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Demand management (DM) is the process that helps companies to sell the right product to the right customer, at the right time,
and for the right price. Therefore the challenge for any company is to determine how much to sell, at what price, and to which
market segment while maximizing its profits. DM also helps managers efficiently allocate undifferentiated units of capacity to the
available demand with the goal of maximizing revenue. This paper introduces control system approach to demand management
with dynamic pricing (DP) using themodel predictive control (MPC) technique. In addition, we present a proper dynamical system
analogy based on active suspension and a stability analysis is provided via the Lyapunov direct method.

1. Introduction

A supply chain is a complex system that involves suppliers,
producers, distribution centers, retailers, and finally the cus-
tomers. The main purpose of the supply chain management
(SCM) is to optimize the entire chain. In other words, SCM
manages efficiently the flow of products and information
between elements of the chain in order to attain goals that
cannot be reached in an isolated manner. The application of
DM to SCM allows us to efficiently balance the customer’s
requirements and the capabilities of the supply chain (e.g., see
[1]).

Nowadays, in such dynamic business world, the rapid
learning about the behaviour of demand and its yield is
required. The adequate management of these two variables
is an important source of competitive advantage for any
company in the supply chain. Moreover, traditional yield
management is switching into the more complex activity of
DM. Therefore our research focuses on the integration of
yield or revenuemanagement into the framework of DM. It is
well known that hoteliers, airlines, and car rentals companies
have implemented yield management activities successfully.
According to [2], to include yield management activities
into DM enhances profitability and long run sustainability.

Furthermore, DM allows managers to sell the right product
or service to the right customer, at the right time, and for the
right price with the main objective of maximizing the profits
margins. This action can be made through the assignation
of units of capacity to the available demand. For example,
when dealing with perishable products, DM assumes a fixed
capacity. However, in the case of wafer fabrication facilities, if
product mix is highly predictable, or if all products use each
piece of production equipment equally, all overall production
forecast is needed to determine equipment requirements.
However, demand hasmultiple dimensions such as the differ-
ent products sold, the types of customers served (preferences
and purchase behavior), and time. In this context, decisions
made about the price or quantity of a product may affect the
demand for related products and/ormay also affect the future
demand for the same product. This scenario represents an
opportunity to develop a model that determines how much
to sell at what price and to which market segment. Thus
we propose the application of DM to SCM as a helpful tool
which integrates capacity, inventory level, and demand in
DP framework. Dynamic pricing (DP) is the core element
of DM and refers to fluid pricing between the buyer and
the seller, rather than the more traditional fixed pricing [3].
Based on this, the company’s main goal is to maximize its
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total expected revenues bymaking the correct decision. From
here our premise is to show that DP can be modeled applying
control systems and specifically addressed by the techniques
of optimal control in real time, as the well-known model
predictive control (MPC). This research work introduces a
second order dynamical system which integrates capacity,
inventory level, and biding price in the framework of DM via
DP. We utilize a dynamical 1/4 active suspension system to
model and prove the applicability of DP to SCM. Moreover,
by using the Lyapunov direct method we concluded that a
sufficient and necessary condition for stability is the presence
of inventory level along the supply chain.

The remainder of this paper’s structure is as follows.
Section 2 describes DM in semiconductor manufacturing;
Section 3 presents sensitivity and stability analysis for DM;
Section 4 considers model predictive control formulation
for DM with respective simulations, while conclusions are
provided in Section 5.

2. Demand Management Sector Applications

2.1. Demand Management Sector Applications: A Review of
the Current Literature. The techniques of DM are relatively
new and the first research that dealt directly with these
issues appeared less than 20 years ago. The major sector
of application of DM has been in the airline industry and
different approaches have been presented in the literature
for airlines and hotels [4–12] (see Table 1), manufacturing,
services, and transportation [13–22] (see Table 2). So much
research has been done in the DM field. Please refer to
Tables 1 and 2 for an extended list of authors and a brief
description of their work. There are many different areas in
whichDMhas been applied successfully, as shown in Figure 1.
To this day, most of the research has been performed in the
airline sector (which is justified because DM was developed
to solve problems in this area) and in the area of hotel
management, where, by applying DM techniques, it has been
possible tomitigate some of the booking limit problems based
on reservations. We present a novel approach for dynamic
pricing-inventory level based on DM, assuming that we have
a pair of products subject to the same demand profile.

