
] ≥ 0,

(26)

hold for any (V
1
, V
2
) ∈ 𝑈
1
×𝑈
2
, 𝑎.𝑒., 𝑎.𝑠., where 𝑝

𝑖
(⋅) (𝑖 = 1, 2)

is the solution of the adjoint equation (25).

Proof. For 𝑖 = 1, applying Itô’s formula to ⟨𝑦1
1
(𝑡), 𝑝
1
(𝑡)⟩, we

obtain

E∫
𝑇

0

E
󸀠
[𝑙
1𝑦
(𝑡, ⋅) 𝑦

1

1
(𝑡) + 𝑙

1𝑧
(𝑡, ⋅) 𝑧

1

1
(𝑡)

+ ∫
E
𝑙
1𝑟
(𝑡, 𝑒) 𝑟

1

1
(𝑡, 𝑒) 𝜋 (𝑑𝑒) + 𝑙

1𝑦
󸀠 (𝑡, ⋅) (𝑦

1

1
(𝑡))
󸀠

+ 𝑙
1𝑧
󸀠 (𝑡, ⋅) (𝑧

1

1
(𝑡))
󸀠

+ ∫
E
𝑙
1𝑟
󸀠 (𝑡, 𝑒) (𝑟

1

1
(𝑡, 𝑒))

󸀠

𝜋 (𝑑𝑒)

+ 𝑙
1V
1
(𝑡) V
1
(𝑡)] 𝑑𝑡 + E [Φ

1𝑦
(𝑦 (0)) 𝑦

1

1
(0)]

= E ⟨−𝑓
𝑇

V
1

(𝑡) 𝑝
1
(𝑡) + 𝑙

1V
1
(𝑡) , V
1
(𝑡)⟩ 𝑑𝑡.

(27)

From Lemma 2, it follows that we have

E∫
𝑇

0

⟨𝐻
1V
1
(𝑡, ⋅) , V

1
(𝑡)⟩ 𝑑𝑡 ≥ 0. (28)

Because V
1
(𝑡) satisfies 𝑢

1
(𝑡) + V

1
(𝑡) ∈ U

1
, we have

E∫
𝑇

0

⟨𝐻
1V
1
(𝑡, ⋅) , V

1
− 𝑢
1
(𝑡)⟩ 𝑑𝑡 ≥ 0, ∀V

1
∈ 𝑈
1
. (29)

This implies that

E ⟨𝐻
1V
1
(𝑡, ⋅) , V

1
− 𝑢
1
(𝑡)⟩ ≥ 0, ∀V

1
∈ 𝑈
1
. (30)

Now, let V
1
(𝑡) ∈ 𝑈

1
be a deterministic element and let 𝐹 be an

arbitrary element of the 𝜎-algebra E1
𝑡
. And set

𝑤
1
(𝑡) = V

1
(𝑡) 1
𝐹
+ 𝑢
1
(𝑡) 1
Ω−𝐹

. (31)

It is obvious that 𝑤
1
is an admissible control.

Applying the above inequality with 𝑤
1
, we get

E [1
𝐹
⟨𝐻
1V
1
(𝑡, ⋅) , V

1
− 𝑢
1
(𝑡)⟩] ≥ 0, ∀𝐹 ∈ E

1

𝑡
, (32)

which implies that

E [⟨𝐻
1V
1
(𝑡, ⋅) , V

1
− 𝑢
1
(𝑡)⟩ | E

1

𝑡
] ≥ 0, ∀V

1
∈ 𝑈
1
, a.e., a.s.

(33)

Proceeding in the same way as the above proof, we can show
that the other inequality holds for any V

2
∈ 𝑈
2
.Then the proof

is completed.

4. A Partial Information Sufficient
Maximum Principle

In this section, we investigate a sufficient maximum principle
for Problem BNZ. Let (𝑦(𝑡), 𝑧(𝑡), 𝑟(𝑡, ⋅), 𝑢

1
(𝑡), 𝑢
2
(𝑡)) be a

quintuple satisfying (4) and suppose that there exists a
solution 𝑝

𝑖
(𝑡) of the corresponding adjoint forward SDE (25).

We assume that
(H3) for 𝑖 = 1, 2, for all 𝑡 ∈ [0, 𝑇], 𝐻

𝑖
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
,

V
1
, V
2
, 𝑝
𝑖
) is convex in (𝑦, 𝑧, 𝑟, 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
, V
1
, V
2
), and

Φ
𝑖
(𝑦) is convex in 𝑦.

Let

𝐻
𝑖
(𝑡, ⋅) = 𝐻

𝑖
(𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , 𝑢

1
(𝑡) , 𝑢
2
(𝑡) , 𝑝
𝑖
(𝑡)) ,

𝐻
V
1

𝑖
(𝑡, ⋅) = 𝐻

𝑖
(𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , V

1
(𝑡) , 𝑢
2
(𝑡) , 𝑝
𝑖
(𝑡)) ,

𝐻
V
2

𝑖
(𝑡, ⋅) = 𝐻

𝑖
(𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , 𝑢

1
(𝑡) , V
2
(𝑡) , 𝑝
𝑖
(𝑡)) , 𝑖 = 1, 2,

𝜑 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦
󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , 𝑢

1
(𝑡) , 𝑢
2
(𝑡)) ,

𝜑
V
1 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , V

1
(𝑡) , 𝑢
2
(𝑡)) ,

𝜑
V
2 (𝑡, ⋅) = 𝜑 (𝑡, 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑦

󸀠
(𝑡) , 𝑧
󸀠
(𝑡) ,

𝑟
󸀠
(𝑡, ⋅) , 𝑢

1
(𝑡) , V
2
(𝑡)) ,

(34)

where 𝜑 denotes one of 𝑓 and 𝑙.
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Theorem 4 (partial information sufficient maximum prin-
ciple). Assume that (H1)–(H3) are satisfied. Moreover, the
following partial information maximum conditions hold:

E [𝐻
1
(𝑡, ⋅) | E

1

𝑡
] = min

V
1
∈U
1

E [𝐻
V
1

1
(𝑡, ⋅) | E

1

𝑡
] , (35)

E [𝐻
2
(𝑡, ⋅) | E

2

𝑡
] = min

V
2
∈U
2

E [𝐻
V
2

2
(𝑡, ⋅) | E

2

𝑡
] . (36)

Then (𝑢
1
(⋅), 𝑢
2
(⋅)) is an equilibrium point of Problem BNZ.

