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This paper mainly focuses on the generalized mutual synchronization between two controlled interdependent networks. First, we
propose the general model of controlled interdependent networks 𝐴 and 𝐵 with time-varying internetwork delays coupling. Then,
by constructing Lyapunov functions and utilizing adaptive control technique, some sufficient conditions are established to ensure
that themutual synchronization errors between the state variables of networks𝐴 and 𝐵 can asymptotically converge to zero. Finally,
twonumerical examples are given to illustrate the effectiveness of the theoretical results and to explore potential application in future
smart grid.The simulation results also show how interdependent topologies and internetwork coupling delays influence themutual
synchronizability, which help to design interdependent networks with optimal mutual synchronizability.

1. Introduction

In recent years, extensive efforts have been devoted to
understanding the properties of complex networks [1–5].
Particularly, as one of themost interesting and significant col-
lective behaviors in real world, synchronization in complex
dynamical networks has received increasing interest owing
to its many potential applications in nature, socioeconomic
systems, or engineering [6]. In the existing literature, it
has been recognized that the network topology plays a
significant role in synchronizability of diffusively coupled
complex networks [7, 8]. Also, by using some effective
control schemes, a variety of synchronization phenomena
have been discovered in various complex networks (see [9–
18] and relevant references therein). However, the studies
mentioned above focused almost exclusively on the inner
synchronization inside a single, noninteracting network.

Li et al. [19] studied the outer synchronization (in this
paper, we call it mutual synchronization to be defined in
Section 2) referring to the synchronization between two or
more networks. However, to the best of our knowledge, it
can be realized mainly by the open-plus-closed-loop method
[19, 20] or based on the drive-response concept [21–27]

considering only the intranetwork coupling of network itself.
Zheng et al. [28] and Wu et al. [29] further studied the outer
synchronization between two complex networks considering
two kinds of internetwork coupling, but nevertheless, they
both still derived the synchronization criteria based on drive-
response concept and did not place the outer synchronization
in the context of interdependent networks.

It is well known that many real-world network systems
do interact with and depend on each other; for instance,
various infrastructures such as transportation, water supply,
fuel, and power stations are coupled together; realistic neu-
ronal networks have a clustered structure and they can be
viewed as interdependent networks; the epidemic can spread
between the coupled networks of the infection layer and
the prevention layer; dealing with secure information and
cryptography, one can couple two systems to achieve the
mutual synchronization, and so forth. Recently, Buldyrev et
al. [30] studied the interdependent networks by presenting
future smart grid as a real-life example, where the electrical
power grid depends on the information network for control
and the information network depends on the electrical power
grid for their electricity supply. Then, Mei et al. [31] empha-
sized that it was urgent to research interdependent networks
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theory for smart grid.Also, Brummitt et al. [32] demonstrated
how interdependence affected cascades of load using a
multiple branching process approximation. In a word, efforts
have been directed to the cascading failures and robust-
ness of interdependent networks [33–37]. In general, it has
been recognized that interdependent topologies, especially
interlinking strategy and internetwork coupling strength,
play a vital role in cascading behaviors and robustness of
interdependent networks. Analogously, this motivates us to
attempt to explore the effects of interdependent topologies
on the mutual synchronization between two interdependent
networks.

Quite recently, Um et al. [38] placed synchronization
behavior in the context of interdependent networks, where
the one-dimensional regular network is mutually coupled
to the WS small-world network. Based on the mean-field
analytic approach, it has been revealed that the internetwork
coupling and the intranetwork coupling play different roles
in the synchronizability of the WS network. However, it
is still limited to inner synchronization in one of the two
interdependent networks and hence it is necessary and
significant to study the mutual synchronization between two
controlled interdependent networks.

The major contributions of our work are as follows. First,
we propose the general model of two controlled interde-
pendent networks 𝐴 and 𝐵, which take into account not
only the intranetwork coupling, but also the time-varying
internetwork delays coupling. Second, we place the synchro-
nization in the context of two controlled interdependent
networks and study the generalized mutual synchronization
of the proposed model. Third, in the numerical examples, to
explore the potential application in smart grid, we couple the
NW small-world network described by chaotic power system
nodes and the scale-free network described by Lorenz chaotic
systems following two interdependent interlinking strategies,
respectively. Finally, we verify the influences of intranetwork
and internetwork coupling and internetwork delays on the
controlledmutual synchronizability, which can help to design
the optimal interdependent networks.

The remaining part of this paper is organized as follows.
Section 2 introduces some useful mathematical preliminaries
and proposes the general model of two controlled interde-
pendent networks. The generalized mutual synchronization
is investigated and the main theoretical results of this paper
are given in Section 3. In Section 4, two numerical examples
are provided to explore the potential application in smart
grid and to illustrate the correctness and effectiveness of
the theoretical results. Finally, some conclusions and further
work are given in Section 5.

