
Research Article
Utilization Bound Scheduling Analysis for Nonpreemptive
Uniprocessor Architecture Using UML-RT

S. Ewins Pon Pushpa1 and Manamalli Devasigamani2

1 Department of Electronics Engineering, Madras Institute of Technology, Anna University, Chennai 600 044, India
2Department of Instrumentation Engineering, Madras Institute of Technology, Anna University, Chennai 600 044, India

Correspondence should be addressed to S. Ewins Pon Pushpa; ewinspon2000@yahoo.co.in

Received 28 June 2013; Revised 4 October 2013; Accepted 18 October 2013; Published 13 February 2014

Academic Editor: Zeki Ayag

Copyright © 2014 S. E. Pon Pushpa and M. Devasigamani. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The key for adopting the utilization-based schedulability test is to derive the utilization bound. Given the computation times,
this paper proposes two utilization bound algorithms to derive interrelease times for nonpreemptive periodic tasks, using a new
priority scheme, “Rate Monotonic Algorithm-Shortest Job First.” The obtained task set possesses the advantage of Rate Monotonic
Algorithm and Shortest Job First priority scheme. Further, the task set is tested for schedulability, by first deriving a general
schedulability condition from “problem window” analysis and, a necessary and sufficient schedulability condition for a task to
be scheduled, at any release time are also derived. As a technical contribution, success ratio and effective processor utilization are
analyzed for our proposed utilization bound algorithms on a uniprocessor architecture modeled using UML-RT.

1. Introduction

Tasks in a real-time system must be executed within its
deadline to produce functionally correct results in a timely
manner. This implies that the timing requirements of tasks,
submitted to the real-time system, are known [1]. Each
task in a real-time system is scheduled depending on the
characteristic of the scheduling algorithm. One of the most
widely used uniprocessor scheduling algorithm for periodic
real-time tasks is the Rate Monotonic Algorithm (RMA),
proposed by Lehoczky et al. in [2]. Let (𝜏 = 𝜏

1
, 𝜏
2
, 𝜏
3
, . . . , 𝜏

𝑚
)

denote the task set of “𝑚” tasks in a periodic system. For each
task 𝜏

𝑖
, task utilization 𝑈

𝑖
be the ratio of computation time to

its interrelease time: 𝑈
𝑖
= 𝐶
𝑖
/𝑇
𝑖
. Then, system load 𝑈(𝜏) of a

periodic task system be the sum of all utilization of the tasks
in 𝜏 : 𝑈(𝜏) = ∑

𝜏𝑖∈𝜏
𝑈
𝑖
. Rate Monotonic Algorithm (RMA)

assigns priority—smaller the period, higher the priority, and
each task has its own unique priority [3]. According to
[4], set of “𝑚” independent preemptive periodic tasks are
schedulable using RMA if and only if the system load 𝑈(𝜏)

is given by the following:

𝑈 (𝜏) ≤ 𝑚 (2
1/𝑚

− 1) . (1)

Later, a minimum utilization bound of RMA for “𝑚” number
of preemptive tasks on single processor was found to be in [5]
given by the following:

𝑈 (𝜏) ≤ (𝑚 − 1) (2
1/(𝑚−1)

+
2

𝑝
− 1) , (2)

where 𝑝 is ratio between any two periods, which is less than
2.

There are two types of scheduling strategies: nonpreemp-
tive scheduling and preemptive scheduling. In nonpreemp-
tive strategy, tasks started to execute, would not preempt
in an occurrence of higher priority tasks. A higher priority
tasks will preempt any lower priority tasks in preemptive
scheduling. However, nonpreemptive scheduling is being
preferred because they are easier to implement and have
lower run-time overhead than preemptive scheduling [6].

There is a growing interest in using the object paradigm
for developing real-time software [7]. The dominance of
software in real-time embedded systems design caused
interest in methodologies with widely accepted notations
in the software community, such as the Unified Modeling
Language (UML). The Unified Modeling Language (UML)

Hindawi Publishing Corporation
Modelling and Simulation in Engineering
Volume 2014, Article ID 705929, 11 pages
http://dx.doi.org/10.1155/2014/705929

2 Modelling and Simulation in Engineering

is a modeling language for capturing the specification and
the implementation using the graphical notations in software
community [4]. This approach describes the specification
graphically, promotes correctness of the specification, and
generates the test scenarios for the implementation automat-
ically. This paper contributes an object-oriented platform-
based design, for uniprocessor architecture usingUML-RT to
analyze the schedulability for the proposed utilization bound
algorithms based on a new priority scheme “RateMonotonic-
Shortest Job First” (RM-SJ).

In Section 2, related works to the proposed method is
discussed. Section 3 describes the system model using UML-
RT and notations used. Condition for schedulability of a task
and general schedulability test are discussed in Sections 4
and 5, respectively. Proposed priority scheme and utilization
bound algorithms are discussed in Section 6. A necessary and
sufficient schedulability condition for a task to be scheduled,
at any release time, is derived in Section 7. Section 8 deals
with performance evaluation for the proposed algorithms.
Finally, Section 9 concludes with results analyzed.

2. Related Works

For single-processor scheduling, Jeffay et al. [6] presented
an exact schedulability test of pseudopolynomial time-
complexity for a periodic or sporadic task set under nonpre-
emptive EDF scheduling on a single-processor. George et al.
[8] established exact schedulability tests for both nonpreemp-
tive EDF and nonpreemptive fixed-priority scheduling on
a single processor with pseudopolynomial time-complexity
and addressed general taskmodels inwhich relative deadlines
and periods are not necessarily related. Baruah et al. [3]
addressed schedulability analysis for nonpreemptive recur-
ring tasks, which is the general form of nonpreemptive
sporadic tasks, and showed that the nonpreemptive schedu-
lability analysis problem can be reduced to a polynomial
number of preemptive schedulability analysis problems.

