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We are interested in the existence theorems for a third-order three-point boundary value problem. In the nonresonant case, using
the Krasnosel’skii fixed point theorem, we obtain some sufficient conditions for the existence of the positive solutions. In addition,
we focus on the resonant case, the boundary value problem being transformed into an integral equation with an undetermined
parameter, and the existence conditions being obtained by the Intermediate Value Theorem.

1. Introduction

Consider the following third-order nonlinear differential
equations:

𝑦
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑦 (𝑡)) = 0, 0 ≤ 𝑡 ≤ 1, (1)

subject to the following boundary value conditions:

𝑦
󸀠

(0) = 0, 𝑦
󸀠󸀠

(0) = 0, 𝑦 (1) = 𝛼𝑦 (𝜂) , (2)

where 𝜂 ∈ (0, 1), 0 ≤ 𝛼 ≤ 1, and 𝑓(𝑡, 𝑢) ∈ 𝐶([0, 1] × 𝑅).
Recently, the existence of solutions for boundary value

problem has been investigated by many authors [1–9]. Fur-
ther, many authors focused on the existence of solutions or
positive solutions for higher order differential equations with
boundary value problems [10–16].

Sun [15] has investigated the following three-order three-
point boundary value problem:

𝑦
󸀠󸀠󸀠

(𝑡) − 𝜆𝑎 (𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) = 0, 0 ≤ 𝑡 ≤ 1, (3)

with

𝑦 (0) = 𝑦
󸀠󸀠

(1) = 𝑦
󸀠
(𝜂) = 0, (4)

where 𝜂 ∈ [1/2, 1), 𝜆 is a positive parameter, 𝑎(𝑡) ∈ 𝐶+[0, 1],
and 𝑓 ∈ 𝐶([0, 1] × [0,∞)). Using the Krasnosel’skii fixed

point theorem, they obtained some existence conditions for
the positive solutions of the problem (3)-(4).

Usually, by constructing Green’s function 𝐺(𝑡, 𝑠), the
authors transform the problem (1)-(2) (0 < 𝛼 < 1) into the
following integral equation:

𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠, 0 ≤ 𝑡 ≤ 1. (5)

Therefore, some fixed point theorems can be used to prove
the existence of the positive solutions of the problem (1)-(2).

However, if we consider the problem (1)-(2) when 𝛼 =

1, the respective integral equation of the problem (1)-(2) has
not the form of (5). Thus, we cannot prove the existence of
solutions of (1)-(2) only by fixed point theorems.

Despite the success in the study of (1)-(2) and (3)-(4), it
has been recognized that for the resonant cases, that is, (1)-
(2) with 𝛼 = 1, no much work has been known except recent
work [12, 17, 18] and the references thereinwhere the so-called
coincidence-degree method was employed.

Lu and Ge [12] considered the following higher-order𝑚-
point boundary value problem:

𝑦
(𝑘)

(𝑡) = 𝐹 (𝑡, 𝑦 (𝑡) , 𝑦
󸀠

(𝑡) , . . . , 𝑦
(𝑘−1)

(𝑡)) + 𝑒 (𝑡) ,

0 ≤ 𝑡 ≤ 1,

(6)
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with

𝑦
󸀠

(0) = 𝑦
󸀠󸀠

(0) = ⋅ ⋅ ⋅ = 𝑦
(𝑘−1)

(0) = 0,

𝑦 (1) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑦 (𝜂
𝑖
) ,

(7)

where 0 < 𝜂
1
< 𝜂
2
< ⋅ ⋅ ⋅ < 𝜂

𝑚−2
and ∑𝑚−2

𝑖=1
𝛼
𝑖
= 1. Using

the coincidence-degree method, they obtained a sufficient
condition for the existence of solutions for the problem (6)-
(7).

More recently, Ouyang and Li [19] have discussed a class
of fractional order differential equations of the following
three-point boundary value problem with resonance:

𝑦
𝛼

(𝑡) + 𝑓 (𝑡, 𝑦 (𝑡)) = 0, 0 ≤ 𝑡 ≤ 1, 1 < 𝛼 ≤ 2,

𝑦 (0) = 0, 𝑦 (1) =
1

𝜂𝛼−1
𝑦 (𝜂) .

(8)

Using a new method, they obtained some sufficient condi-
tions for the existence of solutions for the fractional order
boundary value problem (8).

