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The 𝑞-deformed entropies of quantum and classical systems are discussed. Standard and 𝑞-deformed entropic inequalities for 𝑋-
states of the two-qubit system and the state of single qudit with 𝑗 = 3/2 are presented.

1. Introduction

Quantum correlations of bipartite qudit systems are charac-
terized, for example, by entropic inequalities [1–4] written for
von Neumann entropies [5] of the system and its subsystems
[6]. 𝑞-deformed entropies were introduced in [7, 8]. These
entropies being functions of an extra parameter containmore
detailed information on properties of density matrices of the
qudit states and the qudit subsystem states. The Tsallis entro-
py of a bipartite qudit system was shown to satisfy the gen-
eralized subadditivity condition [9, 10]. This condition is the
inequality available for Tsallis entropy of the bipartite system
state and Tsallis entropies of two subsystem states.The Tsallis
entropy is often used in finite-size or especially correlated
systems.Theproperties and applications of the Tsallis entropy
to describe the systems containing a large number of elements
were discussed, for example, in [11]. In the approach of [12–
16] it was shown that the relations for composite system state
can be extended to be valid for noncomposite systems, for
example, for the single qudit state. These inequalities reflect
some quantum correlation properties of degrees of freedom
of either of subsystems (in the case of bipartite system) or
degrees of freedom of the single qudit in the case of noncom-
posite system states [17]. One of the important states of the
two-qubit systems is 𝑋-states. The properties of these states
were studied, for example, in [16, 18, 19]. The partial case of
the𝑋-state is theWerner state [20]. Entanglement properties
of theWerner state were studied in detail, for example, in [21].

The aim of our work is to obtain a new deformed entropic
inequality for 𝑋-state of composite (bipartite) and noncom-
posite (single qudit with 𝑗 = 3/2) quantum systems. We con-
sider both Rényi and Tsallis entropic inequalities.

The paper is constructed as follows. In Section 2 we
review the notion of Rényi and Tsallis entropies for bipartite
systems. In Section 3 we obtain the new Tsallis entropic
inequalities for 𝑋-state of noncomposite quantum system.
The latter entropic inequality is illustrated by an example of
the Werner state of the single qudit.

2. Rényi and Tsallis Entropies

Let us introduce the quantum state in the Hilbert space H
defined by the following density matrix:

𝜌 =(

𝜌
11

𝜌
12

𝜌
13

𝜌
14

𝜌
21

𝜌
22

𝜌
23

𝜌
24

𝜌
31

𝜌
32

𝜌
33

𝜌
34

𝜌
41

𝜌
42

𝜌
43

𝜌
44

), Tr (𝜌) = 1, 𝜌 = 𝜌†, 𝜌 ≥ 0.

(1)

If we apply the invertible map of indices 1 ↔ 1/2 1/2; 2 ↔
1/2 − 1/2; 3 ↔ −1/2 1/2; and 4 ↔ −1/2 − 1/2 then the
latter matrix can describe the two-qubit state. This provides
the possibility to construct reduced density operators 𝜌

1
=

Tr
2
𝜌(1, 2) and 𝜌

2
= Tr

1
𝜌(1, 2) which describe the states
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of the subsystems 1 and 2, respectively. Applying another
invertible map of indices 1 ↔ 3/2, 2 ↔ 1/2, 3 ↔ −1/2,
and 4 ↔ −3/2, the density matrix (1) can be rewritten so
that it can describe the noncomposite system of the single
qudit with 𝑗 = 3/2. Hence it is possible to use the density
matrix in form (1) to describe both bipartite systems as well as
systems without subsystems. This idea to use invertible map
of integers 1, 2, 3, . . . onto pairs (triples, etc.) of integers (𝑖, 𝑘),
𝑖, 𝑘 = 1, 2, . . ., to formulate the quantumproperties of systems
without subsystems was applied in [12–16].That gives us pos-
sibility to translate known properties of quantum correlations
associated with the structure of the bipartite system like the
entanglement to the systemwithout subsystems, for example,
single qudit.