2. Preliminaries and Model Presentation

2.1. Notations. The standard mathematical notations will be
utilized throughout this paper. LetR ∈ (−∞, +∞),R𝑚 be the
𝑚-dimensional Euclidean space and let R𝑚×𝑛 be the space of
𝑚 × 𝑛 real matrices; I

𝑛
∈ R𝑛×𝑛 denotes the 𝑛-dimensional

identity matrix; we use A𝑇 or x𝑇 to denote the transpose of
the matrix A or the vector x, respectively; 𝜆max is the max-
imum eigenvalue of corresponding real symmetric matrix;

‖x‖ = √x𝑇x stand for the 2-norm of the vector x; ⨂ presents
the Kronecker product of two matrices.

2.2. Model of Two Controlled Interdependent Networks. For
simplicity and without loss generality, we consider the fol-
lowing model of two controlled interdependent networks
(1) and (2) (we call networks 𝐴 and 𝐵, respectively, in this
paper) consisting of 𝑁 identical nodes with time-varying
internetwork delays coupling. The dynamical equations for
themodel of controlled interdependent networks𝐴 and𝐵 can
be given by
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∈ R𝑛) is the state variable of the
𝑖th node in network 𝐴(𝐵) at time 𝑡; 𝑓 : R+ × R𝑚 →

R𝑚 (𝑔 : R+ × R𝑛 → R𝑛) is a smooth vector function;
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𝑖𝑗
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)
𝑁×𝑁

) stands for the intranetwork
coupling matrix describing the topological structure of the
network 𝐴(𝐵); namely, if there is a connection from node 𝑖

to node 𝑗 in network 𝐴(𝐵), then 𝑎
𝑖𝑗
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is the internetwork coupling matrix representing the direct
interaction from 𝑖 in network 𝐴 to 𝑗 in network 𝐵 (or from
𝑖 in network 𝐵 to 𝑗 in network 𝐴); that is, if there exists
a connection from 𝑖 in network 𝐴 to 𝑗 in network 𝐵 (or
from 𝑖 in network 𝐵 to 𝑗 in network 𝐴), then 𝑐

𝑖𝑗
(𝑑
𝑖𝑗

) = 1;
otherwise, 𝑐
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(𝑑
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) and 𝑐
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(𝑑
𝑖

) are the intranetwork
and internetwork coupling strength for node 𝑖, respectively;
Γ
1

∈ 𝑅
𝑚×𝑚

(Γ
2

∈ R𝑛×𝑛, Γ
3

∈ R𝑚×𝑛, Γ
4

∈ R𝑛×𝑚) is an inner
coupling matrix describing the interactions between the cou-
pled variables; 𝜏

1
(𝑡), 𝜏
2
(𝑡) are the time-varying internetwork

coupling delays between networks 𝐴 and 𝐵, respectively;
u
𝑖
(𝑡) ∈ 𝑅

𝑛 are the nonlinear controllers to be designed later
for the mutual synchronization.

2.3. Mathematical Preliminaries. In order to obtain our the-
oretical results in Section 3, we introduce some necessary
definitions, assumptions, and lemmas.

Definition 1. Let 𝜑
𝑖
(⋅) : R𝑚 → R𝑛 (𝑖 = 1, 2, . . . 𝑁) be the

smooth vector functions. We define the generalized mutual
synchronization errors as

e
𝑖
(𝑡) = y

𝑖
(𝑡) − 𝜑

𝑖
(x
𝑖
(𝑡)) , 𝑖 = 1, 2, . . . 𝑁. (3)

Thus, network 𝐴 is said to achieve generalized mutual
synchronization with network 𝐵 successfully if

lim
𝑡→∞

󵄩󵄩󵄩󵄩e𝑖 (𝑡)
󵄩󵄩󵄩󵄩 = 0, 𝑖 = 1, 2, . . . 𝑁. (4)
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Assumption 2. Suppose that the vector function 𝑔(⋅) is Lip-
schitz continuous, namely, for any x ∈ R𝑛, y ∈ R𝑛 and a
constant 𝜇 > 0, the following inequality holds:

󵄩󵄩󵄩󵄩𝑔 (y) − 𝑔 (x)
󵄩󵄩󵄩󵄩 ≤ 𝜇

󵄩󵄩󵄩󵄩y − x󵄩󵄩󵄩󵄩 . (5)

Assumption 3. Suppose that the time-varying delays 𝜏
1
(𝑡),

𝜏
2
(𝑡) are continuous differentiable functions with 0 ≤

𝜏
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1
(𝑡) ≤ 𝜀

1
< 1. Clearly, this

assumption holds for constant 𝜏
1
(𝑡), 𝜏
2
(𝑡).