The purpose of this paper is to study the problem (1)-
(2) for the nonresonant case and the resonant case. In the
nonresonant case, the Krasnosel’skii fixed point theorem is
used to prove the existence of positive solutions for the prob-
lem (1)-(2). In the resonant case, a completely new method
is incorporated; we transform the problem into an integral
equation with an undetermined parameter.The Intermediate
Value Theorem is applied to determine the particular value
of the parameter so that true solutions exist. Not only the
existence conditions of the solutions, but also the prove of the
main results are more simple than [12].

We introduce two lemmas as follows.

Lemma 1 (the Krasnosel’skii fixed point theorem [20]). Let
𝑃 be a cone in a Banach space 𝑋. Assume that Ω

1
and Ω

2
are

open subsets of 𝑋 with 0 ∈ Ω
1
and Ω

1
⊆ Ω
2
. Suppose that 𝑇 :

𝑃 ∩ (Ω
2
\ Ω
1
) → 𝑃 is a completely continuous operator so

that either
(i) ‖𝑇𝑢‖ ≤ ‖𝑢‖ for 𝑢 ∈ 𝑃 ∩ 𝜕Ω

1
and ‖𝑇𝑢‖ ≥ ‖𝑢‖ for

𝑢 ∈ 𝑃 ∩ 𝜕Ω
2

or

(ii) ‖𝑇𝑢‖ ≥ ‖𝑢‖ for 𝑢 ∈ 𝑃 ∩ 𝜕Ω
1
and ‖𝑇𝑢‖ ≤ ‖𝑢‖ for 𝑢 ∈

𝑃 ∩ 𝜕Ω
2
. Then 𝑇 has a fixed point 𝑢 ∈ 𝑃 ∩ (Ω

2
\Ω
1
).

Lemma 2 (see [21]). Let 𝐶 be a closed and convex subset of a
Banach space𝑋. Assume that𝑈 is a relatively open subset of 𝐶
with 0 ∈ 𝑈 and 𝑇 : 𝑈 → 𝐶 is completely continuous. Then at
least one of the following two properties holds:

(i) 𝑇 has a fixed point in 𝑈; (ii) there exist 𝑢 ∈ 𝜕𝑈 and
𝜆 ∈ (0, 1) with 𝑢 = 𝜆𝑇𝑢.

The paper is arranged as follows. In Section 2, we discuss
the existence of the positive solutions of the problem (1)-(2)
in nonresonant case. Section 3 is devoted to the existence of
the solutions of the problem (1)-(2) in resonant case. Finally,
we give some examples to illustrate our results.

For convenience, we set

𝑔
0
= lim
𝑢→0

+

𝑔 (𝑢)

𝑢
, 𝑔

∞
= lim
𝑢→∞

𝑔 (𝑢)

𝑢
. (9)

To present our result, we assume that

(H
1
) 𝑓(𝑡, 𝑢) = 𝑎(𝑡)𝑔(𝑢), 𝑎(𝑡) ∈ 𝐶+[0, 1], 𝑔 ∈ 𝐶+[0,∞), and
𝑔
0
= 0, 𝑔

∞
= ∞, or 𝑔

0
= ∞, 𝑔

∞
= 0;

(H
2
) 𝑓 ∈ 𝐶([0, 1] × 𝑅); there exist nonnegative functions
𝑚(𝑡), 𝑛(𝑡) ∈ 𝐶([0, 1]) so that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝑛 (𝑡) |𝑢|

𝑝
+ 𝑚 (𝑡) , (10)

where 0 ≤ 𝑝 ≤ 1;
(H
3
) for any 𝑡 ∈ (0, 1), 𝑓(𝑡, 𝑢) → ∞ as 𝑢 → ∞, and
𝑓(𝑡, 𝑢) → −∞ as 𝑢 → −∞.

2. The Nonresonant Case (𝛼 < 1)

Throughout this paper, we suppose that 𝐶 [0, 1] is a space of
continuous functions in [0, 1], equipped with the norm

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = sup
0≤𝑡≤1

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 , 𝑦 (𝑡) ∈ 𝐶 [0, 1] . (11)

In this section, we consider the nonresonant case, that is,
(1) with the boundary value problem (2) with 0 ≤ 𝛼 < 1. We
have the following theorem.

Theorem 3. Assume that (𝐻
1
) holds and 0 ≤ 𝛼 < 1. Then

problem (1)-(2) has at least one positive solution.