Proof. For any V
1
(⋅) ∈ U

1
, we consider

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = I

1
+ I
2
, (37)

where

I
1
= E∫

𝑇

0

E
󸀠
[𝑙
V
1

1
(𝑡, ⋅) − 𝑙

1
(𝑡, ⋅)] 𝑑𝑡,

I
2
= E [Φ

1
(𝑦

V
1 (0)) − Φ

1
(𝑦 (0))] .

(38)

Now applying Itô’s formula to ⟨𝑝
1
(𝑡), 𝑦

V
1(𝑡) − 𝑦(𝑡)⟩ on [0, 𝑇],

we get

E ⟨Φ
1𝑦
(𝑦 (0)) , 𝑦

V
1 (0) − 𝑦 (0)⟩

= E∫
𝑇

0

E
󸀠
[ ⟨𝑦

V
1 (𝑡) − 𝑦 (𝑡) , −𝐻

1𝑦
(𝑡, ⋅)⟩

+ ⟨(𝑦
V
1 (𝑡))
󸀠

− 𝑦
󸀠
(𝑡) , −𝐻

1𝑦
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

E
󸀠
[ ⟨𝑧

V
1 (𝑡) − 𝑧 (𝑡) , −𝐻

1𝑧
(𝑡, ⋅)⟩

+ ⟨(𝑧
V
1 (𝑡))
󸀠

− 𝑧
󸀠
(𝑡) , −𝐻

1𝑧
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

∫
E
E
󸀠
[ ⟨𝑟

V
1 (𝑡, 𝑒) − 𝑟 (𝑡, 𝑒) , −𝐻

1𝑟
(𝑡, 𝑒)⟩

+ ⟨(𝑟
V
1 (𝑡, 𝑒))

󸀠

− (𝑟 (𝑡, 𝑒))
󸀠
,

−𝐻
1𝑟
󸀠 (𝑡, 𝑒) ⟩] 𝜋 (𝑑𝑒) 𝑑𝑡

− E∫
𝑇

0

E
󸀠
[⟨𝑝
1
(𝑡) , 𝑓

V
1 (𝑡, ⋅) − 𝑓 (𝑡, ⋅)⟩] 𝑑𝑡.

(39)

Moreover, by virtue of (39) and convexity of Φ
1
, it instantly

follows that

I
2
≥ E ⟨Φ

1𝑦
(𝑦 (0)) , 𝑦

V
1 (0) − 𝑦 (0)⟩ = −Ξ

1
+ Ξ
2
, (40)

where

Ξ
1
= E∫

𝑇

0

E
󸀠
[ ⟨𝑦

V
1 (𝑡) − 𝑦 (𝑡) ,𝐻

1𝑦
(𝑡, ⋅)⟩

+ ⟨(𝑦
V
1 (𝑡))
󸀠

− 𝑦
󸀠
(𝑡) ,𝐻

1𝑦
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

E
󸀠
[ ⟨𝑧

V
1 (𝑡) − 𝑧 (𝑡) ,𝐻

1𝑧
(𝑡, ⋅)⟩

+ ⟨(𝑧
V
1 (𝑡))
󸀠

− 𝑧
󸀠
(𝑡) ,𝐻

1𝑧
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

∫
E
E
󸀠
[ ⟨𝑟

V
1 (𝑡, 𝑒) − 𝑟 (𝑡, 𝑒) ,𝐻

1𝑟
(𝑡, 𝑒)⟩

+ ⟨(𝑟
V
1 (𝑡, 𝑒))

󸀠

− (𝑟 (𝑡, 𝑒))
󸀠
, 𝐻
1𝑟
󸀠 (𝑡, 𝑒)⟩]

× 𝜋 (𝑑𝑒) 𝑑𝑡,

Ξ
2
= −E∫

𝑇

0

E
󸀠
[⟨𝑝
1
(𝑡) , 𝑓

V
1 (𝑡, ⋅) − 𝑓 (𝑡, ⋅)⟩] 𝑑𝑡.

(41)

Noting the definition of𝐻
1
and I
1
, we have

I
1
= E∫

𝑇

0

E
󸀠
[𝐻

V
1

1
(𝑡, ⋅) − 𝐻

1
(𝑡, ⋅)] 𝑑𝑡

+ E∫
𝑇

0

E
󸀠
[⟨𝑝
1
(𝑡) , 𝑓

V
1 (𝑡, ⋅) − 𝑓 (𝑡, ⋅)⟩] 𝑑𝑡

= Ξ
3
− Ξ
2
,

(42)

where

Ξ
3
= E∫

𝑇

0

E
󸀠
[𝐻

V
1

1
(𝑡, ⋅) − 𝐻

1
(𝑡, ⋅)] 𝑑𝑡. (43)

Using convexity of 𝐻
1
(𝑡, 𝑦, 𝑧, 𝑟, 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
, V
1
, V
2
, 𝑝
1
) with re-

spect to (𝑦, 𝑧, 𝑟, 𝑦󸀠, 𝑧󸀠, 𝑟󸀠, V
1
, V
2
), we obtain

𝐻
V
1

1
(𝑡, ⋅) − 𝐻

1
(𝑡, ⋅)