Remark 4. Assumptions 2 and 3 are both general assump-
tions, which hold for a broad class of real-world chaotic
systems, such as Lorenz system, Chua’s oscillator, Chen
system, and Lü system [28]. Hence, in the following sections,
we always assume that both assumptions hold.

Lemma 5 (see [26]). If there are any vectors x, y ∈ R𝑛, then
the following inequality is true:

x𝑇y ≤
1

2
x𝑇x +

1

2
y𝑇y. (6)

3. Generalized Mutual
Synchronization Criteria

In this section, by designing appropriate adaptive controllers,
we can establish some sufficient conditions to insure the
generalized mutual synchronization of the proposed general
model in Section 2. Obviously, we can deduce some similar
criteria for any simple or typical examples from this general
model.

Combining (1) and (2) and (3), we can express error
system of controlled interdependent networks 𝐴 and 𝐵 in
terms of
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(7)

where J = 𝐷𝜑
𝑖
(x
𝑖
) is the Jacobian matrix of the function

𝜑
𝑖
(x
𝑖
).

Remark 6. From (7), one can find that adding appropriate
controller to nodes is an alternative method to obtain mutual
synchronization between two networks. In this paper, we
thus mainly focus on the controlled mutual synchronization
between two networks in the general context of two inter-
dependent networks. Therefore, the intranetwork coupling
matrices A and B and the internetwork coupling matrices C
and D can be chosen arbitrarily, meaning that it is not nec-
essary for assuming diffusivity, symmetry, or irreducibility
of the matrices A, B, C, and D. In addition, the topology
structure, node dynamics, and dimension of state vector of
one network can be different from the other.

Remark 7. It is well known that the time delays commonly
exist in node dynamics, intranetwork coupling, and internet-
work coupling. However, we just consider the time-varying
internetwork coupling delays regardless of the others to
explore the effects of internetwork coupling behavior on the
mutual synchronization. It is noted that many networks of
interest, like the Kuramoto model, have nonlinear coupling
functions. Similarly, for simplicity, we just consider the linear
intranetwork and internetwork coupling.

Theorem 8. Suppose that Assumptions 2 and 3 hold and that
the adaptive controllers (8) and the corresponding update laws
(9) are added to the error system (7). Thus, generalized mutual
synchronization between controlled interdependent networks𝐴

and 𝐵 with time-varying internetwork delays coupling can be
asymptotically realized. Consider
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𝑖
are the time-varying feedback gain and 𝑙
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positive constants.

Proof. Plugging (8) and (9) into (7), the error dynamical
system can be rewritten as
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Let e(𝑡) = (e𝑇
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where 𝐾 is a positive constant large enough to be selected
later. Obviously, 𝑉(𝑡) > 0 for all e(𝑡) ̸= 0, meaning that 𝑉(𝑡)

is positive definite. Calculating the derivative of (11) with
respect to time along the solution of the error system (10),
together with the updated laws (9), thus, we have
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e (𝑡) + e𝑇 (𝑡) Fe (𝑡 − 𝜏

1
(𝑡))

−
1 − ̇𝜏
1

(𝑡)

2 (1 − 𝜀
1
)

𝑁

∑

𝑖=1

e𝑇
𝑖

(𝑡 − 𝜏
1

(𝑡)) e
𝑖
(𝑡 − 𝜏
1

(𝑡)) .

(13)

From Assumption 3, we have

1

2
−

1 − ̇𝜏
1

(𝑡)

2 (1 − 𝜀
1
)

≤ 0. (14)

From Lemma 5, we get

e𝑇 (𝑡) Fe (𝑡 − 𝜏
1

(𝑡)) ≤
1

2
e𝑇 (𝑡) FF𝑇e (𝑡)

+
1

2
e𝑇 (𝑡 − 𝜏

1
(𝑡)) e (𝑡 − 𝜏

1
(𝑡)) .

(15)

Combining (14) and (15) and (13), we can further get

𝑉̇ (𝑡) ≤ (𝜇 +
1

2 (1 − 𝜀
1
)

− 𝐾) e𝑇 (𝑡) e (𝑡)

+ e𝑇 (𝑡)
E + E𝑇

2
e (𝑡) +

1

2
e𝑇 (𝑡) FF𝑇e (𝑡)

+
1

2
e𝑇 (𝑡 − 𝜏

1
(𝑡)) e (𝑡 − 𝜏

1
(𝑡))

−
1 − ̇𝜏
1

(𝑡)

2 (1 − 𝜀
1
)

1

2
e𝑇 (𝑡 − 𝜏

1
(𝑡)) e (𝑡 − 𝜏

1
(𝑡))

≤ (𝜇 +
1

2 (1 − 𝜀
1
)

− 𝐾) e𝑇 (𝑡) e (𝑡)

+ e𝑇 (𝑡)
E + E𝑇

2
e (𝑡) +

1

2
e𝑇 (𝑡) FF𝑇e (𝑡)

≤ (𝜇 +
1

2 (1 − 𝜀
1
)

− 𝐾 + 𝜆max (
E + E𝑇

2
)

+𝜆max (FF𝑇) ) e𝑇 (𝑡) e (𝑡) .

