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This paper deals with designing a new iteration scheme associated with a given scheme for contraction mappings.This new scheme
has a similar structure to that of the given scheme, in which those two iterative schemes converge to the same fixed point of the given
contraction mapping. The positive influence of feedback parameters on the convergence rate of this new scheme is investigated.
Moreover, the derived convergence and comparison results can be extended to nonexpansive mappings. As an application, the
derived results are utilized to study the synchronization of logisticmaps. Two illustrated examples are used to reveal the effectiveness
of our results.

1. Introduction

Fixed point theory has achieved great progress since the
last two decades. Various schemes have been constructed to
approximate the fixed point of a contraction mapping (see,
e.g., [1–30]).

For a contraction mapping, we can define an iteration
scheme which converges to the fixed point of that mapping.
Here is a question whether we can design another iteration
scheme with a similar structure to that of given scheme to
approximate the fixed point. Motivated by this question, we
design a new iteration scheme which is associated with the
given iteration scheme.

This new scheme has a similar structure to that of the
given scheme.Those two schemes converge to the same fixed
point of the given contractionmapping.The convergence rate
of this new scheme can be accelerated by the increase of
the feedback parameters.Those convergence and comparison
criteria can be applied to nonexpansive mappings. Moreover,
the derived results are utilized to study the synchronization
of logistics maps. Two examples are used to reveal the
effectiveness of our results.

2. Preliminaries

Let 𝐶 be a nonempty convex subset of a normed linear space𝐸. Let 𝑇 be a contraction mapping of 𝐶 into itself with the
contraction constant 𝜇; that is,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ 𝜇 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 , 0 < 𝜇 < 1, (1)

for any 𝑥, 𝑦 ∈ 𝐶. The set of fixed points of 𝑇 is denoted by𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}. The set of natural numbers
is denoted by N. {𝛼

𝑛
} and {𝛽

𝑛
} are two sequences of real

numbers such that 0 ≤ 𝛼
𝑛
and 0 ≤ 𝛽

𝑛
for all 𝑛 ∈ N. Consider

the following scheme:

𝑥
1
∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N. (2)

Remark 1. It should be pointed out that scheme (2) is a
general framework which includes the following well-known
schemes as special cases.

(i) If 𝛼
𝑛
= 0 and 𝛽

𝑛
= 1, scheme (2) reduces to Picard

iteration.
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(ii) If 0 < 𝛼
𝑛
< 1 and 𝛽

𝑛
= 1 − 𝛼

𝑛
, scheme (2) reduces to

Mann iteration.

(iii) If 0 < 𝛼
𝑛
< 1, 𝛽

𝑛
= 1 − 𝛼

𝑛
, and 𝑇𝑥

𝑛
= 𝑇̃((1 − 𝛾

𝑛
)𝑥
𝑛
+𝛾

𝑛
𝑇̃𝑥
𝑛
), where 𝑇̃ is a contraction mapping of 𝐶 into

itself and 0 < 𝛾
𝑛
< 1, scheme (2) reduces to Ishikawa

iteration.

For the fixed point scheme described by (2), a question
naturally arises whether we can design another iteration
scheme with a similar structure to scheme (2) to approximate
the fixed point. Moreover, this new scheme has a similar
structure to that of the given scheme. Those two schemes
converge to the same fixed point of the given contraction
mapping.

Motivated by this question, we define the following
scheme associated with scheme (2):

𝑦
1
∈ 𝐶,

𝑦
𝑛+1

= 𝛼
𝑛
𝑦
𝑛
+ 𝛽
𝑛
𝑇𝑦
𝑛
+ 𝑘
𝑛
(𝑥
𝑛
− 𝑦
𝑛
) , 𝑛 ∈ N, (3)

where {𝑘
𝑛
} is a scheme of feedback parameters which can be

determined later. Let 𝑒
𝑛
= 𝑥
𝑛
− 𝑦
𝑛
for 𝑛 ∈ N. Then we can

construct the following scheme from schemes (2) and (3):

𝑒
1
= 𝑥
1
− 𝑦
1
∈ 𝐶,

𝑒
𝑛+1

= (𝛼
𝑛
− 𝑘
𝑛
) 𝑒
𝑛
+ 𝛽
𝑛
(𝑇𝑥
𝑛
− 𝑇𝑦
𝑛
) , 𝑛 ∈ N. (4)