≥ 𝐻
1𝑦
(𝑡) (𝑦

V
1 (𝑡) − 𝑦 (𝑡)) + 𝐻

1𝑧
(𝑡, ⋅) (𝑧

V
1 (𝑡) − 𝑧 (𝑡))

+ ∫
E
𝐻
1𝑟
(𝑡, 𝑒) (𝑟

V
1 (𝑡, 𝑒) − 𝑟 (𝑡, 𝑒)) 𝜋 (𝑑𝑒)

+ 𝐻
1𝑦
󸀠 (𝑡, ⋅) ((𝑦

V
1 (𝑡))
󸀠

− 𝑦
󸀠
(𝑡))

+ 𝐻
1𝑧
󸀠 (𝑡, ⋅) ((𝑧

V
1 (𝑡))
󸀠

− 𝑧
󸀠
(𝑡))

+ ∫
E
𝐻
1𝑟
󸀠 (𝑡, 𝑒) ((𝑟

V
1 (𝑡, 𝑒))

󸀠

− 𝑟 (𝑡, 𝑒)) 𝜋 (𝑑𝑒)

+ 𝐻
1𝑢
1
(𝑡, ⋅) (V

1
(𝑡) − 𝑢

1
(𝑡)) .

(44)

Since V
1
→ E[𝐻

V
1

1
(𝑡, ⋅) | E1

𝑡
], V
1
∈ U
1
, is minimal for 𝑢

1
(𝑡)

and V
1
(𝑡) and 𝑢

1
(𝑡) are E1

𝑡
-measurable, we get

E [𝐻
1𝑢
1
(𝑡, ⋅) | E

1

𝑡
] (V
1
(𝑡) − 𝑢

1
(𝑡))

= E [𝐻
1𝑢
1
(𝑡, ⋅) (V

1
(𝑡) − 𝑢

1
(𝑡)) | E

1

𝑡
] ≥ 0.

(45)
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Hence combining (43), (44), and (45), we obtain

Ξ
3

≥ E∫
𝑇

0

E
󸀠
[ ⟨𝑦

V
1 (𝑡, ⋅) − 𝑦 (𝑡) , −𝐻

1𝑦
(𝑡, ⋅)⟩

+ ⟨(𝑦
V
1 (𝑡))
󸀠

− 𝑦
󸀠
(𝑡) , −𝐻

1𝑦
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

E
󸀠
[ ⟨𝑧

V
1 (𝑡) − 𝑧 (𝑡) , −𝐻

1𝑧
(𝑡, ⋅)⟩

+ ⟨(𝑧
V
1 (𝑡))
󸀠

− 𝑧
󸀠
(𝑡) , −𝐻

1𝑧
󸀠 (𝑡, ⋅)⟩] 𝑑𝑡

+ E∫
𝑇

0

∫
E
E
󸀠
[ ⟨𝑟

V
1 (𝑡, 𝑒) − 𝑟 (𝑡, 𝑒) ,𝐻

1𝑟
(𝑡, 𝑒)⟩

+ ⟨(𝑟
V
1 (𝑡, 𝑒))

󸀠

− (𝑟 (𝑡, 𝑒))
󸀠
, 𝐻
1𝑟
󸀠 (𝑡, 𝑒)⟩]

× 𝜋 (𝑑𝑒) 𝑑𝑡 = Ξ
1
.

(46)

Therefore, it follows from (35), (40), and (46) that
𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅))

≥ Ξ
3
− Ξ
2
− Ξ
1
+ Ξ
2

≥ Ξ
1
− Ξ
2
− Ξ
1
+ Ξ
2
= 0.

(47)

Then it implies that

𝐽
1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V
1
(⋅)∈U

1

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) . (48)

In the same way

𝐽
2
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V
2
(⋅)∈U

2

𝐽
2
(𝑢
1
(⋅) , V
2
(⋅)) . (49)

Hence, we draw the desired conclusion. The proof is com-
pleted.

5. Application in a Partial
Information LQ Case

In this section we work out an example of partial information
linear-quadratic differential games of MF-BSDEJ to illustrate
the application of the theoretical results. For notational
simplification, we assume 𝑛 = 𝑑 = 𝑘

1
= 𝑘
2
= 1, 𝑈

1
= 𝑈
2
= R,

and E1
𝑡
= E2
𝑡
= E
𝑡
⊆ F
𝑡
.

Consider the following:

− 𝑑𝑦
V
1
,V
2 (𝑡)

= E
󸀠
[𝐴 (𝑡) 𝑦

V
1
,V
2 (𝑡) + 𝐶 (𝑡) 𝑧

V
1
,V
2 (𝑡) + 𝐷 (𝑡) 𝑟

V
1
,V
2 (𝑡, ⋅)

+ 𝐴 (𝑡) (𝑦
V
1
,V
2 (𝑡))
󸀠

+ 𝐶 (𝑡) (𝑧
V
1
,V
2 (𝑡))
󸀠

+ 𝐷 (𝑡) (𝑟
V
1
,V
2 (𝑡, ⋅))

󸀠

+ 𝐵
1
(𝑡) V
1
(𝑡)

+ 𝐵
2
(𝑡) V
2
(𝑡)] 𝑑𝑡

− 𝑧
V
1
,V
2 (𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
V
1
,V
2 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
V
1
,V
2 (𝑇) = 𝜉.