(16)

If we take 𝐾 as

𝐾 ≥ 𝜇 +
1

2 (1 − 𝜀
1
)

+ 𝜆max (
E + E𝑇

2
) + 𝜆max (FF𝑇) + 1,

(17)
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then

𝑉̇ (𝑡) ≤ −e𝑇 (𝑡) e (𝑡) = −‖e (𝑡)‖
2

≤ 0. (18)

Clearly, 𝑉(𝑡) is nonincreasing and every term of 𝑉(𝑡)

is bounded. Thus, lim
𝑡→∞

𝑉(𝑡) tends to a nonnegative
value. Since 𝐾

𝑖
is bounded and increasing (see (8) and

(9)), it must also asymptotically converge to a limit. By
integrating (18) over 0 to 𝑡, we can get ∫

𝑡

0

‖e(𝜃)‖
2

𝑑𝜃 ≤

− ∫
𝑡

0

𝑉̇(𝜃)𝑑𝜃. Thus, lim
𝑡→∞

∫
𝑡

0

‖e(𝜃)‖
2

𝑑𝜃 exists and is a non-
negative value. According to Cauchy Criterion, we can
obtain lim

𝑡→+∞
∫
𝑡

𝑡−𝜏
1
(𝑡)

e𝑇
𝑖

(𝜃)e
𝑖
(𝜃)𝑑𝜃 = 0. Therefore, from

the definition of 𝑉(𝑡), we can conclude that lim
𝑡→∞

‖e(𝑡)‖
2

converges to a limited nonnegative constant. Next, we would
prove that lim

𝑡→∞
‖e(𝑡)‖

2

= 0. If this is not true, then
lim
𝑡→+∞

‖e(𝑡)‖
2

= 𝜖 (𝜖 > 0) holds. Obviously, ‖e(𝑡)‖
2

> 𝜖/2

holds true for 𝑡 ≥ 𝛿 > 0. From (18), we have

𝑉̇ (𝑡) ≤ −‖e (𝑡)‖
2

< −
𝜖

2
. (19)

Thus, by integrating (19) from 𝐻 to ∞, we can get

−𝑉 (𝛿) ≤ 𝑉 (+∞) − 𝑉 (𝛿) = ∫

+∞

𝛿

𝑉̇ (𝑡) 𝑑𝑡

< − ∫

+∞

𝛿

𝜖

2
𝑑𝑡 = −∞.

(20)

This is a contradiction, and hence lim
𝑡→+∞

‖e(𝑡)‖
2

= 0;
namely, lim

𝑡→∞
‖e
𝑖
(𝑡)‖ = 0, 𝑖 = 1, 2, . . . 𝑁. Consequently,

the generalized mutual synchronization between controlled
interdependent networks 𝐴 and 𝐵 is asymptotically obtained
by using the proposed adaptive controllers (8) and (9). This
completes the proof of the Theorem 8.

Remark 9. From the proof of the Theorem 8, we know
that 𝑉(𝑡) is positive definite, 𝑉̇(𝑡) is negative definite, and
lim
𝑡→∞

e
𝑖
(𝑡) = 0. According to Lyapunov stability theory,

we can also get that the synchronization state e
𝑖
(𝑡) = 0 is

asymptotically stable.

Remark 10. It is noted that (17) is just a sufficient condition,
but not the necessary one for the mutual synchroniza-
tion between controlled interdependent networks 𝐴 and
𝐵.

Based onTheorem 8, we can further obtain some similar
synchronization criteria in the following two corollaries.