Proof of Theorem 3. Suppose that 𝑦(𝑡) is a solution of the
problem (1)-(2). Integrating both sides of (1) three times from
0 to 𝑡, one gets

𝑦 (𝑡) = −∫

𝑡

0

∫

𝑠

0

∫

𝑤

0

𝑎 (V) 𝑔 (𝑦 (V)) 𝑑V 𝑑𝑤𝑑𝑠 + 𝑐
1
+ 𝑐
2
𝑡 + 𝑐
3
𝑡
2

= −
1

2
∫

𝑡

0

(𝑡 − 𝑠)
2
𝑎 (𝑠) 𝑔 (𝑦 (𝑠)) 𝑑𝑠 + 𝑐

1
+ 𝑐
2
𝑡 + 𝑐
3
𝑡
2
.

(12)

Imposing the first two boundary conditions in (2), we have

𝑐
2
= 𝑐
3
= 0. (13)

Imposing the last boundary condition in (2), we obtain

𝑐
1
=

1

2 (1 − 𝛼)
[∫

1

0

(1 − 𝑠)
2
𝑎 (𝑠) 𝑔 (𝑦 (𝑠)) 𝑑𝑠

− ∫

𝜂

0

𝛼(𝜂 − 𝑠)
2

𝑎 (𝑠) 𝑔 (𝑦 (𝑠)) 𝑑𝑠] .

(14)

Substituting (13) and (14) into (12), the problem (1)-(2) is
equivalent to the following integral equation:

𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑔 (𝑦 (𝑠)) 𝑑𝑠, (15)
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where 𝐺(𝑡, 𝑠) is defined by

𝐺(𝑡, 𝑠)

=
1

2 (1 − 𝛼)

×

{{{{{{{

{{{{{{{

{

(1 − 𝑠)
2
− 𝛼(𝜂 − 𝑠)

2

− (1 − 𝛼) (𝑡 − 𝑠)
2
, 0 ≤ 𝑠 ≤ min{𝑡, 𝜂} ≤ 1,

(1 − 𝑠)
2
− 𝛼(𝜂 − 𝑠)

2

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 ≤ 1,

(1 − 𝑠)
2
− (1 − 𝛼) (𝑡 − 𝑠)

2
, 0 ≤ 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1 − 𝑠)
2
, 0 ≤ max{𝑡, 𝜂} ≤ 𝑠 ≤ 1.

(16)

When 𝑡 ≥ 𝑠, the function𝐺(𝑡, 𝑠) is decreasingwith respect
to 𝑡, and 𝐺(𝑡, 𝑠) is independent on the parameter 𝑡 when
𝑡 < 𝑠. So Green’s function 𝐺(𝑡, 𝑠) satisfies that 0 ≤ 𝐺(𝑡, 𝑠) ≤

𝐺(𝑠, 𝑠). Further, for any 0 < 𝜃 < 1/2, Green’s function 𝐺(𝑡, 𝑠)
satisfies

𝐺 (𝜃, 𝑠) ≥ 𝐺 (1 − 𝜃, 𝑠) , (17)

and the solution 𝑦(𝑡) of (1)-(2) is nonnegative and satisfies

min
𝑡∈[𝜃,1−𝜃]

𝑦 (𝑡) ≥ 𝜃
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 (18)

for any 𝑎 ∈ 𝐶+[0, 1] and 𝑔 ∈ 𝐶+[0,∞).
In fact, since 𝐺(𝑡, 𝑠) ≥ 0, from (H

1
) and (15), 𝑦(𝑡) ∈

𝐶
+
[0, 1]. Noticing that

𝑦
󸀠󸀠󸀠

(𝑡) = −𝑎 (𝑡) 𝑔 (𝑦 (𝑡)) ≤ 0, (19)

thus, 𝑦󸀠󸀠(𝑡) is decreasing; it follows from the boundary value
condition 𝑦󸀠󸀠(0) = 0 that

𝑦
󸀠󸀠

(𝑡) ≤ 0, 𝑡 ∈ [0, 1] . (20)

Hence 𝑦(𝑡) is concave; that is, for any 𝑡
1
, 𝑡
2
∈ [0, 1] and 𝛾 ∈

[0, 1],

𝑦 (𝛾𝑡
1
+ (1 − 𝛾) 𝑡

2
) ≥ 𝛾𝑦 (𝑡

1
) + (1 − 𝛾) 𝑦 (𝑡

2
) , 𝑡 ∈ [0, 1] .