From [4, 31, 32], the fact lim
𝑛→∞

‖𝑒
𝑛
‖ = 0 will ensure

lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0. The main purpose of this paper is

to find the conditions to guarantee lim
𝑛→∞

‖𝑒
𝑛
‖ = 0, which

means that scheme (3) has a similar structure to scheme (2).
Schemes (2) and (3) converge to the same fixed point of the
given contraction mapping 𝑇.
3. Main Results

3.1. Convergence Results. Now, we give some convergence
results for iteration (3).

Theorem 2. Let 𝐶 be a nonempty convex subset of a normed
linear space 𝐸. Let 𝑇 be a contraction mapping of 𝐶 into itself
and 𝐹(𝑇) ̸= 𝜙. If

𝛼 + 𝛽𝜇 − 1 < 𝑘 ≤ 𝑘
𝑖
≤ 𝑘 ≤ 𝛼, (5)

where 𝛼 = max{𝛼
𝑖
}, 𝛼 = min{𝛼

𝑖
}, 𝛽 = max{𝛽

𝑖
}, 𝑘 = max{𝑘

𝑖
},

and 𝑘 = min{𝑘
𝑖
}, 𝑖 = 1, 2, . . . , 𝑛, then lim

𝑛→∞
‖𝑥
𝑛+1

− 𝑦
𝑛+1

‖ =0, which also implies that scheme (3) and scheme (2) converge
to the same fixed point of 𝑇.
Proof. From (5), we have

0 < 𝛼
𝑖
− 𝑘
𝑖
,

0 < 𝛼
𝑖
− 𝑘
𝑖
+ 𝛽
𝑖
𝜇 (6)

for 𝑖 = 1, 2, . . . , 𝑛. Then,
󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩(𝛼𝑛 − 𝑘

𝑛
) 𝑒
𝑛
+ 𝛽
𝑛
(𝑇𝑥
𝑛
− 𝑇𝑦
𝑛
)󵄩󵄩󵄩󵄩

≤ (𝛼
𝑛
− 𝑘
𝑛
) 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩 + 𝛽

𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑦
𝑛

󵄩󵄩󵄩󵄩
≤ (𝛼
𝑛
− 𝑘
𝑛
) 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩 + 𝛽

𝑛
𝜇 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩
≤ (𝛼
𝑛
− 𝑘
𝑛
+ 𝛽
𝑛
𝜇) 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩

...
≤ 𝑛∏
𝑖=1

(𝛼
𝑖
− 𝑘
𝑖
+ 𝛽
𝑖
𝜇) 󵄩󵄩󵄩󵄩𝑒𝑖󵄩󵄩󵄩󵄩 .

(7)

It follows from (5) that 0 < 𝛼+𝛽𝜇−𝑘 < 1, where 𝛼 = max{𝛼
𝑖
},𝛽 = max{𝛽

𝑖
}, and 𝑘 = min{𝑘

𝑖
}, 𝑖 = 1, 2, . . . , 𝑛. Thus,

󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩 ≤
𝑛∏
𝑖=1

(𝛼
𝑖
− 𝑘
𝑖
+ 𝛽
𝑖
𝜇) 󵄩󵄩󵄩󵄩𝑒𝑖󵄩󵄩󵄩󵄩 ≤ (𝛼 + 𝛽𝜇 − 𝑘)𝑛 󵄩󵄩󵄩󵄩𝑒1󵄩󵄩󵄩󵄩 . (8)

It is easy to see that ‖𝑒
𝑛+1

‖ → 0, as 𝑛 → ∞; that is,
lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑦
𝑛+1

‖ = 0. This completes the proof.

Remark 3. It follows from Theorem 2 that |𝑘
𝑖
| < 1 for 𝑖 =1, 2, . . . , 𝑛.

Theorem 2 can be applied to approximating the fixed
point of a nonexpansive mapping where the contraction
constant 𝜇 = 1. If 𝜇 = 1, Theorem 2 reduces to the following
result.