Corollary 11. Suppose that Assumptions 2 and 3 hold. If
𝑚 = 𝑛 and 𝜑

𝑖
(x
𝑖
(𝑡)) = 𝜆x

𝑖
(𝑡), 𝜆 ̸= 0, then projective mutual

synchronization between controlled interdependent networks𝐴

and 𝐵 with time-varying internetwork delays coupling can be

asymptotically achieved under the following adaptive control
schemes:

u
𝑖
(𝑡) = 𝜆𝑓 (x

𝑖
(𝑡)) − 𝑔 (𝜆𝑥

𝑖
(𝑡))

+

𝑁

∑

𝑗=1

𝜆 (𝑎
𝑖

𝑎
𝑖𝑗
Γ
1

− 𝑏
𝑖

𝑏
𝑖𝑗
Γ
2
) x
𝑗

(𝑡)

+

𝑁

∑

𝑗=1

𝜆
2

𝑐
𝑖

𝑐
𝑖𝑗
Γ
3
x
𝑗

(𝑡 − 𝜏
1

(𝑡))

−

𝑁

∑

𝑗=1

𝑑
𝑖

𝑑
𝑖𝑗
Γ
4
x
𝑗

(𝑡 − 𝜏
2

(𝑡)) − 𝐾
𝑖
e
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . 𝑁,

𝐾̇
𝑖

= 𝑙
𝑖

󵄩󵄩󵄩󵄩e𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2

,

(21)
where 𝐾

𝑖
, 𝑙
𝑖
have the same implications as those of Theorem 8,

respectively.

Corollary 12. Particularly, in Corollary 11, if 𝜆 = ±1, com-
plete mutual synchronization (mutual antisynchronization)
between controlled interdependent networks 𝐴 and 𝐵 with
time-varying internetwork delays coupling can be asymptoti-
cally obtained by the adaptive controllers as follows:

u
𝑖
(𝑡) = 𝑓 (x

𝑖
(𝑡)) − 𝑔 (±x

𝑖
(𝑡))

±

𝑁

∑

𝑗=1

(𝑎
𝑖

𝑎
𝑖𝑗
Γ
1

− 𝑏
𝑖

𝑏
𝑖𝑗
Γ
2
) x
𝑗

(𝑡)

+

𝑁

∑

𝑗=1

𝑐
𝑖

𝑐
𝑖𝑗
Γ
3
x
𝑗

(𝑡 − 𝜏
1

(𝑡))

−

𝑁

∑

𝑗=1

𝑑
𝑖

𝑑
𝑖𝑗
Γ
4
x
𝑗

(𝑡 − 𝜏
2

(𝑡)) − 𝐾
𝑖
e
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . 𝑁,

𝐾̇
𝑖

= 𝑙
𝑖

󵄩󵄩󵄩󵄩e𝑖 (𝑡)
󵄩󵄩󵄩󵄩

2

,

(22)

where 𝐾
𝑖
, 𝑙
𝑖
have the same implications as those of Theorem 8,

respectively.

Remark 13. It is quite natural thatTheorem 8 and Corollaries
11 and 12 still hold for some simple cases, such as 𝜏

1
(𝑡) = 0,

𝜏
2
(𝑡) = 0, A = B, C = D, Γ

1
= Γ
2
, and Γ

3
= Γ
4
; hence, our

model and synchronization methods are applicable to some
of the two controlled interdependent networks similar to our
model.

Remark 14. Plugging (3) into (10) and (1), we obtain (23) and
(24), respectively:

ė
𝑖
(𝑡) = 𝑔 (e

𝑖
(𝑡) + 𝜑

𝑖
(x
𝑖
(𝑡))) − 𝑔 (𝜑

𝑖
(x
𝑖
(𝑡)))

+

𝑁

∑

𝑗=1

𝑏
𝑖

𝑏
𝑖𝑗
Γ
2
e
𝑗

(𝑡)
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− J
𝑁

∑

𝑗=1

𝑐
𝑖

𝑐
𝑖𝑗
Γ
3
e
𝑗

(𝑡 − 𝜏
1

(𝑡)) − 𝐾
𝑖
e
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . 𝑁,

(23)

ẋ
𝑖
(𝑡) = 𝑓 (x

𝑖
(𝑡)) +

𝑁

∑

𝑗=1

𝑎
𝑖

𝑎
𝑖𝑗
Γ
1
x
𝑗

(𝑡)

+

𝑁

∑

𝑗

𝑐
𝑖

𝑐
𝑖𝑗
Γ
3

(e
𝑖
(𝑡) + 𝜑

𝑖
(x
𝑖
(𝑡))) ,

𝑖 = 1, 2, . . . 𝑁.

(24)

Combining (23) and (24), we find that the values of 𝑒
𝑖
(𝑡) are

irrelevant to 𝜏
2
(𝑡), 𝑑
𝑖𝑗
, and 𝑑

𝑖 under the action of the proposed
adaptive controllers (8) and (9). Thus, in the following
sections, it is reasonable not to consider the effects of 𝜏

2
(𝑡),

𝑑
𝑖𝑗
, and 𝑑

𝑖 on themutual synchronization between controlled
interdependent networks 𝐴 and 𝐵.