2.2. From Supply to Demand Management: The Damping
Effect. Synchronization between supply and demand is the
optimal scenario in any complex supply network. In dynam-
ical systems, dissipation is considered the loss of energy
over time; this is because of damping. It is common to
take into account the damping effect in different situations
like economics, finance, and electromechanical systems and
much more in biological systems. In DM, the notion of
damping is related to inventory level, basically to achieve
stability conditions over the supply chain.

2.2.1. Finite Dimensional Formulation for Demand Man-
agement. The ordinary differential equation (ODE) for the
dynamic system (DS) with damping is
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Figure 1: Demand management sector applications.

The present model in (1) describes the dynamics of mass-
spring-damper second order dynamical system. Also, pub-
lished by us [23] this model proposes a dynamic pricing for
DM applying fast model predictive control approach. The
present work is an extension of our previously published
work.

For purposes of demand management we present the
following model in the damping part of (1):
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𝛽 (𝑡) 𝑑𝑡]
𝑑𝑝
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+ 𝐾𝑝 = 𝑑 (𝑡) . (2)

Equation (2) presents 𝑝—price level, 𝐶—capacity, 𝑑(𝑡)—
demand, 𝐾—biding price restitution coefficient, and 𝛽(𝑡)—
damping coefficient-inventory level.

The damping factor in (2) has the characteristic to be a
function over time and then Lipschitz property can be applied
and requires convergence in a scalar value (see Appendix A).

The demand management problem for optimal control
has been addressed previously by different research groups
[24]; dynamic pricing for optimum inventory level has been
previously integrated as a first order ODE as shown in
[25]. Moreover, [26] has extended this work by integrating
dynamic pricing and demand level into a second order
ODE. The interaction of dynamic pricing and demand level
[27] presents a dynamic pricing model on web service, in
which case the demand function is nonlinear. Optimization
techniques have been shown [28] and have been used to
quantify demand response in energy industry applying bid-
pricing approaches; also, integer linear programming has
been applied to model inventory level, production level, and
capacity for dynamic pricing in [29].

2.2.2. Infinite Dimensional Formulation for Demand Manage-
ment. An extended version of ODE in (2) is expressed as a
generalized wave equation first proposed in [30] for flexible
systems such as
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Table 1: Demand management for airlines and hotels: literature review.

Author Sector application Methodology Contribution

Abdel Aziz et al. [4] Hotels Research article (case
studies)

Application to address the problem of room pricing in
hotels. Optimization techniques are present. Multiclass
scheme similar to the one implemented in airlines is
studied

de Boer [5] Airlines Research article
(theoretical)

Determination of a revenue management policy in
response to the realization of the demand. This is done
by matching supply and demand for seats

Hung and Chen [6] Airlines Research article (case
studies)

This study develops and tests two heuristics approaches:
the dynamic seat rationing and the expected revenue
gap to help the airline make a fulfillment or rejection
decision when a customer arrives

Gosavi et al. [7] Airlines
Research article
(simulation based
optimization)

Application of simulation based optimization for seat
allocation in airlines. The model considers real life
assumption such as cancelations and overbooking

Graf and Kimms [8] Airlines Research article (case
studies)

The optimal transfer prices are determined by a
negotiation process. Option-based capacity control
process results combined with transfer price
optimization are compared with a first come first served
approach

Kimms and
Müller-Bungart [9] Airlines

Research article
(simulation based

case study)

Application of heuristics and optimal networks in
revenue management. Assuming stochastic demand

Netessine and Shumsky [10] Airlines Survey
Analysis of fundamental concepts and trade-offs of
yield management to describe the parallels between
yield management and inventory management

Rannou and Melli [11] Hotels Research article (case
study)

Analysis and application of revenue management in
hospitality industry. The idea is to achieve a
performance measure for the return of investment

Walczak and Brumelle [12] Airlines Research article
(theoretical)

Problem formulation of semi-Markov model for
dynamic pricing and revenue management in airline
industry, assuming continuous demand

Equation (3) is called master damping equation for demand
management, which can be written as partial differential
equation (PDE) as follows:
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(4)

where first derivative of price in time is V
𝑝
and second

derivative in time is 𝑎
𝑝
. See Appendix B for a detailed proof

of (3) and (4).

3. Robust and Stability Analysis for
Demand Management

DM can be stated as follows: how to select the product’s mix
amount and price in order to satisfy a fluctuating demand
with the main goal of maximizing the profit. For this reason,
in this document we propose the use of MPC by comparing
DM and DP using an active suspension with damping.