Corollary 4. Let 𝐶 be a nonempty convex subset of a normed
linear space 𝐸. Let𝑇 be a nonexpansive mapping of𝐶 into itself
and 𝐹(𝑇) ̸= 𝜙. If

𝛼 + 𝛽 − 1 < 𝑘 ≤ 𝑘
𝑖
≤ 𝑘 ≤ 𝛼, (9)

where 𝛼 = max{𝛼
𝑖
}, 𝛼 = min{𝛼

𝑖
}, 𝛽 = max{𝛽

𝑖
}, 𝑘 = max{𝑘

𝑖
},

and 𝑘 = min{𝑘
𝑖
}, 𝑖 = 1, 2, . . . , 𝑛, then lim

𝑛→∞
‖𝑥
𝑛+1

− 𝑦
𝑛+1

‖ =0.
3.2.Three Special Cases. Now, we useTheorem 2 to construct
the associated schemes for Picard iteration scheme, Mann
iteration scheme, and Ishikawa iteration scheme for contrac-
tionmappings and derive the convergence theorems for those
schemes, respectively. First, we consider the Picard iteration
scheme. The Picard iteration scheme is defined by

𝑥
1
∈ 𝐶,

𝑥
𝑛+1

= 𝑇𝑥
𝑛
, 𝑛 ∈ N. (10)

We define the iteration scheme associated with Picard itera-
tion scheme (10):

𝑦
1
∈ 𝐶,

𝑦
𝑛+1

= 𝑇𝑦
𝑛
+ 𝑘
𝑛
(𝑥
𝑛
− 𝑦
𝑛
) , 𝑛 ∈ N. (11)



Discrete Dynamics in Nature and Society 3

Let 𝑒
𝑛
= 𝑥
𝑛
− 𝑦
𝑛
for 𝑛 ∈ N. Schemes (2) and (3) give the

following scheme:

𝑒
1
= 𝑥
1
− 𝑦
1
∈ 𝐶,

𝑒
𝑛+1

= −𝑘
𝑛
𝑒
𝑛
+ (𝑇𝑥

𝑛
− 𝑇𝑦
𝑛
) , 𝑛 ∈ N. (12)

Then, by the similar proof of Theorem 2, we have the
following convergence theorem.

Theorem 5. Let 𝐶 be a nonempty convex subset of a normed
linear space 𝐸. Let 𝑇 be a contraction mapping of 𝐶 into itself
and 𝐹(𝑇) ̸= 𝜙. If max{|𝑘

𝑖
|} + 𝜇 < 1, 𝑖 = 1, 2, . . . , 𝑛, then

lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑦
𝑛+1

‖ = 0.
Second, we consider the Mann iteration scheme. The

Mann iteration scheme is defined by

𝑥̌
1
∈ 𝐶,

𝑥̌
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥̌
𝑛
+ 𝛽
𝑛
𝑇𝑥̆
𝑛
, 𝑛 ∈ N. (13)

We construct the following iteration scheme associated with
Mann iteration scheme (13):

̌𝑦
1
∈ 𝐶,

̌𝑦
𝑛+1

= (1 − 𝛽
𝑛
) ̌𝑦
𝑛
+ 𝛽
𝑛
𝑇 ̌𝑦
𝑛
+ 𝑘
𝑛
(𝑥̌
𝑛
− ̌𝑦
𝑛
) , 𝑛 ∈ N. (14)

By defining an error variable ̌𝑒
𝑖
= 𝑥̌
𝑖
− ̌𝑦
𝑖
for 𝑖 = 1, 2, . . . , 𝑛, we

obtain the following iteration scheme:

̌𝑒
1
= 𝑥̌
1
− ̌𝑦
1
∈ 𝐶,

̌𝑒
𝑛+1

= (1 − 𝛽
𝑛
− 𝑘
𝑛
) ̌𝑒
𝑛
+ 𝛽
𝑛
(𝑇𝑥̌
𝑛
− 𝑇 ̌𝑦
𝑛
) , 𝑛 ∈ N. (15)

Then, from the similar proof forTheorem 2, we derive the
following convergence result.