4. Numerical Simulations and Results

In this section, two numerical examples and their simulations
are given to illustrate the correctness and effectiveness of the
theoretical results obtained in the previous sections and to
identify the factors that influence the mutual synchronizabil-
ity.

To measure the speed and performance of mutual syn-
chronization process, we define

‖e (𝑡)‖ = √

𝑁

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝑖𝑗

(𝑡)
2

. (25)

Actually, ‖e(𝑡)‖ is the 2-norm of the synchronization error
e(𝑡), 0 < 𝑡 < +∞. Thus, the values of ‖e(𝑡)‖ in the initial
stage and at the end of simulations imply themutual synchro-
nization speed and performance, respectively. It should be
particularly noted that, in all of the following simulations, the
main figures and insets describe the values of ‖e(𝑡)‖ during
0 ≤ 𝑡 < 5 and at the end of simulations (𝑡 = 5), respectively.

Next, to explore the potential application of mutual
synchronization in smart grid, we construct network 𝐴 as
NWsmall-world network (𝑁 = 50, 𝑘 = 3, 𝑃 = 0.3)
consisting of identical chaotic power system nodes and
network 𝐵 as scale-free network (𝑁 = 50, 𝑚 = 𝑚

0
= 3)

described by Lorenz chaotic systems.The nonlinear function
𝑓(x
𝑖
(𝑡)) corresponding to chaotic power system nodes [39] is

described by

𝑓 (x
𝑖
(𝑡)) = (

𝑥
𝑖2

(𝑡)

−𝑎
1
sin (𝑥

𝑖1
(𝑡)) − 𝑏

1
𝑥
𝑖2

(𝑡) + 𝑐
1

+ 𝐹 cos (𝑑
1
𝑡)

) .

(26)

When taking 𝑎
1

= 1, 𝑏
1

= 0.02, 𝑐
1

= 0.2, 𝑑
1

= 1, and 𝐹 =

0.296, the above power system nodes are hyperchaotic. The

nonlinear function𝑔(𝑦
𝑖
(𝑡)) involving the Lorenz systems [26]

is represented by

𝑔 (y
𝑖
(𝑡)) = (

𝑎
2

(𝑦
𝑖2

(𝑡) − 𝑦
𝑖1

(𝑡))

𝑏
2
𝑦
𝑖1

(𝑡) − 𝑦
𝑖2

(𝑡) − 𝑦
𝑖1

(𝑡) 𝑦
𝑖3

(𝑡)

−𝑐
2
𝑦
𝑖1

(𝑡) + 𝑦
𝑖1

(𝑡) 𝑦
𝑖2

(𝑡)

) . (27)

When taking 𝑎
2

= 10, 𝑏
2

= 28, and 𝑐
2

= 8/3, the Lorenz
systems are chaotic. As is known to all, the chaotic systems
are bounded, thus,𝑔(y

𝑖
(𝑡)) satisfiesAssumption 2. In the both

examples, we arbitrarily select the generalizedmapping func-
tions as 𝜑

𝑖
(x
𝑖
(𝑡)) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2

(𝑡), 𝑥
𝑖1

(𝑡) + 𝑥
𝑖2

(𝑡))
𝑇, meaning

that 𝐽 = (
1 0

0 1

1 1

); then, we set 𝑙
𝑖

= 1, Γ
1

= I
2
, Γ
2

= I
3
,

Γ
3

= (
1 0 0

0 1 0
), Γ
4

= (
1 0

0 1

0 0

); next, the initial values x
𝑖
(0) and

y
𝑖
(0) can be chosen randomly in (−1, 1) and 𝐾

𝑖
(0) in (0, 1); in

addition, the internetwork delays will be selected according
to the Assumption 3.

For simplicity and for comparing, we further assume that
the internetwork coupling links are bidirectional and the
coupling strength of each node is equal; that is, 𝑎

𝑖

= 𝑎,
𝑏
𝑖

= 𝑏, 𝑐
𝑖

= 𝑐, and 𝑑
𝑖

= 𝑑. From Remark 14, we know
that the time evolutions of e

𝑖
(𝑡) are not relevant to 𝜏

2
(𝑡), 𝑑
𝑖𝑗
,

and 𝑑
𝑖; thus, it is also reasonable to assume 𝑐 = 𝑑 = 𝑠,

𝜏
1
(𝑡) = 𝜏

2
(𝑡) = 𝜏(𝑡) to simulate the influences of internetwork

coupling strength and delays on themutual synchronizability.
Here, we employ the following two interlinking strategies to
produce the interdependency matrices C and D in the two
examples respectively.

(i) One-to-one support dependence interlinking strategy
[30] (strategy I for short): node 𝐴

𝑖
in network 𝐴 only

depends on node 𝐵
𝑖
in network 𝐵 and vice versa.