(50)

The cost functional is

𝐽
𝑖
(V
1
(⋅) , V
2
(⋅))

=
1

2
E [∫
𝑇

0

E
󸀠
(𝑀
𝑖
(𝑡) V2
𝑖
(𝑡) + 𝑁

𝑖
(𝑡) (𝑦

V
1
,V
2 (𝑡))
2

+ 𝑁
𝑖
(𝑡) ((𝑦

V
1
,V
2 (𝑡))
󸀠

)
2

) 𝑑𝑡

+ 𝐿
𝑖
(𝑦

V
1
,V
2 (0))
2

] , 𝑖 = 1, 2,

(51)

where constants 𝐿
𝑖
≥ 0, 𝑖 = 1, 2. Functions 𝐴(⋅), 𝐴(⋅), 𝐵

1
(⋅),

𝐵
2
(⋅), 𝐶(⋅), 𝐶(⋅), 𝐷(⋅), 𝐷(⋅) are bounded and deterministic;

𝑁
𝑖
(⋅), 𝑁

𝑖
(⋅), 𝑖 = 1, 2, are nonnegative, bounded, and

deterministic; 𝑀
𝑖
(⋅), 𝑖 = 1, 2, are positive, bounded, and

deterministic; 𝑀−1
𝑖
(⋅), 𝑖 = 1, 2, are also bounded. Our task

is to find (𝑢
1
(⋅), 𝑢
2
(⋅)) ∈ U

1
×U
2
such that

𝐽
1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V
1
(⋅)∈U

1

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) ,

𝐽
2
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V
2
(⋅)∈U

2

𝐽
2
(𝑢
1
(⋅) , V
2
(⋅)) .

(52)

Theorem 5. The mapping

𝑢
1
(𝑡) = 𝑀

−1

1
(𝑡) 𝐵
1
(𝑡)E [𝑝

1
(𝑡) | E

𝑡
] ,

𝑢
2
(𝑡) = 𝑀

−1

2
(𝑡) 𝐵
2
(𝑡)E [𝑝

2
(𝑡) | E

𝑡
] ,

(53)

is one Nash equilibrium point for the above game problem,
where (𝑝

1
(𝑡), 𝑝
2
(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑟(𝑡, ⋅)) is the solution of the

following mean-field forward-backward stochastic differential
equations with jumps (MF-FBSDEJ):

𝑑𝑝
𝑖
(𝑡)

= E
󸀠
[𝐴 (𝑡) 𝑝

𝑖
(𝑡) + 𝐴 (𝑡) 𝑝

󸀠

𝑖
(𝑡) − 𝑁

𝑖
(𝑡) 𝑦 (𝑡)

− 𝑁
𝑖
(𝑡) 𝑦
󸀠
(𝑡)] 𝑑𝑡

+ E
󸀠
[𝐶 (𝑡) 𝑝

𝑖
(𝑡) + 𝐶 (𝑡) 𝑝

󸀠

𝑖
(𝑡)] 𝑑𝑊 (𝑡)

+ ∫
E
E
󸀠
[𝐷 (𝑡) 𝑝

𝑖
(𝑡) + 𝐷 (𝑡) 𝑝

󸀠

𝑖
(𝑡)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

− 𝑑𝑦 (𝑡)

= E
󸀠
{𝐴 (𝑡) 𝑦 (𝑡) + 𝐶 (𝑡) 𝑧 (𝑡) + 𝐷 (𝑡) 𝑟 (𝑡, ⋅) + 𝐴 (𝑡) 𝑦

󸀠
(𝑡)

+ 𝐶 (𝑡) 𝑧
󸀠
(𝑡) + 𝐷 (𝑡) 𝑟

󸀠
(𝑡, ⋅) + 𝐵

2

1
(𝑡)𝑀
−1

1
(𝑡)

× E [𝑝
1
(𝑡) | E

𝑡
] + 𝐵
2

2
(𝑡)𝑀
−1

2
(𝑡)E [𝑝

2
(𝑡) | E

𝑡
]} 𝑑𝑡

− 𝑧 (𝑡) 𝑑𝑊 (𝑡) − ∫
E
𝑟 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑝
𝑖
(0) = −𝐿

𝑖
𝑦 (0) , 𝑦 (𝑇) = 𝜉, 𝑖 = 1, 2.

(54)
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Proof. We first prove the existence of the solution of (54). We
set

𝜃 (𝑡) = E [𝜃 (𝑡) | E
𝑡
] , 𝜃 = 𝑦, 𝑧, 𝑟, 𝑦

󸀠
, 𝑧
󸀠
, 𝑟
󸀠
, 𝑝
1
, 𝑝
2
. (55)

Similar to Lemma 5.4 of [24], the optimal filter (𝑦(𝑡), 𝑧̂(𝑡),
𝑟(𝑡, ⋅), 𝑦

󸀠
(𝑡), 𝑧̂
󸀠
(𝑡), 𝑟
󸀠
(𝑡, ⋅), 𝑝

1
(𝑡), 𝑝
2
(𝑡)) of (𝑦(𝑡), 𝑧(𝑡), 𝑟(𝑡, ⋅),

𝑦
󸀠
(𝑡), 𝑧
󸀠
(𝑡), 𝑟
󸀠
(𝑡, ⋅), 𝑝

1
(𝑡), 𝑝
2
(𝑡)) satisfies

𝑑𝑝
𝑖
(𝑡)

= E
󸀠
[𝐴 (𝑡) 𝑝

𝑖
(𝑡) + 𝐴 (𝑡) 𝑝

󸀠

𝑖
(𝑡) − 𝑁

𝑖
(𝑡) 𝑦 (𝑡)

− 𝑁
𝑖
(𝑡) 𝑦
󸀠
(𝑡)] 𝑑𝑡

+ E
󸀠
[𝐶 (𝑡) 𝑝

𝑖
(𝑡) + 𝐶 (𝑡) 𝑝

󸀠

𝑖
(𝑡)] 𝑑𝑊 (𝑡)