(21)

Noticing that 𝑦󸀠(0) = 0, then 𝑦󸀠(𝑡) ≤ 0, and 𝑦(𝑡) is nonin-
creasing; thus 𝑡 = 0 is the maximum point of 𝑦(𝑡) in [0, 1];
then ‖𝑦‖ = 𝑦(0). For any 𝑡 ∈ [𝜃, 1 − 𝜃], one gets

𝑦 (𝑡) ≥ 𝑦 (1 − 𝜃) = 𝑦 (𝜃 × 0 + (1 − 𝜃) × 1)

≥ 𝜃𝑦 (0) + (1 − 𝜃) 𝑦 (1) ≥ 𝜃𝑦 (0) = 𝜃
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 .

(22)

Therefore, (18) holds.
Suppose that 𝜃 is a given number and satisfies 0 < 𝜃 <

1/2. We denote a cone𝐾 as follows:

𝐾 = {𝑦 ∈ 𝐶
+

[0, 1] | min
𝑡∈[𝜃,1−𝜃]

𝑦 (𝑡) ≥ 𝜃
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩} , (23)

and define an operator 𝑇 on𝐾 by

𝑇𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑔 (𝑦 (𝑠)) 𝑑𝑠. (24)

Now, we prove the existence of the positive solution of
(1)-(2). For convenience, we only prove the case that 𝑔

0
= 0,

𝑔
∞
= ∞, the prove of the case that 𝑔

0
= ∞, 𝑔

∞
= 0 is similar,

and we omit it here.
Since 𝑔

0
= 0, then for 𝜀 = 1/ ∫

1

0
𝐺(𝑠, 𝑠)𝑎(𝑠)𝑑𝑠 > 0, there

exists a 𝑟
1
> 0 such that

𝑔 (𝑦) ≤ 𝜀𝑦 (25)

for any 0 ≤ 𝑦 ≤ 𝑟
1
. We define the set 𝐾

1
by

𝐾
1
= {𝑦 ∈ 𝐶

+

[0, 1] |
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑟1} . (26)

Then, for any 𝑦 ∈ 𝜕𝐾
1
∩ 𝐾, we have

𝑇𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑔 (𝑦 (𝑠)) 𝑑𝑠

≤ ∫

1

0

𝐺 (𝑠, 𝑠) 𝑎 (𝑠) 𝜀𝑦 (𝑠) 𝑑𝑠

≤ ∫

1

0

𝐺 (𝑠, 𝑠) 𝑎 (𝑠) 𝜀𝑑𝑠
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 𝑟1,

(27)

which implies that
󵄩󵄩󵄩󵄩𝑇𝑦 (𝑡)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 , for 𝑦 ∈ 𝜕𝐾

1
∩ 𝐾. (28)

From 𝑔
∞
= ∞, for the given 0 < 𝜃 < 1/2 and

𝑀 ≥
1

∫
1−𝜃

𝜃
𝐺 (1 − 𝜃, 𝑠) 𝜃𝑎 (𝑠) 𝑑𝑠

> 0, (29)

there exists a 𝑟
2
> 0 so that

𝑔 (𝑦) ≥ 𝑀𝑦 for 𝑦 ≥ 𝑟
2
. (30)

Let

𝐾
2
= {𝑦 ∈ 𝐶

+

[0, 1] |
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤

1

𝜃
𝑟
2
} . (31)

Then, for any 𝑦 ∈ 𝜕𝐾
2
∩ 𝐾, we obtain from (17) that

𝑇𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑔 (𝑦 (𝑠)) 𝑑𝑠

≥ ∫

1−𝜃

𝜃

𝐺 (1 − 𝜃, 𝑠) 𝑎 (𝑠)𝑀𝑦 (𝑠) 𝑑𝑠

≥ 𝑀∫

1−𝜃

𝜃

𝐺 (1 − 𝜃, 𝑠) 𝜃𝑎 (𝑠) 𝑑𝑠
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≥

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 =

1

𝜃
𝑟
2
,

(32)

which follows
󵄩󵄩󵄩󵄩𝑇𝑦 (𝑡)

󵄩󵄩󵄩󵄩 ≥
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 , for 𝑦 ∈ 𝜕𝐾

2
∩ 𝐾. (33)

It is easy to show that 𝑇 is a completely continuous function.
Combining (28)-(33) and Lemma 1, the operator𝑇has at least
one fixed point in 𝐾 ∩ (𝐾

2
\ 𝐾
1
), which is a positive solution

of (15). The proof is completed.