The admission control is an algorithm that depends
on the scheduling policy and ensures that only tasks that
will meet their deadlines are accepted into the system [9].
Accordingly, general bound is derived and used for admission
control of RMS-based systems that only requires information
about the number of tasks to be admitted in the system. If
more information about the tasks characteristics is analyzed,
a better admission control can be obtained. For example, the
exact characterization described by Lehoczky et al. in [2] uses
computation time (𝐶

𝑖
) and interrelease time (𝑇

𝑖
) values for

admission control. In [10], Burchard et al. used knowledge
about the periods of the tasks to obtain better admission
control for RMS tasks. Clearly, using more information
increases the complexity of the admission control since
there are more variables to take into consideration during
admission control. In [11], Lu et al. derived a schedulability
bound for nonpreemptive Rate Monotonic scheduling by
using period ratio of the tasks to provide a guarantee
that tasks will meet their deadlines. When uniprocessor
priority scheme is considered, Liu and Layland [4] showed
that Rate Monotonic priority ordering (RMPO) is optimal

for independent synchronous periodic tasks. Leung and
Whitehead [12] showed that deadline monotonic priority
ordering (DMPO) is optimal for independent synchronous
tasks with constrained deadlines. Audsley [13] devised an
optimal priority assignment (OPA) algorithm that solved the
problem of priority assignment for asynchronous tasksets,
and for tasks with arbitrary deadlines.

In [1], Guan et al. addresse schedulability test conditions
for non-preemptive-fixed priority (NP-FP), building upon
the “problem window analysis” for preemptive scheduling
for multiprocessors. First, linear-time general schedulability
test condition that works not only on NP-FP, but also any
other work-conserving nonpreemptive scheduling algorithm
is derived; then an analysis is done on a test condition of
quadratic time-complexity for NP-FP, which has significant
performance improvement comparing to the first one. In [14]
Bertogna et al. derived a general method for schedulability
conditions for multiprocessor real-time systems in a “prob-
lem window” and then it is tightened and analyzed for two
algorithms, namely, Earliest Deadline First (EDF) and Fixed
Priority (FP).

This concept of “problem window” analysis done in
multiprocessors is generalized on uniprocessor environment
for which task schedulability condition and schedulability
at any release time for a periodic task are derived. Further
two utilization bound algorithms are proposed using a new
priority assignment scheme “Rate Monotonic-Shortest Job”
(RM-SJ) and task schedulability is analyzed.

3. System Model Using UML-RT and Notations

Consider a work conserving nonpreemptive uniprocessor
real-time system. A task set, (𝜏 = 𝜏

1
, 𝜏
2
, 𝜏
3
, . . . , 𝜏

𝑚
) where,

there are “𝑚” tasks, each task 𝜏
𝑘

= (𝐶
𝑘
, 𝑇
𝑘
) is characterized

by two parameters—computation time 𝐶
𝑘
and interrelease

time or period 𝑇
𝑘
, with an interpretation that tasks are

generated in every integer multiples of interrelease time to
execute 𝐶

𝑘
units before the next integer interrelease time

𝑇. All tasks generated are independent and are executed on
a nonpreemptive uniprocessor architecture modelled using
UML-RT. The notations used are described in Table 1.

3.1. UML-RT. UML-RT is a modeling tool for real-time,
developed by the Rational Corporation. UML-RT uses Uni-
fied Modeling Language (UML) to express the original
ROOM (Real-Time Object-Oriented Modelling) concepts
and extensions. It includes constructs for modelling both
behaviour and structural concepts of event-driven real-time
systems. Rational Rose Real time is a software development
environment tailored to the demands of real time software.
It is used to create models of the software system based on
the UML constructs, to generate code, compile, and then run
and debug the application. Rational Rose Real time can be
used through all phases of the software development lifecycle,
through design, implementation, test, and final deployment.
UML-RT profile introduces a set of common scheduling
annotations which are fairly sufficient to perform schedula-
bility analysis [15]. Using Rational Rose Real time developers

Modelling and Simulation in Engineering 3

Table 1: Notations and description.

Notations used Description
𝜏 A task set
𝑚 Total number of tasks in 𝜏

𝜏
1 Highest priority task

𝜏
𝑚 Lowest priority task

𝜏
𝑘 A task in task set

𝐶
𝑘 Computation time of 𝜏

𝑘

𝑇
𝑘 Interrelease time or period of 𝜏

𝑘

𝜑
𝑘

= 𝑇
𝑘

− 𝐶
𝑘

Problem area of the task 𝜏
𝑘
, analyzed for schedulability. A necessary condition for the deadline miss to occur for

𝜏
𝑘
is that the worst-case work load,

∙

𝑊(𝑘) in the problem area 𝜑
𝑘
by all other tasks in the task set 𝜏 except 𝜏

𝑘
is no

less than 𝜑
𝑘
.

𝐶𝑠
𝑘 Computation time lesser than 𝐶

𝑘

𝐶 Nonzero computation time
𝑈
𝑘

= 𝐶
𝑘
/𝑇
𝑘 Task utilization of 𝜏

𝑘

𝑈(𝜏) = ∑
𝜏𝑖∈𝜏

𝑈
𝑖 System load

hp(𝑘) Set of all higher priority tasks of 𝜏
𝑘

lp(𝑘) Set of all lower priority tasks of 𝜏
𝑘

𝐶hp(𝑘) Set of all computation times of hp (𝑘)

𝐶lp(𝑘) Set of all computation times of lp (𝑘)

𝐶
𝑚 Maximum computation time in the subset of 𝐶lp(𝑘)

hc(𝑘) Summation of computation times of all higher priorities of 𝜏
𝑘

hec(𝑘) Summation of computation times of all equal and higher priorities of 𝜏
𝑘

lc(𝑘) Summation of computation times of lower priorities of 𝜏
𝑘

lec(𝑘) Summation of computation times of equal and lower priorities of 𝜏
𝑘

𝐶hp(𝑘) Set of all computation times of hp (𝑘)

𝐶lp(𝑘) Set of all computation times of lp (𝑘)

𝑈hp(𝑘) Summation of all the task utilization of hp (𝑘)

𝑈elp(𝑘) Summation of equal and all task utilization of lp (𝑘)

𝑟
𝑛
(𝑘) 𝑛th release time of 𝜏

𝑘

𝑟
𝑛+1

(𝑘) (𝑛 + 1)th release time of 𝜏
𝑘
and deadline for the task released at 𝑟

𝑛
(𝑘)

𝑙
𝑛
(𝑘) Latest feasible start time for 𝜏

𝑘
released at 𝑟

𝑛
(𝑘), to start execution in order to meet its deadline.

𝑁
𝜏𝑖

(𝑘) Number of intermediate tasks in 𝜑
𝑘

𝑤 Work done by initial job, intermediate job or final job in 𝜑
𝑘

𝑊𝜏(𝑘) Worst-case latency of 𝜏
𝑘
. It is the maximum time lapse for a task to start execute.