An importantmeasure of the entanglement is the entropy.
The most known is the von Neumann entropy. It is obtained
by

𝑆
𝑁
= −Tr 𝜌 ln 𝜌. (2)

More flexible are Tsallis and Rényi entropies. The Rényi ent-
ropy generalizes the Shannon entropy, the Hartley entropy,
the min-entropy, and the collision entropy. Both the Tsallis
and Rényi entropies depend on extra parameter 𝑞; thus they
are called 𝑞-entropies. The classical 𝑞-entropies of the prob-
ability vector, constructed from the diagonal elements of the
density matrix (1) �⃗� = (𝑝

1
= 𝜌
11
, 𝑝
2
= 𝜌
22
, 𝑝
3
= 𝜌
33
, 𝑝
4
=

𝜌
44
), are

𝑆
𝑇

𝑞
=

1

1 − 𝑞
(

4

∑

𝑖=1

𝑝
𝑞

𝑖
− 1) , 𝑆

𝑅

𝑞
=

1

1 − 𝑞
ln(
4

∑

𝑖=1

𝑝
𝑞

𝑖
) . (3)

When 𝑞 → 1 holds, 𝑆𝑇
𝑞
reduces to the vonNeumann entropy.

Tsallis and Rényi entropies can be rewritten in the following
forms:

𝑆
𝑇

𝑞
= −Tr 𝜌ln

𝑞
𝜌, 𝑆

𝑅

𝑞
=

1

1 − 𝑞
ln (Tr 𝜌𝑞) , (4)

where

ln
𝑞
𝜌 =

{{

{{

{

𝜌
𝑞−1

− 𝐼

𝑞 − 1
, if 𝑞 ̸= 1,

ln 𝜌, if 𝑞 = 1,
(5)

for any real 𝑞 > 0, where 𝐼 is identity matrix. Logarithm (5) is
called the 𝑞-logarithm or the deformed logarithm. Relations
betweenTsallis andRényi entropies are given by the following
formulas:

𝑆
𝑇

𝑞
=

exp (𝑆𝑅
𝑞
(1 − 𝑞)) − 1

1 − 𝑞
, 𝑆

𝑅

𝑞
=

ln (1 + (1 − 𝑞) 𝑆𝑇
𝑞
)

1 − 𝑞
.

(6)

If the density matrix (1) describes the bipartite state (the
two-qubit system), then we can consider two subsystems on
spacesH1 andH2 such thatH = H1⊗H2. Reduced density
matrices 𝜌

1
, 𝜌
2
are defined as partial traces of (1). Resulting

matrices are density matrices of the density operators acting

on spacesH1 andH2, respectively.Thus the reduced density
matrices of the first and the second qubit are defined as

𝜌
1
= (

𝜌
11
+ 𝜌
22

𝜌
13
+ 𝜌
24

𝜌
31
+ 𝜌
42

𝜌
33
+ 𝜌
44

) ,

𝜌
2
= (

𝜌
11
+ 𝜌
33

𝜌
12
+ 𝜌
34

𝜌
21
+ 𝜌
43

𝜌
22
+ 𝜌
44

) .

(7)

It is well known that the vonNeumann entropy is subadditive.
In [9] was proved the subadditivity of the Tsallis entropy for
𝑞 > 1 of the composite system; namely,

𝑆
𝑇

𝑞
(𝜌) ≤ 𝑆

𝑇

𝑞
(𝜌
1
) + 𝑆
𝑇

𝑞
(𝜌
2
) . (8)

There are other entropic inequalities, for example, the strong
subadditivity condition in [1], which holds for the von Neu-
mann entropy of three-partite quantum system.The fact that
the Tsallis entropy is not strong subadditive was recently
proved in [10]. Let us define the 𝑞-information as

𝐼
𝑇

𝑞
= 𝑆
𝑇

𝑞
(𝜌
1
) + 𝑆
𝑇

𝑞
(𝜌
2
) − 𝑆
𝑇

𝑞
(𝜌) ≥ 0. (9)

The subadditivity condition for the Tsallis entropy provides
the inequality for the Rényi entropy as follows:

exp (𝑆𝑅
𝑞
(𝜌
1
) (1 − 𝑞)) + exp (𝑆𝑅

𝑞
(𝜌
2
) (1 − 𝑞))

− exp (𝑆𝑅
𝑞
(𝜌) (1 − 𝑞)) < 1.