+ ∫
E
E
󸀠
[𝐷 (𝑡) 𝑝

𝑖
(𝑡) + 𝐷 (𝑡) 𝑝

󸀠

𝑖
(𝑡)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

− 𝑑𝑦 (𝑡)

= E
󸀠
[𝐴 (𝑡) 𝑦 (𝑡) + 𝐶 (𝑡) 𝑧̂ (𝑡) + 𝐷 (𝑡) 𝑟 (𝑡, ⋅)

+ 𝐴 (𝑡) 𝑦
󸀠
(𝑡) + 𝐶 (𝑡) 𝑧̂

󸀠
(𝑡) + 𝐷 (𝑡) 𝑟

󸀠
(𝑡, ⋅)

+ 𝐵
2

1
(𝑡)𝑀
−1

1
(𝑡) 𝑝
1
(𝑡) + 𝐵

2

2
(𝑡)𝑀
−1

2
(𝑡) 𝑝
2
(𝑡)] 𝑑𝑡

− 𝑧̂ (𝑡) 𝑑𝑊 (𝑡) − ∫
E
𝑟 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑝
𝑖
(0) = −𝐿

𝑖
𝑦 (0) , 𝑦 (𝑇) = E [𝜉 | E

𝑇
] , 𝑖 = 1, 2.

(56)

Due to the above analysis, the candidate equilibrium point
(𝑢
1
(⋅), 𝑢
2
(⋅)) can be rewritten as

𝑢
1
(𝑡) = 𝑀

−1

1
(𝑡) 𝐵
1
(𝑡) 𝑝
1
(𝑡) ,

𝑢
2
(𝑡) = 𝑀

−1

2
(𝑡) 𝐵
2
(𝑡) 𝑝
2
(𝑡) ,

(57)

where 𝑝
𝑖
(𝑡) (𝑖 = 1, 2) admits MF-FBSDEJ (56). We introduce

a new MF-FBSDEJ:

𝑑𝑃 (𝑡)

= E
󸀠
[𝐴 (𝑡) 𝑃 (𝑡) + 𝐴 (𝑡) 𝑃

󸀠
(𝑡)

− (𝐵
2

1
(𝑡)𝑀
−1

1
(𝑡)𝑁
1
(𝑡) + 𝐵

2

2
(𝑡)𝑀
−1

2
(𝑡)𝑁
2
(𝑡))

× 𝑌 (𝑡) − (𝐵
2

1
(𝑡)𝑀
−1

1
(𝑡)𝑁
1
(𝑡) + 𝐵

2

2
(𝑡)𝑀
−1

2
(𝑡)

×𝑁
2
(𝑡)) 𝑌

󸀠
(𝑡)] 𝑑𝑡

+ E
󸀠
[𝐶 (𝑡) 𝑃 (𝑡) + 𝐶 (𝑡) 𝑃

󸀠
(𝑡)] 𝑑𝑊 (𝑡)

+ ∫
E
E
󸀠
[𝐷 (𝑡) 𝑃 (𝑡) + 𝐷 (𝑡) 𝑃

󸀠
(𝑡)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

− 𝑑𝑌 (𝑡)

= E
󸀠
[𝐴 (𝑡) 𝑌 (𝑡) + 𝐶 (𝑡) 𝑍 (𝑡) + 𝐷 (𝑡) 𝑅 (𝑡, ⋅)

+ 𝐴 (𝑡) 𝑌
󸀠
(𝑡) + 𝐶 (𝑡) 𝑍

󸀠
(𝑡) + 𝐷 (𝑡) 𝑅

󸀠
(𝑡, ⋅)

+𝑃 (𝑡)] 𝑑𝑡 − 𝑍 (𝑡) 𝑑𝑊 (𝑡)

− ∫
E
𝑅 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑃 (0) = − [𝐵
2

1
(0)𝑀

−1

1
(0) 𝐿
1
+ 𝐵
2

2
(0)𝑀

−1

2
(0) 𝐿
2
] 𝑌 (0) ,

𝑌 (𝑇) = 𝜉.

(58)

Based on the analysis above, we can say the existence and
uniqueness of MF-FBSDEJ (56) are equivalent to those of
MF-FBSDEJ (58). It is easy to check that MF-FBSDEJ (58)
satisfies assumptions (A3)–(A5) with 𝐻 = 1, 𝜇

1
= 1, and

𝜇
2
= 𝛽
2
= 0. According to Theorem 7 in Appendix, there

exists a unique solution (𝑃(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝑅(𝑡, ⋅)) of (58); here,

𝑃 (𝑡) = 𝐵
2

1
(𝑡)𝑀
−1

1
(𝑡) 𝑝
1
(𝑡) + 𝐵

2

2
(𝑡)𝑀
−1

2
(𝑡) 𝑝
2
(𝑡) ,

𝑌 (𝑡) = 𝑦 (𝑡) , 𝑍 (𝑡) = 𝑧̂ (𝑡) , 𝑅 (𝑡, ⋅) = 𝑟 (𝑡, ⋅) .

(59)

Then there exists a unique solution (𝑝
1
(𝑡), 𝑝
2
(𝑡), 𝑦(𝑡), 𝑧̂(𝑡),

𝑟(𝑡, ⋅)) of MF-FBSDEJ (56). Furthermore, there exists at most
one equilibrium point for the underlying game.