(ii) Multiple support dependence interlinking strategy
[37] (strategy II for short): node in network 𝐴 may
randomly depend on more than one node in network
𝐵 and vice versa.

Example 15. In this example, we generate the interdepen-
dency matrices C and D following the strategy I and design
the adaptive controllers according to Theorem 8. When 𝑎 =

𝑏 = 𝑠 = 1, 𝜏(𝑡) = 0.5, the mutual synchronization errors e
𝑖
(𝑡)

are depicted in Figure 1, which shows that controlled interde-
pendent networks 𝐴 and 𝐵 can easily achieve the generalized
mutual synchronization using the designed controllers. Next,
we further simulate the influences of internetwork delays
and intranetwork and internetwork coupling strength on the
mutual synchronizability between the networks 𝐴 and 𝐵. We
fix 𝑎 = 𝑏 = 𝑠 = 1 and only change the internetwork coupling
delays 𝜏(𝑡); thus, the values of ‖𝑒(𝑡)‖ for the networks 𝐴 and
𝐵 with different 𝜏(𝑡) are plotted in Figure 2. Similarly, Figures
3, 4, and 5 show the curves of ‖e(𝑡)‖ for the networks 𝐴 and
𝐵 with fixed parameters 𝑏 = 𝑠 = 1, 𝜏(𝑡) = 0.5 and different
intranetwork coupling strength 𝑎, with 𝑎 = 𝑠 = 1, 𝜏(𝑡) = 0.5

and different intranetwork coupling strength 𝑏, with 𝑎 = 𝑏 =

1, 𝜏(𝑡) = 0.5 and different internetwork coupling strength 𝑠,
respectively.
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Figure 1: The mutual synchronization errors e
𝑖
(𝑡) between the

networks𝐴 and𝐵 interlinked following strategy Iwith 𝑎 = 𝑏 = 𝑠 = 1,
𝜏(𝑡) = 0.5.
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Figure 2: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy I with 𝑎 = 𝑏 = 𝑠 = 1 and different internetwork
delays 𝜏(𝑡).

Example 16. In this example, we produce the interdepen-
dencymatricesC andD following the strategy II. Tomeasure
the effect of the number of interlinking edges on the mutual
synchronizability, we define ⟨𝑘⟩ as the average number of
interlinking edges for each node in network 𝐴 and the same
to network 𝐵. We conduct similar simulations as those in
Example 15. First, we set 𝑎 = 𝑏 = 𝑠 = 1, ⟨𝑘⟩ =

3, 𝜏(𝑡) = 𝑒
𝑡

/(1 + 𝑒
𝑡

); thus, the time evolutions of the
synchronization errors e

𝑖
(𝑡) are depicted in Figure 6, which

shows that interdependent networks 𝐴 and 𝐵 can achieve
the generalized mutual synchronization successfully. Then,
Figures 7, 8, 9, and 10, respectively, display the curves of ‖e(𝑡)‖

for the networks 𝐴 and 𝐵 with fixed parameters 𝑎 = 𝑏 =

0 0.5 1 0.5 2 0.5 3 3.5 4 4.5 5

t
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×10
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Figure 3: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy I with 𝑏 = 𝑠 = 1, 𝜏(𝑡) = 0.5 and different
intranetwork strength 𝑎.

0 0.5 1 1.5 2 2.5

t

‖e
(t
)‖

‖e
(t
)‖

(when t = 5)

×10
−6

b = 0

b = 1

b = 2

b = 3

b = 5

b = 9

a = s = 1, 𝜏(t) = 0.5

b

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−0.5

0

5

10

0 2 4 6 8

Figure 4: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy I with 𝑎 = 𝑠 = 1, 𝜏(𝑡) = 0.5 and different
intranetwork strength 𝑏.

𝑠 = 1, ⟨𝑘⟩ = 3 and different internetwork delays 𝜏(𝑡), with
𝑏 = 𝑠 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒

𝑡

/(1 + 𝑒
𝑡

) and different
intranetwork coupling strength 𝑎, with 𝑎 = 𝑠 = 1, ⟨𝑘⟩ = 3,
and 𝜏(𝑡) = 𝑒

𝑡

/(1 + 𝑒
𝑡

) and different intranetwork coupling
strength 𝑏, with 𝑎 = 𝑏 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒

𝑡

/(1 + 𝑒
𝑡

)

and different internetwork coupling strength 𝑠. Finally, we fix
the parameters 𝑎 = 𝑏 = 𝑠 = 1, 𝜏(𝑡) = 𝑒

𝑡

/(1 + 𝑒
𝑡

); thus, the
curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 with different ⟨𝑘⟩

are shown in Figure 11.