∙

𝑊(𝑘) Total work done by other tasks in the problem area of 𝜑
𝑘

can execute, test, and debugmodels at themodelling language
level using visual observation tools.

In UML-RT the four principle constructs for modelling
structure are capsules, ports, protocols, and connectors [5].

3.1.1. Capsules. The fundamental modelling constructs of
UML-RT are capsules. Capsules are distributed architectural
active objects that interact with other capsules exclusively
through one or more ports.The behavior of a capsule is mod-
elled in the state transition diagram that can process (send
and receive) messages via their ports, while its (hierarchical)
structure is modelled in the capsule structure diagram. The
structure diagram for the proposed model using UML-RT is
shown in Figure 1.

3.1.2. Ports. Through ports, messages are sent and received
to and from capsule instances. Ports connected to a state
machine of a capsule (end port) can handle messages sent to
them. Capsules and its associated input and output ports are
shown in Table 2.

3.1.3. Protocols. Protocols define a set of messages exchanged
between a set of capsules. Important timer ports and mes-
sages used in capsules are shown in Table 3.

3.1.4. Connectors. Connectors capture the key communica-
tion relationships between capsule roles. They interconnect
capsule roles that have similar public interfaces through
ports.

4 Modelling and Simulation in Engineering

Output ports
Input ports

Connectors

Timer ports

Capsule: processor

Capsule: scheduler

Capsule: task generator

Figure 1: Structure diagram for the model proposed in UML-RT.

Tk

rn(k) 𝜑k ln(k) Ck rn+1(k)

Figure 2: Problem area 𝜑
𝑘
, for the task 𝜏

𝑘
.

Table 2: Capsules and associated ports.

Capsules Input ports Output ports
Task generator — Gout
Scheduler Sin Sout
Processor Pin1 Pout1

4. Condition for Schedulability of a Task

Anecessary condition for deadlinemiss to occur for 𝜏
𝑘
, is that

the worst-case work load,
∙

𝑊 (𝑘) by all other tasks in the task
set 𝜏 except 𝜏

𝑘
is no less than𝜑

𝑘
. 𝑙
𝑛
(𝑘) is the latest feasible start

time for 𝜏
𝑘
, to start execution in order to meet its deadline as

shown in Figure 2.
The aim is to compute the individual contribution of

worst-case workload by other tasks, that is, 𝜏
𝑖

∈ 𝜏, in the
problem area, 𝜑

𝑘
as shown in Figure 2. The work load in 𝜑

𝑘

can be categorized into three parts as shown in Figure 3.

Initial Job. The contribution of task 𝜏
𝑖
, in problem area 𝜑

𝑘
, is

when computation of task 𝜏
𝑖
started earlier or at 𝑟

𝑛
(𝑘) and

having deadline in the problem area.

Intermediate Job, 𝑁
𝜏𝑖

(𝑘). The computation of a task 𝜏
𝑖
started

in 𝜑
𝑘
and having deadline in the problem area earlier to 𝑙

𝑛
(𝑘).

Final Job. The contribution of task 𝜏
𝑖
in problem area 𝜑

𝑘
is

when computation of task 𝜏
𝑖
started in𝜑

𝑘
and having deadline

 Initial job Intermediate job Final job

rn(k) 𝜑k ln(k)

Figure 3: Work done by other tasks in 𝜑
𝑘
.

Table 3: Capsules used timer ports and messages.

Capsules Timer ports Protocols
Task generator initial trigger

Scheduler

Task A Pa
Task B Pb
Task C Pc
Task D Pd
Task E Pe
Task F Pf
Task G Pg
Task H Ph
Task I Pi
Task J Pj
Task K Pk
Task L Pl
Task M Pm
Task N Pn

Processor exetask1 pfree1

later or at 𝑙
𝑛
(𝑘). Assume that all tasks contribute maximum in

the problem area.This is a pessimistic but safe approximation
to count the workload of a task in the problem area [3].

For 𝜏(𝑘) to be scheduled,

∙

𝑊 (𝑘) ≤ 𝜑
𝑘
, (3)

where
∙

𝑊 (𝑘) = ∑
hp(𝑘), lp(𝑘)

𝑤 (initial jobs + intermediate jobs

+final jobs) .

(4)

5. General Schedulability Test

The entire task set is schedulable only when each task is
schedulable. The computation timings of tasks are arranged,
𝐶
1

≤ 𝐶
2

≤ 𝐶
3

≤ ⋅ ⋅ ⋅ ≤ 𝐶
𝑘

≤ ⋅ ⋅ ⋅ ≤ 𝐶
𝑚
.

Theorem 1. Highest priority task 𝜏
1
is schedulable by a work

conserving nonpreemptive scheduling algorithm if

𝜑
1

≥ 𝐶
𝑚

. (5)

Proof. By contradiction if, 𝜑
1

< 𝐶
𝑚
, then the highest priority

task 𝜏
𝑘
may miss its deadline. We recall that 𝐶

𝑚
is the

maximum computation time in the subset of 𝐶lp(1). For a
nonpreemptive architecture, any 𝜏

𝑗
∈ hp(1) will not be

preempted, if it starts to execute before the release time of any

Modelling and Simulation in Engineering 5

higher priority task. Consider that 𝑗 = 𝑚. From Figure 4, it is
shown that 𝜏

𝑗
, which started to execute 𝐶

𝑚
at 𝑟
𝑛−1

(𝑗), is still
executing beyond 𝑙

𝑛
(1) causing the task 𝜏

1
to miss deadline.

Therefore, if 𝜑
1

≥ 𝐶
𝑚
, then 𝜏

1
will be schedulable.