Theorem 6. Let 𝐶 be a nonempty convex subset of a normed
linear space 𝐸. Let 𝑇 be a contraction mapping of 𝐶 into itself
and 𝐹(𝑇) ̸= 𝜙. If 𝛽𝜇 − 𝛽 < 𝑘

𝑖
≤ 𝑘
𝑖
≤ 𝑘 < 1 − 𝛽, where

𝛽 = min{𝛽
𝑖
}, 𝛽 = max{𝛽

𝑖
}, 𝑘 = max{𝑘

𝑖
}, and 𝑘 = min{𝑘

𝑖
},𝑖 = 1, 2, . . . , 𝑛, then lim

𝑛→∞
‖𝑥̌
𝑛+1

− ̌𝑦
𝑛+1

‖ = 0.
Third, we consider the Ishikawa iteration scheme. The

Ishikawa iteration scheme is defined by

𝑥
1
∈ 𝐶,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇̃ ((1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇̃𝑥
𝑛
) ,
𝑛 ∈ N,

(16)

where 𝑇̃ is a contraction mapping of 𝐶 into itself with the
contraction constant 𝜇. We generate the following iteration
scheme associated with Ishikawa iteration scheme (16):

𝑦
1
∈ 𝐶,

𝑦
𝑛+1

= (1 − 𝛽
𝑛
) 𝑦
𝑛
+ 𝛽
𝑛
𝑇̃ ((1 − 𝛾

𝑛
) 𝑦
𝑛
+ 𝛾
𝑛
𝑇̃𝑦
𝑛
)

+ 𝑘
𝑛
(𝑥
𝑛
− 𝑦
𝑛
) , 𝑛 ∈ N.

(17)

After defining an error variable 𝑒
𝑖
= 𝑥
𝑖
− 𝑦
𝑖
for 𝑖 = 1, 2, . . . , 𝑛,

we obtain the error scheme:
𝑒
1
= 𝑥
1
− 𝑦
1
∈ 𝐶,

𝑒
𝑛+1

= (1 − 𝛽
𝑛
− 𝑘
𝑛
) 𝑒
𝑛
+ 𝛽
𝑛
(𝑇̃ ((1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇̃𝑥
𝑛
)

− 𝑇̃ ((1 − 𝛾
𝑛
) 𝑦
𝑛
+ 𝛾
𝑛
𝑇̃𝑦
𝑛
)) , 𝑛 ∈ N.

(18)

Then, from the similar proof for Theorem 2, we achieve
the following convergence theorem.

Theorem 7. Let 𝐶 be a nonempty convex subset of a normed
linear space 𝐸. Let 𝑇 be a contraction mapping of 𝐶 into itself
and 𝐹(𝑇) ̸= 𝜙. If 𝛽𝜇(1−𝛾+𝛾𝜇)−𝛽 < 𝑘 ≤ 𝑘

𝑖
≤ 𝑘 < 1−𝛽, where

𝛽 = min{𝛽
𝑖
}, 𝛽 = max{𝛽

𝑖
}, 𝛾 = min{𝛾

𝑖
}, 𝛾 = max{𝛾

𝑖
}, 𝑘 =

max{𝑘
𝑖
}, and 𝑘 = min{𝑘

𝑖
}, 𝑖 = 1, 2, . . . , 𝑛, then lim

𝑛→∞
‖𝑥
𝑛+1

−𝑦
𝑛+1

‖ = 0.
3.3. Impact of 𝑘

𝑖
to the Convergent Rate. Next, we analyze

the influence of size 𝑘
𝑖
to the convergence rate of (3). We

first give another iteration scheme associated with iteration
scheme (2):

𝑧
1
∈ 𝐶,

𝑧
𝑛+1

= 𝛼
𝑛
𝑧
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
+ 𝑘̆
𝑛
(𝑥
𝑛
− 𝑧
𝑛
) , 𝑛 ∈ N, (19)

where 𝑘̆
𝑛
> 𝑘
𝑛
. In order to compare the convergence rate of

(3) with that of (19), we give the following definitions for the
convergent rates of two different iteration schemes.

Definition 8 (see [4]). Let {𝑎
𝑛
} and {𝑏

𝑛
} be two sequences

of real numbers which converges to 𝑎 and 𝑏, respectively.
We say that the sequence {𝑎

𝑛
} converges faster than {𝑏

𝑛
} if

lim
𝑛→∞

(|𝑎
𝑛
− 𝑎|/|𝑏

𝑛
− 𝑏|) = 0.