From the numerical results, both examples yield coinci-
dent tendency as follows, which further affirms our theoreti-
cal results. It is observed that the intranetwork coupling 𝑎 has
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Figure 5: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy I with 𝑎 = 𝑏 = 1, 𝜏(𝑡) = 0.5 and different
internetwork strength 𝑠.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

1

e i
1
(t
)

e i
2
(t
)

e i
3
(t
)

−1

0

1

−1

0

1

−1

Figure 6: The mutual synchronization errors e
𝑖
(𝑡) between inter-

dependent networks 𝐴 and 𝐵 interlinked following strategy II with
𝑎 = 𝑏 = 𝑠 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒

𝑡

/(1 + 𝑒
𝑡

).

little influence on mutual synchronization process (shown in
Figures 3 and 8 and their insets), and the stronger intranet-
work coupling 𝑏 enhances the mutual synchronizability
(shown in Figures 4 and 9 and their insets), while the stronger
internetwork coupling worsen the mutual synchronizability
(shown in Figures 5 and 10 and their insets). It is also found
that the values of ‖e(𝑡)‖ both in initial stage and at the end of
simulations are increased as the internetwork coupling delay
𝜏(𝑡) is increased (shown in Figures 2 and 7 and their insets,
resp.). In addition, Figure 11 implies that, to some extent,
increase of ⟨𝑘⟩ is equivalent to the increase of internetwork
coupling strength 𝑠.
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Figure 7: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy II with 𝑎 = 𝑏 = 𝑠 = 1, ⟨𝑘⟩ = 3 and different
internetwork delays 𝜏(𝑡).
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Figure 8: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy II with 𝑏 = 𝑠 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒

𝑡

/(1 + 𝑒
𝑡

)

and different intranetwork strength 𝑎.

5. Conclusions and Future Work

In this paper, we extend previous research on the outer syn-
chronization between two complex networks to our work on
generalized mutual synchronization between two controlled
interdependent networks by considering the time-varying
internetwork delays coupling. Ourmodel and relevant results
are general and can be easily extended to other interdepen-
dent networks because there are not any constraints imposed
on the intranetwork and internetwork coupling configuration
matrices. Based on Lyapunov theory and corresponding
mathematical techniques, some sufficient criteria have been
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Figure 9: The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy II with 𝑎 = 𝑠 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒
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)

and different intranetwork strength 𝑏.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

‖e
(t
)‖

‖e
(t
)‖

(when t = 5)

s = 0

s = 1

s = 2

s = 3

s = 4

s = 5

s

−1

0

1

2

3

4

5

0 1 2 3 4 5
0

0.01
0.02
0.03
0.04

a = b = 1, ⟨k⟩ = 3, 𝜏(t) = e
t
/(1 + e

t
)

Figure 10:The curves of ‖e(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
following strategy II with 𝑎 = 𝑏 = 1, ⟨𝑘⟩ = 3, and 𝜏(𝑡) = 𝑒
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)

and different internetwork strength 𝑠.

derived to guarantee that the proposed interdependent net-
worksmodel is asymmetrically synchronized. Two numerical
examples have been provided to illustrate the feasibility
and effectiveness of the theoretical results and to further
simulate the effects of internetwork delays, intranetwork and
internetwork coupling strength on the mutual controlled
synchronizability. In comparison, we find that, under the
proposed adaptive controllers, the intranetwork coupling
strength enhances the mutual synchronization, while the
internetwork coupling delays and coupling strength suppress
it. This indicates that the synchronization phenomenon in
interdependent networks is different from that in a single
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Figure 11: The values of ‖𝑒(𝑡)‖ for the networks 𝐴 and 𝐵 interlinked
by strategy II with 𝑎 = 𝑏 = 𝑠 = 1, 𝜏(𝑡) = 𝑒

𝑡

/(1 + 𝑒
𝑡

) and different ⟨𝑘⟩.

network, which highlights the necessity and significance of
considering the mutual synchronization in the context of
interdependent networks.Thus, with the help of our findings,
one can further understand the mutual synchronization
phenomenon in two interdependent networks and design
interdependent networks with optimal mutual synchroniz-
ability for many potential practical applications.

However, the mutual synchronization between two inter-
dependent networks is extremely complex, and we cannot
consider all the factors that influence the synchronizability
altogether. Also, our theoretical and numerical results are still
conservative and the proposed control schemes are still a bit
complicated because of the generality of themodel.Therefore,
how to simplify the control laws and reduce the number
of controlled nodes is another important topic and remains
to be researched in future. Thus, utilizing the designed
controller, one can derive the synchronization conditions
based on Lyapunov function approach, which is widely used
in dynamic system analysis and design by some recent articles
[40–44].
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