Now we try to prove that (𝑢
1
(⋅), 𝑢
2
(⋅)) is a Nash equi-

librium point for our backward LQ game problem. We only
prove

𝐽
1
(𝑢
1
(⋅) , 𝑢
2
(⋅)) = min

V
1
(⋅)∈U

1

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) . (60)

It is similar to getting another inequality of (52). (𝑦V1(𝑡),
𝑧
V
1(𝑡), 𝑟

V
1(𝑡, ⋅)) denotes the solution of the system

− 𝑑𝑦
V
1 (𝑡)

= E
󸀠
[𝐴 (𝑡) 𝑦

V
1 (𝑡) + 𝐶 (𝑡) 𝑧

V
1 (𝑡) + 𝐷 (𝑡) 𝑟

V
1 (𝑡, ⋅)

+ 𝐴 (𝑡) (𝑦
V
1 (𝑡))
󸀠

+𝐶 (𝑡) (𝑧
V
1 (𝑡))
󸀠

+𝐷 (𝑡) (𝑟
V
1 (𝑡, ⋅))

󸀠

+ 𝐵
1
(𝑡) V
1
(𝑡) + 𝐵

2
(𝑡) 𝑢
2
(𝑡)] 𝑑𝑡

− 𝑧
V
1 (𝑡) 𝑑𝑊 (𝑡) − ∫

E
𝑟
V
1 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦
V
1 (𝑇) = 𝜉.

(61)
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Then
𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅))

=
1

2
E [∫
𝑇

0

E
󸀠
(𝑀
1
(𝑡) (V
1
(𝑡) − 𝑢

1
(𝑡))
2

+ 2𝑀
1
(𝑡) 𝑢
1
(𝑡) (V
1
(𝑡) − 𝑢

1
(𝑡))

+ 𝑁
1
(𝑡) (𝑦

V
1(𝑡) − 𝑦(𝑡))

2

+ 2𝑁
1
(𝑡) 𝑦 (𝑡) (𝑦

V
1 (𝑡) − 𝑦 (𝑡))

+ 𝑁
1
(𝑡) ((𝑦

V
1 (𝑡))
󸀠

− 𝑦
󸀠
(𝑡))
2

+ 2𝑁
1
(𝑡) 𝑦
󸀠
(𝑡) ((𝑦

V
1 (𝑡))
󸀠

− 𝑦
󸀠
(𝑡)) 𝑑𝑡

+ 𝐿
1
(𝑦

V
1(0) − 𝑦

𝑢
(0))
2

+ 2𝐿
1
𝑦
𝑢
(0) (𝑦

V
(0) − 𝑦

𝑢
(0))] .

(62)

Applying Itô’s formula to (𝑦V1(𝑡) − 𝑦(𝑡))𝑝
1
(𝑡), we have

E {𝐿
1
𝑦
V
(0) (𝑦

V
(0) − 𝑦

𝑢
(0))}

= −E∫
𝑇

0

E
󸀠
[𝐵
1
(𝑡) 𝑝
1
(𝑡) (V
1
(𝑡) − 𝑢

1
(𝑡))

+ 𝑁
1
(𝑡) 𝑦 (𝑡) (𝑦

V
1 (𝑡) − 𝑦 (𝑡))

+ 𝑁
1
(𝑡) 𝑦
󸀠
(𝑡) ((𝑦

V
1 (𝑡))
󸀠

− 𝑦
󸀠
(𝑡))] 𝑑𝑡.

(63)

As 𝑀
1
(𝑡) > 0, 𝑁

1
(𝑡) ≥ 0, 𝑁

1
(𝑡) ≥ 0, ∀𝑡 ∈ [0, 𝑇], 𝐿

1
≥ 0,

noting that 𝑢
1
(𝑡) = 𝑀

−1

1
(𝑡)𝐵
1
(𝑡)𝑝
1
(𝑡), we have

𝐽
1
(V
1
(⋅) , 𝑢
2
(⋅)) − 𝐽

1
(𝑢
1
(⋅) , 𝑢
2
(⋅))

≥ E∫
𝑇

0

E
󸀠
[(𝑀
1
(𝑡) 𝑢
1
(𝑡) − 𝐵

1
(𝑡) 𝑝
1
(𝑡))

× (V
1
(𝑡) − 𝑢

1
(𝑡))] 𝑑𝑡 = 0.

(64)

So (𝑢
1
(𝑡), 𝑢
2
(𝑡)) = (𝑀

−1

1
(𝑡)𝐵
1
(𝑡)𝑝
1
(𝑡),𝑀

−1

2
(𝑡)𝐵
2
(𝑡)𝑝
2
(𝑡)) is a

Nash equilibrium point for our backward LQ nonzero sum
differential game problem.

6. Appendix

For the sake of convenience and completeness, we cite the
existence and uniqueness theorem of MF-BSDEJ obtained by
Shen and Siu [23]. They studied the following MF-BSDEJ:

− 𝑑𝑦 (𝑡)

= E
󸀠
𝑓 (𝑡, 𝜉 (𝑡) , 𝜉

󸀠
(𝑡) , V (𝑡)) 𝑑𝑡

− 𝑧 (𝑡) 𝑑𝑊 (𝑡) − ∫
E
𝑟 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑦 (𝑇) = 𝜉,

(65)

where (𝜉(𝑡), 𝜉
󸀠
(𝑡)) = (𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅), 𝑦

󸀠
(⋅), 𝑧
󸀠
(⋅), 𝑟
󸀠
(⋅, ⋅)) ∈

R𝑛 × R𝑛×𝑑 × 𝐿
2

𝜋(⋅)
(R𝑛) × R𝑛 × R𝑛×𝑑 × 𝐿

2

𝜋(⋅)
(R𝑛), 𝜉 ∈

𝐿
2
(Ω,F

𝑇
, 𝑃;R𝑛), is a random variable, and 𝑇 > 0;

𝑓 : [0, 𝑇] ×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
)

×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
) 󳨀→ R

𝑛
.