Definition 9. Let {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
} be three iterative schemes

which satisfy 𝑧
𝑛
→ 𝑥
𝑛
, 𝑦
𝑛
→ 𝑥
𝑛
as 𝑛 → ∞. Let {𝑎

𝑛
} and{𝑏

𝑛
} be two sequences of real numbers which converge to 0.

We say that the scheme {𝑧
𝑛
} converges faster than {𝑦

𝑛
} to {𝑥

𝑛
},

if 󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑎
𝑛
, for all 𝑛 ∈ N,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑏
𝑛
, for all 𝑛 ∈ N, (20)

and {𝑎
𝑛
} converges faster than {𝑏

𝑛
}.

By the similar method for Theorem 2, we have
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 ≤ (𝛼 + 𝛽𝜇 − 𝑘̆)𝑛 󵄩󵄩󵄩󵄩𝑧1 − 𝑥
1

󵄩󵄩󵄩󵄩 , (21)

where 𝑘̆ = min{𝑘̆
𝑖
}, 𝑖 = 1, 2, . . . , 𝑛, and 0 < 𝛼 + 𝛽𝜇 − 𝑘̆ < 1.

It follows from 𝑘 < 𝑘̆ that 0 < 𝛼 + 𝛽𝜇 − 𝑘̆ < 𝛼 + 𝛽𝜇 − 𝑘 < 1,
which implies

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

(𝛼 + 𝛽𝜇 − 𝑘̆
𝛼 + 𝛽𝜇 − 𝑘)

𝑛 󵄩󵄩󵄩󵄩𝑧1 − 𝑥
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑦1 − 𝑥
1

󵄩󵄩󵄩󵄩
= 0.

(22)
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Hence, from the above mentions, we have the following
comparison result for the convergence rate according to the
size 𝑘
𝑖
.

Theorem 10. The iteration scheme defined by (19) converges
faster than the iteration scheme defined by (3).

Remark 11. The convergence rate of iteration scheme defined
by (3) increases as 𝑘

𝑖
increases which means that the conver-

gence rate of iteration scheme defined by (3) can be controlled
by the adjustment of size 𝑘

𝑖
.

Remark 12. If 𝑇 is a nonexpansive mapping, i.e., 𝜇 = 1,
limitation (22) reduces to

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

(𝛼 + 𝛽 − 𝑘̆
𝛼 + 𝛽 − 𝑘)

𝑛 󵄩󵄩󵄩󵄩𝑧1 − 𝑥
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑦1 − 𝑥
1

󵄩󵄩󵄩󵄩
= 0,

(23)

which means that Theorem 10 is still valid for the nonexpan-
sive mapping.

4. An Application to Synchronization of
Logistic Maps

Logistic maps are classical discrete systems which can gen-
erate bifurcation and chaos. Synchronization of two logistic
maps, which means the state variable of one logistic map
is eventually equal to the counterpart of another logistic
map, has been widely used in secure communication, image
encryption, and signal transmission [22, 31]. Our results can
be applied to studying the synchronization of logistic maps.

If 𝑇𝑥
𝑛
= −𝛽
𝑛
𝑥2
𝑛
and 𝛼

𝑛
= 𝛽
𝑛
= 𝑟, then scheme (2) reduces

to the following logistic map

𝑥
𝑛+1

= 𝑟𝑥
𝑛
− 𝑟𝑥2
𝑛
, 𝑛 ∈ N, (24)

where 𝑥
1
∈ 𝐶. If 0 < 𝑟 < 0.5 and 0 < 𝑥

1
< 1, then we can

derive 0 < 𝑥
𝑛
< 1, which implies that

󵄨󵄨󵄨󵄨𝑇𝑥𝑛 − 𝑇𝑦
𝑛

󵄨󵄨󵄨󵄨 = 𝑟 󵄨󵄨󵄨󵄨󵄨𝑥2𝑛 − 𝑦2
𝑛

󵄨󵄨󵄨󵄨󵄨 = 𝑟 󵄨󵄨󵄨󵄨𝑥𝑛 + 𝑦
𝑛

󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑥𝑛 − 𝑦
𝑛

󵄨󵄨󵄨󵄨
< 󵄨󵄨󵄨󵄨𝑥𝑛 − 𝑦

𝑛

󵄨󵄨󵄨󵄨
(25)

for any 0 < 𝑥
𝑛
, 𝑦
𝑛
< 1.