4 Abstract and Applied Analysis

Suppose that
(H̃
1
) : 𝑎(𝑡)𝑔(𝑢) ≤ 𝑓(𝑡, 𝑢) ≤ 𝑏(𝑡)𝑔(𝑢), 𝑎(𝑡), 𝑏(𝑡) ∈ 𝐶

+
[0, 1],

𝑔 ∈ 𝐶
+
[0,∞), and 𝑔

0
= 0, 𝑔

∞
= ∞, or 𝑔

0
= ∞,

𝑔
∞
= 0.

From the proof of Theorem 3, we have the following.

Corollary 4. Assume that (𝐻̃
1
) holds and 0 ≤ 𝛼 < 1. Then

problem (1)-(2) has at least one positive solution.

3. The Resonant Case (𝛼 = 1)

In this case, the boundary value condition (2) can be rewritten
as

𝑦
󸀠

(0) = 0, 𝑦
󸀠󸀠

(0) = 0, 𝑦 (1) = 𝑦 (𝜂) . (34)

We have the following main theorem.

Theorem5. Assume that (𝐻
2
) and (𝐻

3
) hold. Further, suppose

that

sup
𝑡∈[0,1]

∫

1

0

𝐺 (𝑠, 𝑠) 𝑛 (𝑠) 𝑑𝑠 < 1, (35)

where
𝐺 (𝑡, 𝑠)

=
1

2 (1 − 𝜂)

×

{{{{{{{

{{{{{{{

{

(1 − 𝑠)
2
− 𝜂(𝜂 − 𝑠)

2

− (1 − 𝜂) (𝑡 − 𝑠)
2
, 0 ≤ 𝑠 ≤ min {𝑡, 𝜂} ≤ 1,

(1 − 𝑠)
2
− 𝜂(𝜂 − 𝑠)

2

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 ≤ 1,

(1 − 𝑠)
2
− (1 − 𝜂) (𝑡 − 𝑠)

2
, 0 ≤ 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1 − 𝑠)
2
, 0 ≤ max {𝑡, 𝜂} ≤ 𝑠 ≤ 1.

(36)

Then problem (1)–(34) has at least one solution.

Proof of Theorem 5. Using a similar method as in the proof
of Theorem 3, the problem (1)–(34) is equivalent to the
following integral equation:

𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 + 𝑦 (1) , (37)

where 𝐺(𝑡, 𝑠) is defined by (36).
It is obvious that Green’s function 𝐺(𝑡, 𝑠) is decreasing

with respect to 𝑡 when 𝑡 ≥ 𝑠, and it is independent on the
parameter 𝑡 when 𝑡 < 𝑠; thus, the function 𝐺(𝑡, 𝑠) is not
increasing with respect to 𝑡 ∈ [0, 1] and 0 ≤ 𝐺(𝑡, 𝑠) ≤ 𝐺(𝑠, 𝑠).

Let
𝑤 (𝑡) = 𝑦 (𝑡) − 𝑦 (1) . (38)

Given any value 𝑦(1),𝑤(𝑡) satisfies the Hammerstein integral
equation by (37):

𝑤 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑤 (𝑠) + 𝑦 (1)) 𝑑𝑠,

𝑤 (1) = 𝑤 (𝜂) = 0.

(39)

To obtain the solvability of (39), we replace 𝑦(1) by a real
constant 𝜇; that is,

𝑤 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑤 (𝑠) + 𝜇) 𝑑𝑠,

𝑤 (1) = 0.

(40)

Define the Hammerstein operator:

𝑇𝑤 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑤 (𝑠) + 𝜇) 𝑑𝑠, 𝑤 (𝑡) ∈ 𝐶 [0, 1]

(41)

for any real number 𝜇. From the condition (H
2
), it is easy to

know that

|𝑇𝑤 (𝑡)| ≤ ∫

1

0

𝐺 (𝑡, 𝑠) (𝑛 (𝑠)
󵄨󵄨󵄨󵄨𝑤 (𝑠) + 𝜇

󵄨󵄨󵄨󵄨
𝑝

+ 𝑚 (𝑠)) 𝑑𝑠

≤ ‖𝑤 (𝑠)‖
𝑝
∫

1

0

𝐺 (𝑠, 𝑠) 𝑛 (𝑠) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑠, 𝑠) (
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨
𝑝

+ 𝑚 (𝑠)) 𝑑𝑠;