3.1. Physical Modeling in DM-DP Problem. The use of a
physical model represents an approach to obtain a suitable
model to be controlled. According to [31], DM is the creation
across the supply chain and its markets of a coordinated flow
of demand. Also, the role of DM is to decrease demand.
The application of the active suspension analogy to track
both problems is suitable, because the price level (which
represents outputs) and demand (which represents input)
converge to a stability condition that requires inventory level
in the dissipation of the dynamical system. DM assumes fixed
capacity (which in terms of active suspension is the mass),
inventory level (damping of the system), and biding price
(restitution coefficient). In this case the idea is to present a
model in which, by using DM, we can assess how demand
does affect prices. We have chosen an active suspension
system to approach the system model; see Figure 2.

The dynamic equations for the system are as follows.
For the capacity fixed 𝐶

𝑓
:

𝐶
𝑓

̈𝑝
𝑓
= 𝑘
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(𝑤 − 𝑝

𝑓
) − 𝑘
𝑢
(𝑝
𝑓
− 𝑝
𝑢
)

− 𝛽 ( ̇𝑝
𝑓
− ̇𝑝
𝑢
) − 𝛼 ⋅ 𝑑.

(5)
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Table 2: Demand management for manufacturing and services: literature review.

Author Sector application Methodology Contribution

Bertsimas and Shioda [13] Services Research article (case
studies)

Application of revenue management in restaurants.
Using stochastic optimization via dynamic
programming. Computational experiments are
presented for reservation and without reservation case
studies

Boyd and Bilegan [14] Services Research article (case
study in e-commerce)

Analysis of revenue management applied to
e-commerce in the airline industry. Optimization
techniques are shown in inventory control mechanism

Defregger and Kuhn [15] Manufacturing Research article (case
studies)

Application of revenue management to a make-to-order
manufacturing company with limited inventory
capacity. Classifying the underlying Markov decision
process, by introducing a heuristic procedure

Kimes [16] Services Survey Revenue management analysis via the application of
optimization, forecasting, and overbooking

Kumar and Frederik [17] Services Survey

Application of revenue management in construction
industry. The benefits of revenue management can be
realized at manufacturing companies. Uncertain
demand and pricing of available capacity are analyzed
via this approach

Lee et al. [18] Transportation Research article (case
studies)

Analysis and application of heuristic to solve a single
revenue management problem with postponement,
arising from the sea cargo industry. Optimization based
case studies are addressed

Nair and Bapna [19] Services Research article
This paper studies optimal policies for allocating
modems capacity among segments of customers using a
continuous time Markov decision

Spengler et al. [20] Manufacturing Research article (case
studies)

Revenue management approach for companies in the
iron and steel industry is developed. The aim is to
improve short-term order selection

Shin and Park [21] Manufacturing Research article
(theoretical)

Yield improvement is analyzed in semiconductor
manufacturing via machine learning

Steinhardt and Gönsch [22] Services Research article (case
studies)

This paper addresses the problem of integrating revenue
management capacity control with upgrade decision
making. A new structural property for an integrated
dynamic programming formulation is present
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Figure 2: Active suspension analogy for DM-DP model.

For the capacity unfixed subject to active suspension perfor-
mance 𝐶

𝑢
:

𝐶
𝑢
̈𝑝
𝑢
= 𝑘
𝑢
(𝑝
𝑓
− 𝑝
𝑢
) + 𝛽 ( ̇𝑝

𝑓
− ̇𝑝
𝑢
) + (1 − 𝛼) 𝑑. (6)

Variables definition is as follows:

𝐶
𝑓
: capacity fixed,

𝐶
𝑢
: capacity fixed subject to active suspension,

𝑝
𝑓
: price level for the 𝐶

𝑓
capacity fixed,

𝑝
𝑢
: price level for the 𝐶

𝑢
subject to active suspension,

𝑤: price level disturbance in the market,
𝑑: demand,
𝑘
𝑓
: biding price restitution coefficient based on price

for 𝐶
𝑓
,

𝑘
𝑢
: biding price restitution coefficient based on price

for 𝐶
𝑢
,
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𝛽 : damping-inventory level in the system,

𝛼 : embedding parameter 0 ≤ 𝛼 ≤ 1.

As it is stated in DM, 𝐶
𝑓
and 𝐶

𝑢
are assumed fixed;

the characteristic of this system is such that the damping
coefficient is 𝛽. The nature of the input signal is the demand
and the output is the price level for the capacity fixed and
for the price level subject to active suspension. There exists a
relation between biding prices and restitution coefficients 𝑘

𝑓

and 𝑘
𝑢
; this means the amount of product per unit of price.