Theorem 2. A task 𝜏
𝑘
is schedulable by a work conserving

nonpreemptive scheduling algorithm if

1 −
𝐶
𝑚

𝜑
𝑘

+ 𝑈
𝑒𝑙𝑝

(𝑘) ≥ 𝑈 (𝜏) . (6)

Proof. In [3], an algorithm is work conserving, if there are no
idle processors, when a ready task is waiting. Schedulability
condition for a task 𝜏

𝑘
is given by (3) and (4). The final

job contribution is bounded in the second term RHS of (7).
Therefore, from (4) the general schedulability for 𝜏

𝑘
will be

𝜑
𝑘

≥ 𝐶
𝑚

+ ∑
hp(𝑘)

𝑤 (intermediate jobs) , (7)

𝜑
𝑘

≥ 𝐶
𝑚

+ ∑
𝜏𝑖∈hp(𝑘)

𝜑
𝑘

𝑇
𝑖

𝐶
𝑖
. (8)

Equation (8) indicates pessimistic and sufficient condition for
a task to be schedulable. A task will be scheduled in the task
set if (8) is satisfied. Therefore,

𝜑
𝑘

≥ 𝐶
𝑚

+ 𝜑
𝑘
𝑈hp (𝑘) , (9)

𝜑
𝑘

≥ 𝐶
𝑚

+ 𝜑
𝑘

(𝑈 (𝜏) − 𝑈elp (𝑘)) ,

𝜑
𝑘

− 𝐶
𝑚

≥ 𝜑
𝑘

(𝑈 (𝜏) − 𝑈elp (𝑘)) ,

(10)

dividing by 𝜑
𝑘
,

1 −
𝐶
𝑚

𝜑
𝑘

+ 𝑈elp (𝑘) ≥ 𝑈 (𝜏) . (11)

Equation (11) is the condition for a task 𝜏
𝑘
to be schedulable.

Sufficient schedulability condition for least priority task
from (9),

𝜑
𝑘

≥ 𝜑
𝑘
𝑈hp (𝑘) (12)

𝐶
𝑚
, is neglected in (12), because schedulability condition for

𝜏
𝑚
to execute 𝐶

𝑚
is analyzed.

6. Proposed Utilization Bound Algorithms

6.1. Rate Monotonic Algorithm-Shortest Job First (RMA-SJF).
In shortest job first (SJF), priority is given to shortest
computation time, independent of interrelease time of the
tasks, thus minimizing the waiting time and improving the
throughput [6]. Rate monotonic algorithm (RMA) is of great
practical importance because priority is given to tasks with
lesser release time.This paper proposes two utilization bound
algorithms to derive a task set which satisfies both RMA-SJF
priority scheme; that is, higher priority tasks will have lesser
computation time and lesser interrelease time.

When a set of computation times are given, our aim is to
design a work conserving task system, to utilize the available

processing capacity. To achieve maximum processing capac-
ity, system load must be equal to unity for a uniprocessor
system [8]. In [3], an algorithm is work conserving, if
processor is not idle, when a ready task is waiting. Therefore,
behavior of the system developed is strongly dependent upon
the periods of the task comprising the task set [16].

6.2. Method 1: Work Conserving Utilization Bound. Initially
the algorithm aims to schedule “𝑚 − 𝑎” tasks, by deriving
the highest priority task release time 𝑇

1
= hec (𝑚 − 1).

Schedulability of each task is analyzed using the general
schedulability test. Later 𝑇

𝑖
of tasks are varied to find an

optimized utilization bound in 0.9 < 𝑈(𝜏) ≤ 1 to schedule
“𝑚” tasks utilizing the processor effectively (see Algorithm 1).

6.3. Method 2: Worst-Case Utilization Bound. In method 2,
the worst-case latency of each task is considered to compute
its interrelease time. Worst-case response time (𝑊𝜏) of each
task is found at critical instant, where all tasks are released
instantaneously (see Algorithm 2).

7. Sufficient Schedulability Condition
at Any Release Time

Sufficient schedulability condition for 𝜏
𝑘

∈ 𝜏 in its release
time 𝑟

𝑛
(𝑘) is derived. Let 𝜑

𝑘
be the problem area of 𝜏

𝑘
shown

in Figure 5, and 𝑙
𝑛
(𝑘) is the latest feasible start time to execute

𝐶
𝑘
, for 𝜏

𝑘
to be schedulable.

Consider the worst-case latency analyzed in Section 6.3.
The contributions of worst-case work load of other tasks are
analyzed under two cases.

Case A. hp(𝑘), lp(𝑘) released before 𝑟
𝑛
(𝑘).

Case B. hp(𝑘), lp(𝑘) released in [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)].

7.1. Case A: ℎ𝑝(𝑘), 𝑙𝑝(𝑘) Released before 𝑟
𝑛
(𝑘)

7.1.1. ℎ𝑝(𝑘) Released before 𝑟
𝑛
(𝑘). Figure 5 shows 𝜏

𝑗
∈ hp(𝑘)

released at 𝑟
𝑛−1

(𝑗) before 𝑟
𝑛
(𝑘):

𝑁
𝜏𝑖

(𝑘) = 0; (13)

Lemma 3. Task 𝜏
𝑗

∈ hp(𝑘) released before 𝑟
𝑛
(𝑘), will contrib-

ute initial job or intermediate job, if 𝑟
𝑛
(𝑘) < 𝑟

𝑛−1
(𝑗) + 𝑊𝜏(𝑗) +

𝐶
𝑗

< 𝑙
𝑛
(𝑘).

Proof. To prove by contradiction, if 𝑟
𝑛−1

(𝑗) + 𝑊𝜏(𝑗) + 𝐶
𝑗

<

𝑟
𝑛
(𝑘), then this task 𝜏

𝑗
does not contribute any workload in

work area; therefore, for this condition there is no initial or
intermediate job. Therefore, 𝑟

𝑛
(𝑘) < 𝑟

𝑛−1
(𝑗) + 𝑊𝜏(𝑗) + 𝐶

𝑗
<

𝑙
𝑛
(𝑘) will contribute initial job or intermediate job.

(1) Initial job will be present if, 𝑟
𝑛−1

(𝑗) + 𝑊𝜏(𝑗) + 𝐶
𝑗

−

𝑟
𝑛
(𝑘) ≤ 𝐶

𝑗

(i) 𝑟
𝑛−1

(𝑗) + 𝑊𝜏(𝑗) + 𝐶
𝑗

− 𝑟
𝑛
(𝑘) = 𝐶

𝑗
, then initial

job will be 𝐶
𝑗
;

6 Modelling and Simulation in Engineering

Cm

rn−1(j) rn(1) 𝜑1 ln(1) C1 rn+1(1)

Figure 4: 𝐶
𝑚
starts to execute before 𝑟

𝑛
(1) and still executing beyond 𝑙

𝑛
(1).

Step 1. Computation times are randomly generated and arranged according to shortest job first
priority scheme.