(42)

here, we have made use of

|𝑎 + 𝑏|
𝑝
≤ |𝑎|
𝑝
+ |𝑏|
𝑝 (43)

for any 0 ≤ 𝑝 ≤ 1. By (35), that is,

sup
𝑡∈[0,1]

∫

1

0

𝐺 (𝑠, 𝑠) 𝑛 (𝑠) 𝑑𝑠 < 1, (44)

we then see that the operator 𝑇 maps the ball 𝐵
𝑟
onto itself,

where

𝐵
𝑟
= {𝑤 ∈ 𝐶 [0, 1] : ‖𝑤‖

∞
≤ 𝑟} ,

𝑟 = max{1, [1 − ∫
1

0

𝐺 (𝑠, 𝑠) 𝑛 (𝑠) 𝑑𝑠]

−1

× (∫

1

0

𝐺 (𝑠, 𝑠) (
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨
𝑝

+ 𝑚 (𝑠)) 𝑑𝑠)} .

(45)

It is easy to show that the operator 𝑇 is a compact operator.
FromLemma 2 and using a similarmethod ofTheorem 3.6 in
[22], we obtain that the operator 𝑇 has a fixed point𝑤

𝜇
(𝑡) for

any real number 𝜇. Let𝑤
𝜇
be the fixed point of 𝑇with a given

parameter 𝜇; that is,𝑇𝑤
𝜇
= 𝑤
𝜇
. For the solvability of (40), we

need to find a 𝜇
0
so that 𝑤

𝜇
0

(1) = 0; that is,

𝑤
𝜇
0

(1) = ∫

1

0

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑤
𝜇
0

(𝑠) + 𝜇
0
) 𝑑𝑠 = 0. (46)

Define

𝐿 (𝜇) = 𝑤
𝜇
(1) = ∫

1

0

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑤
𝜇
(𝑠) + 𝜇) 𝑑𝑠. (47)
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We only need to claim by assumption (H
3
) that

lim
𝜇→±∞

𝐿 (𝜇) = ±∞. (48)

It is obvious that 𝐿(𝜇) is continuously dependent on the para-
meter 𝜇; this would help us to show the existence of 𝜇

0
such

that 𝐿(𝜇
0
) = 0.

Now, we show that 𝐿(𝜇) → ∞ as 𝜇 → ∞.
On the contrary, assume that there exists a sequence {𝜇

𝑛
}

such that

lim
𝑛→∞

𝜇
𝑛
= ∞ , lim

𝑛→∞

𝐿 (𝜇
𝑛
) = 𝑙 < ∞. (49)

We now claim that for all 𝑡 ∈ [0, 1], 𝑤
𝜇
𝑛

(𝑡) + 𝜇
𝑛
is unbounded

from below, which is dependent on 𝑡 and 𝑛. In fact, suppose
that 𝑤

𝜇
𝑛

(𝑡) + 𝜇
𝑛
is bounded from below by a constant −𝑚; by

assumption (H
3
), 𝑓(𝑡, 𝑢) is bounded from below for 𝑡 ∈ [0, 1]

and 𝑢 ∈ [−𝑚,∞); that is, there exists an𝑀 > 0 so that

𝑓 (𝑡, 𝑢) ≥ −𝑀, for 𝑡 ∈ [0, 1] , 𝑢 ∈ [−𝑚,∞) . (50)

Replacing 𝑢 in (50) by 𝑤
𝜇
𝑛

(𝑡) + 𝜇
𝑛
, one gets

𝑓 (𝑡, 𝑤
𝜇
𝑛

(𝑡) + 𝜇
𝑛
) ≥ −𝑀 (51)

for 𝑤
𝜇
𝑛

(𝑡) + 𝜇
𝑛
≥ −𝑚 and 𝑡 ∈ [0, 1], which implies that the

fixed point of 𝑇 satisfies

𝑤
𝜇
𝑛

(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑤
𝜇
𝑛

(𝑠) + 𝜇
𝑛
) 𝑑𝑠

≥ −𝑀∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 ≥ −𝑀,

(52)

which implies that 𝑤
𝜇
𝑛

(𝑡) + 𝜇
𝑛
→ ∞ as 𝜇

𝑛
→ ∞. From the

condition (H
3
), 𝑓(𝑡, 𝑤

𝜇
𝑛

(𝑡) + 𝜇
𝑛
) → ∞ as 𝜇

𝑛
→ ∞ for all

𝑡 ∈ (0, 1]. Noticing that 𝐺(𝜂, 𝑠) = ((1 − 𝑠)2 − (𝜂 − 𝑠)2)/2(1 − 𝜂)
for 0 ≤ 𝑠 ≤ 𝜂, we have