(10)

Since Rényi and Tsallis entropies tend to the von Neumann
entropy for 𝑞 → 1, both inequalities (9) and (10) in this limit
give the standard positivity condition of the von Neumann
mutual information.

3. The Tsallis Entropy for the 𝑋-State

Using the invertible mapping 1 ↔ 3/2, 2 ↔ 1/2, 3 ↔ −1/2,
and 4 ↔ −3/2, the density matrix (1) can be rewritten as

𝜌
3/2

=(

𝜌
3/2,3/2

𝜌
3/2,1/2

𝜌
3/2,−1/2

𝜌
3/2,−3/2

𝜌
1/2,3/2

𝜌
1/2,1/2

𝜌
1/2,−1/2

𝜌
1/2,−3/2

𝜌
−1/2,3/2

𝜌
−1/2,1/2

𝜌
−1/2,−1/2

𝜌
−1/2,−3/2

𝜌
−3/2,3/2

𝜌
−3/2,1/2

𝜌
−3/2,−1/2

𝜌
−3/2,−3/2

). (11)

This matrix is a density matrix of the single qudit state with
spin 𝑗 = 3/2. Such system has no subsystems; thus it is
impossible to write its reduced density matrices. But using
form (1) we can successfully write them. If 𝜌

12
= 𝜌
13
= 𝜌
21
=

𝜌
31
= 𝜌
24
= 𝜌
34
= 𝜌
42
= 𝜌
43
= 0 holds, then the densitymatrix

(1) has the view of the𝑋-state density matrix. Consider

𝜌
𝑋
=(

𝜌
11

0 0 𝜌
14

0 𝜌
22

𝜌
23

0

0 𝜌
32

𝜌
33

0

𝜌
41

0 0 𝜌
44

)=(

𝜌
11

0 0 𝜌
14

0 𝜌
22

𝜌
23

0

0 𝜌
∗

23
𝜌
33

0

𝜌
∗

14
0 0 𝜌

44

),

(12)
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where 𝜌
11
, 𝜌
22
, 𝜌
33
, and 𝜌

44
are positive reals and 𝜌

23
, 𝜌
14
are

complex quantities. The latter matrix has the unit trace and
it is nonnegative if 𝜌

22
𝜌
33
≥ |𝜌
23
|
2, 𝜌
11
𝜌
44
≥ |𝜌
14
|
2 hold. The

reduced density matrices are defined as

𝜌
1
= (

𝜌
11
+ 𝜌
22

0

0 𝜌
33
+ 𝜌
44

) ,

𝜌
2
= (

𝜌
11
+ 𝜌
33

0

0 𝜌
22
+ 𝜌
44

) .

(13)

Hence, the 𝑞-information (9) for the 𝑋-state of the single
qudit is

𝐼
𝑇

𝑞
=

1

1 − 𝑞
((𝜌
11
+ 𝜌
22
) ((𝜌
11
+ 𝜌
22
)
𝑞−1

− 1)

+ (𝜌
11
+ 𝜌
33
) ((𝜌
11
+ 𝜌
33
)
𝑞−1

− 1)

+ (𝜌
22
+ 𝜌
44
) ((𝜌
22
+ 𝜌
44
)
𝑞−1

− 1)

+ (𝜌
33
+ 𝜌
44
) ((𝜌
33
+ 𝜌
44
)
𝑞−1

− 1)

− (𝜌
11
+ 𝜌
22
+ 𝜌
33
+ 𝜌
44
) (𝜌
𝑞−1

− 1)) ≥ 0.

(14)

As an example of the𝑋-state density matrix of the qudit state
with spin 𝑗 = 3/2 the Werner state matrix can be taken.
Consider

𝜌
𝑊
=
(
(
(

(

1+ 𝑝

4
0 0

𝑝

2

0
1 − 𝑝

4
0 0

0 0
1 − 𝑝

4
0

𝑝

2
0 0

1 + 𝑝

4

)
)
)

)

, (15)

where the parameter 𝑝 satisfies the inequality −1/3 ≤ 𝑝 ≤ 1.
The parameter domain 1/3 < 𝑝 ≤ 1 corresponds to the
entangled state. The information (14) of the latter state can
be seen in Figure 1. The dashed line in the point 𝑝 = 1/3

marks the border between the separable and the entangled
Werner states. One can see general behavior of the 𝑞-inf-
ormation against parameter 𝑝 for different values of the def-
ormation parameter 𝑞. In the domain of the entangled states
the 𝑞-information increases with increasing the degree of
the state entanglement. The sensitivity of the 𝑞-information
to the degree of entanglement depends on the deformation
parameter 𝑞.