𝐶
1

≤ 𝐶
2

≤ 𝐶
3

≤ ⋅ ⋅ ⋅ ≤ 𝐶
𝑘

≤ ⋅ ⋅ ⋅ ≤ 𝐶
𝑚

Initialize 𝑎 = 1;
Step 2. hec (𝑚 − 𝑎) = 𝐶 (1) + 𝐶 (2) + ⋅ ⋅ ⋅ + 𝐶(𝑚 − 𝑎)

hec (𝑚) = 𝐶 (1) + 𝐶 (2) + ⋅ ⋅ ⋅ + 𝐶(𝑚)

Step 3. 𝑙
𝛿

= hec(𝑚 − 𝑎), 𝑙
𝛿

< hec(𝑚)

Step 4. assign 𝑇
1

= 𝑙
𝛿
;

for 𝑖 = 2 to 𝑚

do 𝑇
𝑖
= 𝑇
𝑖−1

+ 𝐶
𝑖−1

end for
Step 5. Find 𝑈(𝜏) = ∑

𝜏𝑖∈𝜏
𝑈
𝑖
where 𝑈

𝑖
= 𝐶
𝑖
/𝑇
𝑖

Step 6. if 0.9 < 𝑈(𝜏) ≤ 1;
Step 6.1. Vary 𝑇

𝑖
, such that processor is effectively utilized to schedule “𝑚” tasks in 𝑈(𝜏).

Therefore 𝑈(𝜏) is work conserving utilization bound.
Step 6.2. exit;

Step 7. if 𝑈(𝜏) < 0.9; 𝑙
𝛿

− − ; go to Step 4.
Step 8. if 𝑈 (𝜏) > 1; 𝑙

𝛿
+ +; go to Step 4.

Algorithm 1

(ii) 𝑟
𝑛−1

(𝑗) + 𝑊𝜏(𝑗) + 𝐶
𝑗

− 𝑟
𝑛
(𝑘) < 𝐶

𝑗
, then

𝑟
𝑛−1

(𝑗) + 𝑊𝜏(𝑗) + 𝐶
𝑗

− 𝑟
𝑛
(𝑘) = 𝐶𝑠

𝑗
< 𝐶
𝑗
;

therefore, the initial job will be 𝐶𝑠
𝑗
.

(2) Intermediate job will be present if, 𝑟
𝑛−1

(𝑗) + 𝑊𝜏(𝑗) +

𝐶
𝑗

− 𝑟
𝑛
(𝑘) > 𝐶

𝑗
.

For the above condition,
𝑟
𝑛−1

(𝑗) + 𝑊𝜏 (𝑗) + 𝐶
𝑗

− 𝑟
𝑛

(𝑘) − 𝐶
𝑗

= 𝐶 > 0. (14)
Recalling that all tasks contribute maximum in the problem
area, 𝜏

𝑖
is assumed to start execute in 𝜑

𝑘
and has deadline

in problem area. So, 𝑟
𝑛−1

(𝑗) + 𝑊𝜏(𝑗) + 𝐶
𝑗

− 𝑟
𝑛
(𝑘) > 𝐶

𝑗
will

contribute intermediate job, 𝑁
𝜏𝑖

(𝑘).

7.1.2. lp(𝑘) Released before 𝑟
𝑛
(𝑘). Figure 6 shows 𝜏

𝑗
∈ lp (𝑘)

released at 𝑟
𝑛−1

(𝑗) before 𝑟
𝑛
(𝑘).Maximumcontribution of any

lp (𝑘) will be the task having maximum computation time
as initial job released at 𝑟

𝑛−1
(𝑗) and started to execute before

𝑟
𝑛
(𝑘). Therefore, initial job = 𝐶

𝑚
.

7.2. Case B: hp(𝑘), lp(𝑘) Released in [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)]

7.2.1. hp(𝑘) Released [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)]

Lemma 4. If 𝜏
𝑗

∈ hp(𝑘) released [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)] will contribute

intermediate job, if 𝑟
𝑛
(𝑗) + 𝑊𝜏(𝑗) + 𝐶

𝑗
< 𝑙
𝑛
(𝑘), while 𝜏

𝑗
is

pending.

Proof. Recalling that, contribution of the task started to exe-
cute in problem area and finishes before 𝑙

𝑛
(𝑘) is intermediate

job.
For

(𝑟
𝑛

(𝑗) + 𝑇 (𝑗) = 𝑟
𝑛+1

(𝑗) , 𝑟
𝑛+1

(𝑗) < 𝑙
𝑛

(𝑘) , 𝑛 + +)

{𝑁
𝜏𝑖

(𝑘) + +; } .
(15)

The above equation shows that there are 𝑁
𝜏𝑖

(𝑘) intermediate
jobs contributed by, 𝜏

𝑖
∈ hp(𝑘) in the problem area while 𝜏

𝑘

is pending.

Lemma 5. If 𝜏
𝑗

∈ hp(𝑘) released [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)] will contribute

final job, if

𝑟
𝑛

(𝑗) + 𝑊𝜏 (𝑗) + 𝐶
𝑗

≥ 𝑙
𝑛

(𝑘) . (16)

Proof. Consider Figure 7. By contradiction, if 𝑟
𝑛
(𝑗)+𝑊𝜏(𝑗)+

𝐶
𝑗

< 𝑙
𝑛
(𝑘), then by Lemma 4, this condition possesses

intermediate job. Therefore, 𝑟
𝑛
(𝑗) + 𝑊𝜏(𝑗) + 𝐶

𝑗
≥ 𝑙
𝑛
(𝑘) will

contribute final job (see Algorithm 3).

7.2.2. lp(𝑘) Released in [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)]

Lemma 6. If 𝜏
𝑗

∈ lp(𝑘) released [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)] will have no

contribution in 𝜑
𝑘
for scheduling 𝜏

𝑘
.

Modelling and Simulation in Engineering 7

Step 1. Arrange computation times according to shortest job first,
𝐶
1

≤ 𝐶
2

≤ 𝐶
3

≤ ⋅ ⋅ ⋅ ≤ 𝐶
𝑘

≤ ⋅ ⋅ ⋅ ≤ 𝐶
𝑚

Step 2. Worst case response time of tasks analyzed. It is the maximum time lapse for a task to
start to execute. So it is known that,
𝑊𝜏(1) = 𝐶

𝑚

∘

𝑊𝜏(𝑘) = hc(𝑘) + 𝐶
𝑚

∘

𝑊𝜏(𝑚) = hc(𝑚)

Step 3. 𝑇
1

= 𝑊𝜏(1) + 𝐶
1
;

Step 4. for 𝑖 = 2 to 𝑚 do
𝑇
𝑖
= 𝑊𝜏(𝑖)

end for
Step 5. Worst case utilization bound, 𝑈(𝜏) = ∑

𝜏𝑖∈𝜏
𝑈
𝑖
where 𝑈

𝑖
= 𝐶
𝑖
/𝑇
𝑖

Step 6. Check schedulability of “𝑚” tasks by general schedulability test and find success
ratio and effective processor utilization.
Step 7. exit.