Here, we consider another logistic map

𝑦
𝑛+1

= 𝑟𝑦
𝑛
− 𝑟𝑦2
𝑛
, 𝑛 ∈ N, (26)

where 𝑦
1

∈ 𝐶. Defining 𝑒
𝑛

= 𝑥
𝑛
− 𝑦
𝑛
, we can have the

following scheme:

𝑒
𝑛+1

= 𝑟 (1 − (𝑥
𝑛
+ 𝑦
𝑛
)) 𝑒
𝑛
, 𝑛 ∈ N, (27)

where 𝑒
1
= 𝑥
1
− 𝑦
1
∈ 𝐶.

Definition 13. If lim
𝑛→∞

|𝑥
𝑛
− 𝑦
𝑛
| = 0, the logistic map

described by (24) is said to achieve the global synchronization
with the logistic map described by (26).

0
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+
1
=

x
n
+
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−
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n
+
1

−0.5
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−1.5

−2

−2.5

−3
10 12 14 16 18 20

Iteration number n

0 2 4 6 8

0.5

Figure 1: The trajectory of 𝑒
𝑛+1

with 𝜇 = 0.78 and 𝑘
𝑖
= 0.21.

By using the similar proofmethod ofTheorem 2with 𝑘
𝑖
=0 and |𝑟(1 − (𝑥

𝑛
+ 𝑦
𝑛
))| < 0.5, we can derive the following

result.

Theorem 14. If 0 < 𝑟 < 0.5 and 0 < 𝑥
1
, 𝑦
1
< 1, the logistic

map described by (24) achieves the global synchronization with
the logistic map described by (26).

5. Two Illustrated Examples

Example 15. Now we give an example for the main theorems
with numerical analysis.

Consider 𝑇𝑥 = √𝑥2 − 8𝑥 + 40 on [4.1, 10] with the
contraction constant 𝜇 = 0.78. The fixed point of 𝑇 is𝑥 = 5. We first construct the iteration scheme (11) associated
with Picard iteration (10). From Theorem 5, we know that
max{|𝑘

𝑖
|} + 𝜇 < 1, 𝑖 = 1, 2, . . . , 𝑛, which implies |𝑘

𝑖
| < 0.22

for 𝑖 = 1, 2, . . . , 𝑛. We choose 𝑘
𝑖
= 0.21, for 𝑖 = 1, 2, . . . , 𝑛,

and 𝑥
1

= 6 and 𝑦
1

= 8. Figure 1 gives a demonstration
of trajectory of 𝑒

𝑛+1
of (11). From Figure 1, we can see that

lim
𝑛→∞

‖𝑒
𝑛+1

‖ = 0; that is, lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑦
𝑛+1

‖ = 0, which
indicates the effectiveness of Theorem 5.

Then, we construct the iteration scheme (14) associated
with Mann iteration (13) with 𝛽

𝑖
= 0.75 for 𝑖 = 1, 2, . . . , 𝑛.

From Theorem 6, we can get 𝛽𝜇 − 𝛽 < 𝑘 ≤ 𝑘
𝑖
≤ 𝑘 < 1 − 𝛽,

which indicates −0.165 < 𝑘
𝑖
< 0.25 for 𝑖 = 1, 2, . . . , 𝑛. We

choose 𝑘
𝑖
= 0.24, for 𝑖 = 1, 2, . . . , 𝑛, and 𝑥

1
= 6 and ̌𝑦

1
= 8.