𝐿 (𝜇
𝑛
) ≥ ∫

𝜂

0

𝐺 (𝜂, 𝑠) 𝑓 (𝑠, 𝑤
𝜇
𝑛

(𝑠) + 𝜇
𝑛
) 𝑑𝑠

= ∫

𝜂

0

(1 − 𝑠)
2
− (𝜂 − 𝑠)

2

2 (1 − 𝜂)
𝑓 (𝑠, 𝑤

𝜇
𝑛

(𝑠) + 𝜇
𝑛
) 𝑑𝑠

>
(1 − 𝜂)

2

− (𝜂 − 𝜂)
2

2 (1 − 𝜂)
∫

𝜂

0

𝑓 (𝑠, 𝑤
𝜇
𝑛

(𝑠) + 𝜇
𝑛
) 𝑑𝑠 󳨀→ ∞

(53)

as 𝜇
𝑛
→ ∞, which contradicts lim

𝑛→∞
𝐿(𝜇
𝑛
) < ∞; thus, our

claim is true, and

lim
𝜇
𝑛
→∞

min
𝑠∈[0,1]

𝑤
𝜇
𝑛

(𝑠) = −∞. (54)

Since 𝑤
𝜇
𝑛

(𝑡) is a fixed point of the operator 𝑇, that is, the
function 𝑤

𝜇
𝑛

(𝑡) satisfies

𝑤
𝜇
𝑛

(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑤
𝜇
𝑛

(𝑠) + 𝜇
𝑛
) 𝑑𝑠. (55)

From (54) and (55), it is impossible that

𝑓 (𝑡, 𝑤
𝜇
𝑛

(𝑡) + 𝜇
𝑛
) ≥ 0, ∀𝑡 ∈ [0, 1] (56)

as 𝜇
𝑛
is sufficiently large.

Now, we define

𝐼
𝑛
= {𝑡 ∈ [0, 1] : 𝑤

𝜇
𝑛

(𝑡) + 𝜇
𝑛
> 0} ,

𝐼
𝑛
= {𝑡 ∈ [0, 1] : 𝑤

𝜇
𝑛

(𝑡) + 𝜇
𝑛
≤ 0} .

(57)

Then, 𝐼
𝑛
is not empty, and 𝐼

𝑛
∩𝐼
𝑛
= 𝜙. In fact, assume that 𝐼

𝑛
is

empty; then, 𝑓(𝑡, 𝑤
𝜇
𝑛

(𝑡) + 𝜇
𝑛
) is bounded from below for any

𝑡 ∈ [0, 1] and 𝜇
𝑛
∈ [0,∞), which follows from (55) and (H

3
)

that 𝑤
𝜇
𝑛

(𝑡) is bounded from below. This contradicts (54).
From (50), there exists a positive number 𝑀̃ so that

𝑓 (𝑡, 𝑤
𝜇
𝑛

(𝑡) + 𝜇
𝑛
) ≥ −𝑀̃, for 𝑡 ∈ 𝐼

𝑛
. (58)

Notice that 𝑤
𝜇
𝑛

(𝑡) < 0 for any 𝜇
𝑛
> 0 and 𝑡 ∈ 𝐼

𝑛
, and

lim
𝜇
𝑛
→∞

𝑤
𝜇
𝑛

(𝑡) = −∞ for any 𝑡 ∈ 𝐼
𝑛
.

Therefore, we have from 𝐺(𝑡, 𝑠) ≤ 𝐺(𝑠, 𝑠) that

𝑤
𝜇
𝑛

(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑤
𝜇
𝑛

(𝑠) + 𝜇
𝑛
) 𝑑𝑠

= ∫
𝐼
𝑛

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑤
𝜇
𝑛

(𝑠) + 𝜇
𝑛
) 𝑑𝑠

+ ∫
𝐼
𝑛

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑤
𝜇
𝑛

(𝑠) + 𝜇
𝑛
) 𝑑𝑠.