Algorithm 2

(i) According to the definition of final job,
if 𝑟
𝑛
(𝑗) + 𝑊𝜏(𝑗) + 𝐶

𝑗
= 𝑙
𝑛
(𝑘), then

𝑟
𝑛
(𝑗) + 𝑊𝜏(𝑗) − 𝑙

𝑛
(𝑘) =

𝐶
𝑗

therefore the final job will be 𝐶

𝑗

else 𝑟
𝑛
(𝑗) + 𝑊𝜏(𝑗) + 𝐶

𝑗
> 𝑙
𝑛
(𝑘), then

𝑟
𝑛
(𝑗) + 𝑊𝜏(𝑗) + 𝐶

𝑗
− 𝑙
𝑛
(𝑘) = 𝐶 > 0;

if 𝑊𝜏(𝑗) + 𝐶
𝑗

− 𝐶 ≥ 𝐶
𝑗
then, final job will be 𝐶

𝑗

else final job is 𝐶𝑠
𝑗

= 𝑊𝜏(𝑗) + 𝐶
𝑗

− 𝐶

Algorithm 3

Proof. Any lp(𝑘) released in [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)], as shown in

Figure 7, will have no contribution in 𝜑
𝑘
because any lp(𝑘) is

executed. So, lp(𝑘) released in [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)] will contribute no

workload in 𝜑
𝑘
.

8. Performance Evaluation

Example 7. Given the computation time 𝐶
𝑖
= (6, 5, 7, 3, 4,

2) the aim is to find optimum interrelease time for each
task to achieve 100% success ratio by utilizing the processor
effectively by work conserving utilization bound algorithm.

First computation times are arranged in nondecreasing
order:

𝐶
𝑖
= {2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7} . (17)

The various system load values by varying 𝑇
𝑖
are shown in

Table 4. All timings are in seconds.

Maximum utilization bound was found to be 0.9969
for the task set given below: 𝜏 = {2/18, 3/20, 4/23, 5/27,

6/33, 7/36}.When schedulability of 𝜏(6)was analyzed,𝐾 = 6;
𝐶
6

= 7; 𝜑
6
= 36 − 7 = 29; 𝑈(𝜏) = 0.9964. Lowest priority task

𝜏(6)will be schedulable if (12) is satisfied:

𝜑
𝑘

≥ 𝜑
𝑘
𝑈hp (𝑘) ,

29 ≥ 28.898.
(18)

Though the condition is satisfied, 𝜏(6) is unschedulable
practically because of runtime of the algorithm.The runtime
of the algorithm for six tasks is found to be 0.37599 seconds.
In order to compensate the runtime, period is incremented
and the problem is analyzed practically.

For the task set, 𝑈(𝜏) = {2/18, 3/20, 4/23, 5/27,

6/33, 7/40}, utilization bound 𝑈(𝜏) = 0.977, the task set 𝜏

is found schedulable using processor effectively as shown in
Figure 8.

(i) When 𝑈(𝜏) < 0.977, all tasks are schedulable, using
less processor capacity.

(ii) When 𝑈(𝜏) > 0.977 task set is found unschedulable
because of runtime of algorithm.

When 𝑈(𝜏) = 0.977 task set is schedulable using processor
capacity effectively with 97.5% as showed in Table 5. For the
system load 𝑈(𝜏) = 0.977 the effective processor utilization
is found to be 97.5.

Extensive simulations are conducted in UML-RT, for the
worst-case utilization bound and work conserving unity uti-
lization bound and their performance is compared. The task
parameters settings are as follows: for each task computation
timings are randomly distributed in {2, 19}; Ti is calculated
according to the two algorithms proposed. Maximum of
14 tasks are generated, to compare the success ratio and
effective processor utilization. Figure 9 shows the comparison

8 Modelling and Simulation in Engineering

rn−1(j) rn(k) 𝜑k ln(k) Ck rn+1(k)

Tk

Figure 5: 𝜏
𝑗

∈ hp(𝑘) released at 𝑟
𝑛−1

(𝑗) before 𝑟
𝑛
(𝑘).

rn−1(j) rn(k) 𝜑k ln(k) Ck rn+1(k)

Tk

Figure 6: 𝜏
𝑗

∈ lp(𝑘) released in 𝑟
𝑛−1

(𝑗) before 𝑟
𝑛
(𝑘).

Tk

rn(j)rn(k) 𝜑k ln(k) Ck rn+1(k)

Figure 7: 𝜏
𝑗

∈ lp(𝑘) released in [𝑟
𝑛
(𝑘), 𝑙
𝑛
(𝑘)].

100

98

96

94

92

90

0
.9
9
6
4

0
.9
9
1
9

0
.9
8
7
1

0
.9
6
2

0
.9
8
2
7

0
.9
7
8
4

0
.9
7
7

0
.9
7
4
9

0
.9
6
7
6

0
.9
6
0
5

0
.9
5
4
6

0
.9
2
0
2

Success ratio versus effective processor utilization for
work conserving utilization bound

System load

Success ratio
Effective processor utilization

0
.9
8
6

Figure 8: Success ratio and effective processor utilization analyzed for example, task set using UML-RT.

Table 4: Analysis of work conserving utilization bound algorithm for various set of 𝑇
𝑖
.

𝐶
𝑖

Interrelease time, 𝑇
𝑖
analyzed by work conserving utilization bound algorithm

2 20 19 18 18 18 18 18 18 18 18 18
3 22 21 21 20 20 20 20 20 20 20 20
4 25 24 24 24 23 23 23 23 23 23 23
5 29 28 28 28 28 27 27 27 27 27 27
6 34 33 33 33 33 33 33 32 32 32 32
7 40 39 39 39 39 40 39 40 39 38 37
𝑈(𝜏) 0.92024 0.95466 0.96051 0.96766 0.9749 0.97702 0.98152 0.98271 0.9872 0.99192 0.9969

Modelling and Simulation in Engineering 9

0
0.5

1
1.5

2
2.5

3

6 7 8 9 10 11 12 13 14
Number of tasks

System load versus number of tasks

Worst-case utilization bound
Work conserving unity utilization bound

Sy
ste

m
 lo

ad

Figure 9: Comparison of utilization bound of two algorithms pro-
posed.