(66)

They assumed that

(A1) for each 𝜉, 𝜉󸀠 ∈ R𝑛 × R𝑛×𝑑 × 𝐿
2

𝜋(⋅)
(R𝑛), 𝑓(⋅, 𝜉, 𝜉󸀠)

is an F
𝑡
-measurable process defined on [0, 𝑇] with

𝑓(⋅, 0, 0) ∈ 𝑀
2
(0, 𝑇;R𝑛 ×R𝑛×𝑑) × 𝐹2

𝑁
(0, 𝑇;R𝑛);

(A2) 𝑓(𝑡, 𝜁, 𝜁󸀠) satisfies Lipschitz condition: there exists a
constant 𝑙 > 0, such that
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝜉, 𝜉

󸀠
) − 𝑓 (𝑡, 𝜉, 𝜉

󸀠

)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑙 (

󵄨󵄨󵄨󵄨󵄨
𝜉 − 𝜉

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝜉
󸀠
− 𝜉
󸀠󵄨󵄨󵄨󵄨󵄨󵄨
) ,

∀𝜉 = (𝑦, 𝑧, 𝑟)
𝑇

, 𝜉
󸀠
= (𝑦
󸀠
, 𝑧
󸀠
, 𝑟
󸀠
)
𝑇

, 𝜉 = (𝑦, 𝑧, 𝑟)
𝑇

,

𝜉
󸀠

= (𝑦
󸀠
, 𝑧
󸀠
, 𝑟
󸀠
)
𝑇

∈ R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
) , ∀𝑡 ∈ [0, 𝑇] .

(67)

Based on the fixed-point theorem, Shen and Siu [23] obtained
the following existence and uniqueness result.

Proposition 6. One assumes that (A1) and (A2) hold. Then
MF-BSDEJ (65) has a unique solution (𝑦(𝑡), 𝑧(𝑡), 𝑟(𝑡, ⋅)) ∈

𝑀
2
(0, 𝑇;R𝑛 ×R𝑛×𝑑) × 𝐹2

𝑁
(0, 𝑇;R𝑛).

In the present paper we research the game problem of
a MF-BSDEJ, so the game system and the adjoint equation
constitute exactly a kind of initial coupled MF-FBSDEJ. Due
to this, we give an existence and uniqueness theorem of MF-
FBSDEJ. Consider the following MF-FBSDEJ:

𝑑𝑥 (𝑡)

= E
󸀠
[𝑏 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑥

󸀠
(𝑡) ,

𝑦
󸀠
(𝑡) , 𝑧
󸀠
(𝑡) , 𝑟
󸀠
(𝑡, ⋅))] 𝑑𝑡

+ E
󸀠
[𝜎 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑥

󸀠
(𝑡) ,

𝑦
󸀠
(𝑡) , 𝑧
󸀠
(𝑡) , 𝑟
󸀠
(𝑡, ⋅))] 𝑑𝑊 (𝑡)

+ ∫
E
E
󸀠
[𝛾 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑟 (𝑡, 𝑒) , 𝑥

󸀠
(𝑡) ,

𝑦
󸀠
(𝑡) , 𝑧
󸀠
(𝑡) , 𝑟
󸀠
(𝑡, 𝑒) , 𝑒)] 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

− 𝑑𝑦 (𝑡)

= E
󸀠
[𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑟 (𝑡, ⋅) , 𝑥

󸀠
(𝑡) ,

𝑦
󸀠
(𝑡) , 𝑟
󸀠
(𝑡, ⋅))] 𝑑𝑡 − 𝑧 (𝑡) 𝑑𝑊 (𝑡)

− ∫
E
𝑟 (𝑡, 𝑒) 𝑁̃ (𝑑𝑒 𝑑𝑡) ,

𝑥 (0) = 𝜓 (𝑦 (0)) , 𝑦 (𝑇) = 𝜉,

(68)
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where (𝑥(⋅), 𝑦(⋅), 𝑧(⋅), 𝑟(⋅, ⋅), 𝑥󸀠(⋅), 𝑦󸀠(⋅), 𝑧󸀠(⋅), 𝑟󸀠(⋅, ⋅)) ∈ R𝑚 ×

R𝑛 × R𝑛×𝑑 × 𝐿
2

𝜋(⋅)
(R𝑛) × R𝑚 × R𝑛 × R𝑛×𝑑 × 𝐿

2

𝜋(⋅)
(R𝑛), 𝜉 ∈

𝐿
2
(Ω,F

𝑇
, 𝑃;R𝑛), is a random variable, and 𝑇 > 0;

𝑏 : Ω × [0, 𝑇] ×R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
)

×R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
) 󳨀→ R

𝑚
,

𝜎 : Ω × [0, 𝑇] ×R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
)

×R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
) 󳨀→ R

𝑚×𝑑
,

𝛾 : Ω × [0, 𝑇] ×R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
)

×R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
) × E 󳨀→ R

𝑚
,

𝑓 : Ω × [0, 𝑇] ×R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
)

×R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
) 󳨀→ R

𝑛
,

𝜓 : R
𝑛
󳨀→ R

𝑚
.

(69)

Given an 𝑛 × 𝑚 full-rank matrix 𝐻, let us introduce some
notations

𝜁 = (

𝑥

𝑦

𝑧

𝑟

) , 𝜁
󸀠
= (

𝑥
󸀠

𝑦
󸀠

𝑧
󸀠

𝑟
󸀠

),

𝐴(𝑡, 𝜁, 𝜁
󸀠
) = (

−𝐻
𝑇
𝑓

𝐻𝑏

𝐻𝜎

𝐻𝛾

)(𝑡, 𝜁, 𝜁
󸀠
) ,

(70)

where𝐻𝜎 = (𝐻𝜎
1
⋅ ⋅ ⋅ 𝐻𝜎

𝑑
). Assume that

(A3) for each 𝜁, 𝜁󸀠 ∈ R𝑚 ×R𝑛 ×R𝑛×𝑑 × 𝐿2
𝜋(⋅)
(R𝑛),𝐴(⋅, 𝜁, 𝜁󸀠)

is an F
𝑡
-measurable process defined on [0, 𝑇] with

𝐴(⋅, 0, 0) ∈ 𝑀
2
(0, 𝑇;R𝑚 ×R𝑛 ×R𝑛×𝑑) × 𝐹2

𝑁
(0, 𝑇;R𝑛);