(59)

From (H
3
), we have from (58) and (59) that

𝑤
𝜇
𝑛

(𝑡) ≥ −𝑀̃∫
𝐼
𝑛

𝐺 (𝑠, 𝑠) 𝑑𝑠 −min
𝑠∈𝐼
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑤
𝜇
𝑛

(𝑠) + 𝜇
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

× ∫
𝐼
𝑛

𝐺 (𝑠, 𝑠) 𝑛 (𝑠) 𝑑𝑠 − ∫
𝐼
𝑛

𝐺 (𝑠, 𝑠)𝑚 (𝑠) 𝑑𝑠

≥ −𝑀̃∫

1

0

𝐺 (𝑠, 𝑠) 𝑑𝑠 −min
𝑠∈𝐼
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑤
𝜇
𝑛

(𝑠)
󵄨󵄨󵄨󵄨󵄨

𝑝

× ∫

1

0

𝐺 (𝑠, 𝑠) 𝑛 (𝑠) 𝑑𝑠 − ∫

1

0

𝐺 (𝑠, 𝑠)𝑚 (𝑠) 𝑑𝑠

≥ −𝑀̃∫

1

0

𝐺 (𝑠, 𝑠) 𝑑𝑠 − ∫

1

0

𝐺 (𝑠, 𝑠) 𝑛 (𝑠) 𝑑𝑠

+ min
𝑠∈[0,1]

𝑤
𝜇
𝑛

(𝑠) ∫

1

0

𝐺 (𝑠, 𝑠)𝑚 (𝑠) 𝑑𝑠.

(60)

Taking the minimal values of both sides of the above, it yields

min
𝑠∈[0,1]

𝑤
𝜇
𝑛

(𝑠) ≥ −[1 − ∫

1

0

𝐺 (𝑠, 𝑠)𝑚 (𝑠) 𝑑𝑠]

−1

× {𝑀̃∫

1

0

𝐺 (𝑠, 𝑠) 𝑑𝑠 + ∫

1

0

𝐺 (𝑠, 𝑠) 𝑛 (𝑠) 𝑑𝑠} .

(61)

This contradicts (54).
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Therefore, we have proved that lim
𝜇→∞

𝐿(𝜇) = ∞. By a
similar method, we can prove that lim

𝜇→−∞
𝐿(𝜇) = −∞ and

the detail is omitted.
Since the function 𝐿(𝜇) is continuous with respect to the

parameter 𝜇. From the Intermediate Value Theorem, there
exists a 𝜇

0
so that 𝐿(𝜇

0
) = 𝑤
𝜇
0

(1) = 0.
Let

𝑦 (𝑡) = 𝑤
𝜇
0

(𝑡) + 𝜇
0
. (62)

Then, 𝑦(1) = 𝜇
0
. From (62) and (39), it is obvious that 𝑦(𝑡)

solves

𝑦 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 + 𝑦 (1) ,

𝑦 (𝜂) = 𝑦 (1) ,

(63)

which implies that 𝑦(𝑡) is a solution of the problem (1)–(34).
This completes the proof.

4. Examples

In this section, we give two examples to illustrate our main
result.

Example 1. Consider the following boundary value problem:

𝑦
󸀠󸀠󸀠
+ (𝑡 + 1) 𝑦

𝛾
= 0,

𝑦
󸀠

(0) = 𝑦
󸀠󸀠

(0) = 0, 𝑦 (1) =
1

2
𝑦 (

1

2
) ,

(64)

where

𝑎 (𝑡) = (𝑡 + 1) , 𝑔 (𝑦) = 𝑦
𝛾
. (65)

From Theorem 3, the problem (64) has a positive solution if
0 < 𝛾 < 1.

Example 2. Consider the following boundary value problem:

𝑦
󸀠󸀠󸀠
+ 𝑑 (𝑡 + 1) 𝑔 (𝑦) − sin 𝑡 = 0,

𝑦
󸀠

(0) = 𝑦
󸀠󸀠
= 0, 𝑦 (1) = 𝑦 (

1

2
) ,

(66)

where

𝑔 (𝑦) =

{{{

{{{

{

𝑦
3

1 + 𝑦2
,

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≤ 1,

1

2
𝑦,

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 > 1.

(67)

Here 𝑓(𝑡, 𝑦) = 𝑑(𝑡 + 1)𝑔(𝑦) − sin 𝑡. Thus, |𝑓(𝑡, 𝑦)| ≤ 𝑛(𝑡)|𝑦| +
𝑚(𝑡) with

𝑛 (𝑡) =
1

2
𝑑 (𝑡 + 1) , 𝑚 (𝑡) = |sin 𝑡| . (68)

By applying our theorems, the problem (66) has a solution if
𝑑 < 256/49.
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