0
10
20
30
40
50
60
70
80
90

100

6 7 8 9 10 11 12 13 14
Number of tasks

Worst-case utilization bound
Work conserving unity utilization bound

Su
cc

es
s r

at
io

Success ratio versus number of

Figure 10: Success ratio versus number of tasks.

Table 5: Success ratio and effective processor utilization for various
loads analyzed.

System
load

Success
ratio

Effective
processor
utilization

0.9964 96.02 92.83
0.9919 98.5 96.66
0.9871 98.78 96.66
0.962 97.97 95.27
0.986 98.13 95.85
0.9827 98.35 95.5
0.9784 99.52 97.05
0.977 100 97.5
0.9749 100 96.72
0.9676 100 96.16
0.9605 100 95.83
0.9546 100 94
0.9202 100 91.16

of utilization bound derived for the two algorithms proposed.
From Figure 10, the success ratio for work conserving unity
utilization bound is high compared to worst-case utilization
bound. Using the worst-case workload of task the utilization

6 7 8 9 10 11 12 13 14
Number of tasks

Effective processor utilization versus number of tasks

Worst-case utilization bound
Work conserving unity utilization bound

75

80

85

90

95

100

Eff
ec

tiv
e p

ro
ce

ss
or

ut

ili
za

tio
n

Figure 11: Comparison of Effective processor utilization of the
algorithms proposed.

bound or the system load derived is heavily loaded forWorst-
Case Utilization Bound Algorithm. Effective processor uti-
lized by the proposed algorithm is shown in Figure 11.

Advantage of Work Conserving Utilization Bound

(i) Processor can be effectively utilized to schedule task
set.

Example 8. To find whether 𝜏(5) is schedulable for the task
set having 𝑈(𝜏) = 0.9827 as shown in Table 4 by general
schedulability test.

Solution.For 𝜏(5) to be schedulable, (8) is sufficient condition:

𝐾 = 5; 𝐶
5

= 6; 𝐶
𝑚

= 7;

𝜑
5

= 32 − 6 = 26; 𝑈 (𝜏) = 0.9827,

𝜑
𝑘

≥ 𝐶
𝑚

+ ∑
𝜏𝑖∈hp(𝑘)

𝜑
𝑘

𝑇
𝑖

𝐶
𝑖
,

𝜑
5

≥ 𝐶
𝑚

+ ∑
𝜏𝑖∈hp(𝑘)

𝜑
5

𝑇
𝑖

𝐶
𝑖
,

26 ≥ 7 + 16.125,

26 ≥ 23.125.

(19)

Therefore, 𝜏(5) is schedulable by general schedulability test.
When schedulability of 𝜏(6) was analyzed, 𝐾 = 6; 𝐶

6
= 7;

𝜑
6

= 40 − 7 = 33; 𝑈(𝜏) = 0.9827. Lowest priority task 𝜏(6) will
be schedulable if (12) is satisfied:

𝜑
𝑘

≥ 𝜑
𝑘
𝑈hp (𝑘) ,

33 ≥ 22.6544.
(20)

Similarly, all the tasks are tested for schedulability and
practically found schedulable using UML-RT.

(ii) To find whether 𝜏(5) in the task set 𝜏 = {(2, 11),

(2, 13), (3, 15), (3, 18), (4, 21), (4, 25)} is schedulable in its
54th release.

10 Modelling and Simulation in Engineering

𝜑5 ln(5) C5

T5

r54(5) r55(5)

Figure 12: Problem area 𝜑
5
, for nonpreemptive uniprocessor scheduling.

Here 𝑘 = 5, 5th task
∙

𝑊 (𝑘) ≤ 𝜑
𝑘
for 𝜏
𝑛
(𝑘) to be scheduled,

where
∙

𝑊 (𝑘) = ∑
hp(𝑘),lp(𝑘)

𝑤 (initial jobs + intermediate jobs

+final jobs)

(21)

Case 1. 54th release time of the task 𝜏(5), 𝑟
54

(5) = 1134 and
𝑟
55

(5) = 1155.
𝐶
5
= 4; therefore, 𝑙

54
(5) = 1155 − 4 = 1151 and 𝜑

5
= 17.

Figure 12 shows the problem area of 𝜙(5).

(a) Finding initial job or intermediate job contribution of
𝜏
1

𝑟
54

(5)MOD𝑇
1

= 1,

𝑟
𝑛−1

(1) = 1134 − 1 = 1133,

𝑟
𝑛

(1) = 1144

(22)

𝑊𝜏(1) = max [𝐶lp(1)]; therefore, 𝑊𝜏(1) = 4. By Lemma 3,
task 𝜏

𝑗
∈ hp(𝑘) released before 𝑟

𝑛
(𝑘), will contribute initial

job or intermediate job, if 𝑟
𝑛
(𝑘) < 𝑟

𝑛−1
(𝑗)+𝑊𝜏(1)+𝐶

𝑗
< 𝑙
𝑛
(𝑘)

𝑟
𝑛−1

(1) + 𝑊𝜏 (1) + 𝐶
1

= 1133 + 4 + 2 = 1139 (23)

here, 𝑟
54

(5) < 𝑟
𝑛−1

(1) + 𝑊𝜏(1) + 𝐶
1

< 𝑙
54

(5)𝑊𝜏(𝑗).
𝜏
1
will contribute initial job if, 𝑟

𝑛−1
(𝑗) + 𝑊𝜏(𝑗) + 𝐶

𝑗
−

𝑟
𝑛
(𝑘) ≤ 𝐶

𝑗
, accordingly for 𝑟

𝑛−1
(1) + 𝑊𝜏(1) + 𝐶

1
− 𝑟
54

(5) ≤

𝐶
1
, the condition is not satisfied; therefore, it possesses only

intermediate job.
𝜏
1
will contribute intermediate job if 𝑟

𝑛−1
(𝑗)+𝑊𝜏(𝑗)+𝐶

𝑗
−

𝑟
𝑛
(𝑘) > 𝐶

𝑗
.