Figure 2 provides the trajectory of ̌𝑒
𝑛+1

of (14). From Figure 2,
we can observe that lim

𝑛→∞
‖ ̌𝑒
𝑛+1

‖ = 0; that is, lim
𝑛→∞

‖𝑥
𝑛+1

−̌𝑦
𝑛+1

‖ = 0, which indicates the effectiveness of Theorem 6.
Now, we construct the iteration scheme (17) associated

with Ishikawa iteration (16) with 𝛽
𝑖
= 0.5 and 𝛾

𝑖
= 0.75 for𝑖 = 1, 2, . . . , 𝑛. FromTheorem 7, we can have 𝛽𝜇(1−𝛾+𝛾𝜇)−

𝛽 < 𝑘 ≤ 𝑘
𝑖
≤ 𝑘 < 1 − 𝛽, which implies −0.1744 < 𝑘

𝑖
< 0.5

for 𝑖 = 1, 2, . . . , 𝑛. We choose 𝑘
𝑖
= 0.49, for 𝑖 = 1, 2, . . . , 𝑛, and𝑥

1
= 6 and 𝑦

1
= 8. Figure 3 reveals the trajectory of 𝑒

𝑛+1
of

(17). It follows from Figure 3 that lim
𝑛→∞

‖𝑒
𝑛+1

‖ = 0; that is,
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Table 1: Comparison for convergent rates of iteration scheme (3) with different 𝑘
𝑖
.

𝑛 = 1 𝑛 = 2 𝑛 = 3 ⋅ ⋅ ⋅ 𝑛 = 17 𝑛 = 18 𝑛 = 19 𝑛 = 20
𝑦
𝑛
as 𝑘
𝑖
= 0.39 9.00 6.63 5.58 ⋅ ⋅ ⋅ 5.00 5.00 5.00 5.00𝑦

𝑛
as 𝑘
𝑖
= 0.01 9.00 7.77 6.80 ⋅ ⋅ ⋅ 5.02 5.01 5.01 5.00𝑦

𝑛
as 𝑘
𝑖
= −0.1 9.00 8.10 7.30 ⋅ ⋅ ⋅ 5.05 5.03 5.02 5.01
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Figure 2: The trajectory of ̌𝑒
𝑛+1

with 𝜇 = 0.78 and 𝑘
𝑖
= 0.24.
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Figure 3: The trajectory of 𝑒
𝑛+1

with 𝜇 = 0.78 and 𝑘
𝑖
= 0.49.

lim
𝑛→∞

‖𝑥
𝑛+1

−𝑦
𝑛+1

‖ = 0, which indicates the effectiveness of
Theorem 7.

Finally, we compare the convergence rates of (3) with
different 𝑘

𝑖
. We choose scheme (14) with 𝛽

𝑖
= 0.6. From

Theorem 6, we can have −0.132 < 𝑘
𝑖
< 0.4 for 𝑖 = 1, 2, . . . , 𝑛.

Let 𝑥
1

= 6 and 𝑦
1

= 𝑧
1

= 9. We choose 𝑘
𝑖
as 0.39,0.01, and −0.1 to approximate the fixed point, respectively.

Table 1 shows that the convergence rate of (3) increases
as 𝑘
𝑖
increases, which also illustrates the effectiveness of

Theorem 10.
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Figure 4: The trajectories of 𝑥
𝑛
, 𝑦
𝑛
, 𝑒
𝑛
.

Example 16. Consider the logistic maps described by (24)
and (26) with 𝑟 = 0.4 and 𝑥

1
= 0.9 and 𝑦

1
= 0.6. Fig-

ure 4 reveals the global synchronization of the logistic maps
described by (24) and (26) which illustrates the effectiveness
of Theorem 14.

6. Conclusions and Future Works

For a given convergent scheme to approximate the fixed point
of a contraction mapping, we have provided an associated
scheme which had a similar structure to that of the given
scheme. We have derived conditions to ensure this new
scheme and the given scheme to converge to the same
fixed point. We have used our derived results to construct
the associated schemes for Picard, Mann, and Ishikawa
iterative schemes for contraction mappings and derived
the convergence theorems for those schemes, respectively.
Moreover, we can accelerate the convergence rate of this
new scheme by controlling the feedback parameter. We
have extended those convergence and comparison results
to nonexpansive mappings. In addition, we have utilized
those derived results to investigate the synchronization of
logistic maps. We have used two examples to illustrate the
effectiveness of our derived results. In this paper, we only con-
sider the linear feedback in the scheme. Our future research
focus is to design a faster scheme by using the nonlinear
feedback.
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