Let us show, in the example, how the variation of themap-
ping impacts the correlations in the quantum system. To this
end, we use the invertible mapping described by the unitary
transformation 𝜌 → 𝑈𝜌𝑈

†, for example, 1 ↔ 2; 2 ↔ 3;
3 ↔ 4; and 4 ↔ 1. Then the density matrix (1) can be rewrit-
ten as

𝜌
𝑈
=(

𝜌
22

𝜌
23

𝜌
24

𝜌
21

𝜌
32

𝜌
33

𝜌
34

𝜌
31

𝜌
32

𝜌
43

𝜌
44

𝜌
41

𝜌
12

𝜌
13

𝜌
14

𝜌
11

). (16)
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Figure 1: The 𝑞-information 𝐼𝑇
𝑞
of the Werner state (17) of the qudit

with spin 𝑗 = 3/2 against the parameter 𝑝 for different values of the
deformation parameter 𝑞.

Obviously, the full entropy of the system does not change.
However, the entropies 𝑆𝑇

𝑞
(𝜌
1
), 𝑆𝑇
𝑞
(𝜌
2
) change due to themod-

ification of the reduced density matrices. Hence, it is possible
to find such mapping that 𝑆𝑇

𝑞
(𝜌
1
) + 𝑆
𝑇

𝑞
(𝜌
2
) takes minimum or

maximum values.
Let us select thematrix of theWerner state with two para-

meters. Consider

𝜌
𝑊
(𝑝, 𝑏) =

(
(
(

(

1+ 𝑝

4
0 0

𝑝

2

0
1 − 𝑝

4
𝑏 0

0 𝑏
1 − 𝑝

4
0

𝑝

2
0 0

1 + 𝑝

4

)
)
)

)

(17)

as an example of the density matrix (1). To provide the pos-
itivity of (17) the parameters must be in the domain −1/3 ≤
𝑝 ≤ 1, (1 − 𝑝)/4 ≥ |𝑏|. Let us select 𝑏 = (1 − 𝑝)/5. For this
state the sum of the reduced entropies is

𝑆
𝑇

𝑞
(𝜌
1
) + 𝑆
𝑇

𝑞
(𝜌
2
) = 1. (18)

Using the introducedmapping, the matrix (17) can be rewrit-
ten as

𝜌
𝑊
(𝑝, 𝑏) =

(
(
(

(

1+ 𝑝

4
𝑏 0 0

𝑏
1 − 𝑝

4
0 0

0 0
1 − 𝑝

4

𝑝

2

0 0
𝑝

2

1 + 𝑝

4

)
)
)

)

(19)

and the sum of the reduced entropies is

𝑆
𝑇

𝑞
(𝜌
1
) + 𝑆
𝑇

𝑞
(𝜌
2
) = −

(𝑝 − 1) (17𝑝 + 23)

25
. (20)

The latter sum is less than (18). This example shows that the
choice of the mapping may impact on the values of the redu-
ced entropies.
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4. Summary

To conclude, we point out the main results of the work. We
applied the 𝑞-deformed entropies of Rényi and Tsallis as a
measure of the entanglement for the systems without subsys-
tems. New deformed entropic inequality of the𝑋-state of the
noncomposite quantum state (the qudit with spin 𝑗 = 3/2)
was obtained. As an example of the𝑋-state, the Werner state
with one parameter was taken.

Despite the fact that there are no subsystems in such
systems it is possible to introduce analogs of partial traces
like, for example, composite systems using special mapping
illustrated in the text. Certainly, it is necessary to understand
that these partial traces for the noncomposite systems do not
imply the same meaning as quantum state of the composite
system. The physical and probabilistic background of the
correlations inside the system without subsystems will be
developed in the future article of the authors.
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