Here,

𝑟
𝑛−1

(1) + 𝑊𝜏 (1) + 𝐶
1

− 𝑟
54

(5) > 𝐶
1
. (24)

𝑟
𝑛−1

(1) + 𝑊𝜏(1) + 𝐶
1

− 𝑟
54

(5) − 𝐶
1
= 3 > 0. Therefore,

computation of a task 𝜏
1
started in 𝜑

𝑘
and having deadline

in the problem area, will contribute an intermediate job.
By Lemma 4, task 𝜏

1
∈ hp(𝑘) released [𝑟

54
(5), 𝑙
54

(5)] will
contribute intermediate job, if

𝑟
𝑛

(1) + 𝑊𝜏 (1) + 𝐶
1

< 𝑙
54

(5) (25)

𝑙
54

(5) = 1151, 𝑟
𝑛
(1) = 1144, release time is in the problem area.

𝑟
𝑛
(1) + 𝑊𝜏(1) + 𝐶

1
< 𝑙
54

(5) is satisfied because 𝑟
𝑛
(1)

+ 𝑊𝜏(1) + 𝐶
1
= 1150 and 𝑙

54
(5) = 1151. Therefore 𝜏

1
does

contribute one intermediate job in 𝜑
1
.

Figure 13: Simulation result in UML-RT.

By Lemma 4, if 𝜏
1

∈ hp (5) released [𝑟
54

(𝑘), 𝑙
54

(𝑘)] will
contribute final job, if

𝑟
𝑛

(1) + 𝑊𝜏 (1) + 𝐶
1

≥ 𝑙
54

(5) . (26)

𝑟
𝑛
(1) = 1144, release time is in the problem area; therefore,

𝜏
1
does not contribute final job in 𝜑

1
because 𝑟

𝑛
(1) + 𝑊𝜏(1)

+ 𝐶
1

< 𝑙
54

(5).
Therefore, the final job = 0.
So, the total worst-case workload contribution of 𝜏

1
is

𝑤(1) = 2(intermediate job) = 4.
Likewise, the other task contribution on 𝜙(1) is found out

similarly. One has

𝑤 (2) = 2 (intermediate job) + 1 (final job) = 3,

𝑤 (3) = 2 (initial job) + 3 (final job) = 5,

𝑤 (4) = 3 (intermediate job) = 3,

𝑤 (6) = 0,

∙

𝑊 (5) = Σ𝑤 (initial jobs + intermediate jobs + final jobs) ,

hp (𝑘) , lp (𝑘)

∙

𝑊 (5) = 4 + 3 + 5 + 3 = 15.

(27)

∙

𝑊 (5) < 𝜑
5
; therefore, 𝜏

54
(5) will be scheduled. Figure 13

shows the simulation result of 𝜏
54

(5) in UML-RT.

Modelling and Simulation in Engineering 11

9. Conclusion

Two algorithms with a new priority assignment scheme
(RMA-SJF) is proposed which possesses advantages of both
rate monotonic and shortest job first, for a nonpreemptive
periodic task set, on an uniprocessor architecture modelled
using UML-RT. Further, a general schedulability test is
derived using “problem window” analysis, to check for task
schedulability. A sufficient schedulability condition to verify
whether a periodic task is schedulable in any release time is
also proposed. Task set generated is analyzed for the above
schedulability test and condition with typical examples. The
performances of the proposed algorithms are also analyzed
with success ratio and effective processor utilization using
UML-RT. In future aperiodic dependent nonpreemptive task
with the proposed scheme on multiprocessor architecture
modelled using UML-RT will be analyzed.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] N. Guan, W. Yi, Q. Deng, Z. Gu, and G. Yu, “Schedulabil-
ity analysis for non-preemptive fixed-priority multiprocessor
scheduling,” Journal of Systems Architecture, vol. 57, no. 5, pp.
536–546, 2011.

[2] J. Lehoczky, L. Sha, and Y. Ding, “Rate monotonic scheduling
algorithm: exact characterization and average case behavior,” in
Proceedings of the Real-Time Systems Symposium, pp. 166–171,
December 1989.

[3] S. K. Baruah and S. Chakraborty, “Schedulability analysis of
non-preemptive recurring real-time tasks,” in Proceedings of the
14th International Workshop on Parallel and Distributed Real-
Time Systems (WPDRTS ’06), pp. 108–116, 2006.

[4] C. L. Liu and J. Layland, “Scheduling algorithms for multi-
programming in a hard real-time environment,” Journal of the
ACM, vol. 20, no. 1, pp. 47–61, 1973.

[5] “Modeling language guide-rational rose real time”.
[6] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive

scheduling of periodic and sporadic tasks,” in Proceedings of
the 12th Real-Time Systems Symposium (RTSS ’91), pp. 129–139,
December 1991.

[7] Q. Zhu, R. Oishi, T. Hasegawa, and T. Nakata, “Integrating
UML into SoC design process,” in Proceedings of the Design,
Automation and Test in Europe (DATE ’05), vol. 2, pp. 836–837,
March 2005.

[8] L. George, N. Rivierre, and M. Spuri, “Preemptive and non-
preemptive real-time uniprocessor scheduling,” Tech. Rep.,
INRIA, 1996.

[9] S. Lauzac, R. Melhem, and D. Mossé, “An improved rate-
monotonic admission control and its applications,” IEEE Trans-
actions on Computers, vol. 52, no. 3, pp. 337–350, 2003.

[10] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, “New strategies
for assigning real-time tasks to multiprocessor systems,” IEEE
Transactions on Computers, vol. 44, no. 12, pp. 1429–1442, 1995.

[11] W.-C. Lu, H.-W. Wei, and K.-J. Lin, “Rate monotonic schedula-
bility conditions using relative period ratios,” in Proceedings of

the12th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA ’06), pp. 3–9,
August 2006.

[12] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-
priority scheduling of periodic, real-time tasks,” Performance
Evaluation, vol. 2, no. 4, pp. 237–250, 1982.

[13] N. C. Audsley, “On priority assignment in fixed priority
scheduling,” Information Processing Letters, vol. 79, no. 1, pp. 39–
44, 2001.

[14] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis
of global scheduling algorithms on multiprocessor platforms,”
IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 4, pp. 553–566, 2009.

[15] B. Kumar and J. Jasperneite, “UML profiles for modeling real-
time communication protocols,” Journal of Object Technology,
vol. 9, no. 2, pp. 178–198, 2010.

[16] L. Kishor, D. Goyal, R. Singh, and P. Sharma, “Optimized
scheduling algorithm,” in Proceedings of the IJCA International
Conference on Computer Communication and Networks (CSI-
COMNET ’11), pp. 130–134, 2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