(A4) 𝐴(𝑡, 𝜁, 𝜁󸀠) and 𝜓(𝑦) satisfy Lipschitz conditions: there
exists a constant 𝑘 > 0, such that

󵄨󵄨󵄨󵄨󵄨󵄨
𝐴 (𝑡, 𝜁, 𝜁

󸀠
) − 𝐴 (𝑡, 𝜁, 𝜁

󸀠

)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑘 (

󵄨󵄨󵄨󵄨󵄨
𝜁 − 𝜁

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝜁
󸀠
− 𝜁
󸀠󵄨󵄨󵄨󵄨󵄨󵄨
) ,

∀𝜁 = (𝑥, 𝑦, 𝑧, 𝑟)
𝑇

, 𝜁
󸀠
= (𝑥
󸀠
, 𝑦
󸀠
, 𝑧
󸀠
, 𝑟
󸀠
)
𝑇

,

𝜁 = (𝑥, 𝑦, 𝑧, 𝑟)
𝑇

,

𝜁
󸀠

= (𝑥
󸀠
, 𝑦
󸀠
, 𝑧
󸀠
, 𝑟
󸀠
)
𝑇

∈ R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
) ,

∀𝑡 ∈ [0, 𝑇] ,

󵄨󵄨󵄨󵄨𝜓 (𝑦) − 𝜓 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑘

󵄨󵄨󵄨󵄨𝑦 − 𝑦
󵄨󵄨󵄨󵄨 , ∀𝑦, 𝑦 ∈ R

𝑛
;

(71)

(A5) 𝐴(𝑡, 𝜁, 𝜁󸀠) and 𝜓(𝑦) satisfy monotonic conditions:

⟨𝐴 (𝑡, 𝜁, 𝜁
󸀠
) − 𝐴 (𝑡, 𝜁, 𝜁

󸀠

) , 𝜁 − 𝜁⟩

≤ −𝜇
1
|𝐻 (𝑥 − 𝑥)|

2

− 𝜇
2
(
󵄨󵄨󵄨󵄨󵄨
𝐻
𝑇
(𝑦 − 𝑦)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝐻
𝑇
(𝑧 − 𝑧)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑇
(𝑟 − 𝑟)

󵄩󵄩󵄩󵄩󵄩

2

) ,

∀𝜁 = (𝑥, 𝑦, 𝑧, 𝑟)
𝑇

, 𝜁
󸀠
= (𝑥
󸀠
, 𝑦
󸀠
, 𝑧
󸀠
, 𝑟
󸀠
)
𝑇

,

𝜁 = (𝑥, 𝑦, 𝑧, 𝑟)
𝑇

,

𝜁
󸀠

= (𝑥
󸀠
, 𝑦
󸀠
, 𝑧
󸀠
, 𝑟
󸀠
)
𝑇

∈ R
𝑚
×R
𝑛
×R
𝑛×𝑑

× 𝐿
2

𝜋(⋅)
(R
𝑛
) ,

∀𝑡 ∈ [0, 𝑇] .

⟨𝜓 (𝑦) − 𝜓 (𝑦) , 𝑦 − 𝑦⟩ ≤ −𝛽
2

󵄨󵄨󵄨󵄨󵄨
𝐻
𝑇
(𝑦 − 𝑦)

󵄨󵄨󵄨󵄨󵄨

2

, ∀𝑦, 𝑦 ∈ R
𝑛
,

(72)

where 𝜇
1
, 𝜇
2
, and 𝛽

2
are given nonnegative constants

with 𝜇
1
+ 𝜇
2
> 0, 𝜇

1
+ 𝛽
2
> 0. Moreover we have

𝜇
1
> 0 (resp., 𝜇

2
> 0, 𝛽

2
> 0) when 𝑚 < 𝑛 (resp.,

𝑚 > 𝑛).

By similar arguments of Yu and Ji [14], Wang and Yu
[19], and Min et al. [25], we have the following existence and
uniqueness theorem.

Theorem 7. One assumes that (A3), (A4), and (A5) hold.
Then MF-FBSDEJ (68) has a unique solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡),
𝑟(𝑡, ⋅)) ∈ 𝑀

2
(0, 𝑇;R𝑚 ×R𝑛 ×R𝑛×𝑑) × 𝐹2

𝑁
(0, 𝑇;R𝑛).

7. Conclusion

In this paper, we investigate a new differential game problem
of mean-field BSDE with jump (MF-BSDEJ). Compared with
the previous literature, our game systems are mean-field
BSDE with jump and are under the framework of partial
information. We established a maximum principle and a
verification theorem for an equilibriumpoint of nonzero sum
differential games. We also give a partial information linear-
quadratic (LQ) game as example to show the applications of
our theoretical results.

The subject issue studied in this paper possesses fine
generality. Firstly, the mean-field BSDEJ game system covers
many systems as its particular case. For example, if we drop
the terms on jump or mean-field or both of them, then the
MF-BSDEJ can be reduced to MF-BSDE or BSDEJ or BSDE.
Secondly, if we suppose that E

𝑡
= F
𝑡
, for all 𝑡 ∈ [0, 𝑇],

all the results are reduced to the case of full information.
Thirdly, if the present nonzero sum stochastic differential
game has only one player, the game problem is reduced to
some related optimal control. Particularly, our results are a
partial extension to differential games of full information
BSDEs [15] and partial information BSDEs [19]. Finally,
since many optimization and game problems in finance and
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economics can be associated with mean-field BSDE with
jump, the outcomes of this paper can be widely applied in
these areas.
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