Themodel presented in the active suspension for demand and
price modeling, from Figure 2, is based on the assumption
that the analysis is for two products in the system. We plan
to extend our model to a half-car active suspension with
balanced capacity and unbalanced capacity for four products.
Finally, in future work, we intend to extend it to a full-car
model for a multiproduct system and analyze if the system
is balanced (with the same amount of capacity in each active
suspension).

3.2. Robust Policies in DM: A Sensitivity Analysis. The follow-
ing approach can be used for the design of robust controllers,
as suggested in [32], which analyzed the robustness for mass-
spring systemwithout damping. Consider a representation of
an uncertain linear dynamical system in state-space form:

𝑧̇ = 𝐴 (𝑞) 𝑧 + 𝐵 (𝑞) 𝑢, (7)

where 𝑧 ∈ R𝑛, 𝑢 ∈ R𝑚, and 𝑞 is a vector of uncertain
parameters. The sensitivity of the states with respect to
parameter 𝑞 is

𝑑𝑧̇

𝑑𝑞
𝑖

=
𝜕𝐴

𝜕𝑞
𝑖

𝑧 + 𝐴
𝜕𝑧

𝜕𝑞
𝑖

+
𝜕𝐵

𝜕𝑞
𝑖

𝑢. (8)

Consider the quarter active suspension system; from
Figure 2, the equations of motion, assuming that the uncer-
tain parameter is the damping coefficient (𝛽), and the partial
derivative of (5) and (6) with respect to 𝛽 are

𝜕 ̈𝑝
𝑓

𝜕𝛽
=

1

𝐶
𝑓

[(𝑝̇
𝑢
− 𝑝̇
𝑓
) + 𝛽(

𝜕𝑝̇
𝑢

𝜕𝛽
−

𝜕𝑝̇
𝑓

𝜕𝛽
)] , (9)

𝜕 ̈𝑝
𝑢

𝜕𝛽
= −

1

𝐶
𝑢

[(𝑝̇
𝑢
− 𝑝̇
𝑓
) − 𝛽(

𝜕𝑝̇
𝑓

𝜕𝛽
−
𝜕𝑝̇
𝑢

𝜕𝛽
)] . (10)

Both equations are not independent of one another; the
sensitivity states are expressed as

𝜕 ̈𝑝
𝑓

𝜕𝛽
= −

𝐶
𝑢

𝐶
𝑓

(
𝜕𝑝̈
𝑢

𝜕𝛽
) . (11)

The following boundary conditions increase the robust-
ness:

𝜕𝑝
𝑓

𝜕𝛽
=
𝜕𝑝
𝑢

𝜕𝛽
=

𝜕 ̇𝑝
𝑓

𝜕𝛽
=
𝜕 ̇𝑝
𝑢

𝜕𝛽
= 0. (12)

Integrating (11) in time and subject to boundary conditions
(12), finally the relationship is such that

𝜕 ̇𝑝
𝑓

𝜕𝛽
= −

𝐶
𝑢

𝐶
𝑓

(
𝜕𝑝̇
𝑢

𝜕𝛽
) . (13)

Substituting (13) into (10) permits achieving the general state
sensitivity equation of the form:

𝜕 ̈𝑝
𝑢

𝜕𝛽
= −

1

𝐶
𝑢

(𝑝̇
𝑢
− 𝑝̇
𝑓
) + (

𝛽

𝐶
𝑓

+
𝛽

𝐶
𝑢

)(
𝜕𝑝̇
𝑢

𝜕𝛽
) . (14)

The sensitivity analysis presented in Section 3.2 considers
variations in the inventory level, which gives a capacity
equivalent, 𝐶eq = 𝐶

𝑢
𝐶
𝑓
/(𝐶
𝑢
+ 𝐶
𝑓
), to be used in the

dynamical system for modeling consideration and it refers to
robust policies. We conclude that a robust inventory policy is
represented by the following equation: 𝛽/𝐶eq = 𝛽((1/𝐶

𝑓
) +

(1/𝐶
𝑢
)).

3.3. Stability Analysis for DM. For the behavior of the damp-
ing effect in DM, this section proposes the stability criteria
via Lyapunov direct method.

Definition 1. A linear system is stabilizable if all unstable
modes are controllable.

DM-ODE equation (2) is necessary to analyze the stability
performance. Assume the DM-ODE equation has the struc-
ture 𝑥̇ = 𝐴𝑥 + 𝐵𝑢.

Theorem 2. For the dynamical system (2), and considering
that (A, B) are controllable, a necessary and sufficient condition
for stability in DM is 𝛽 > 0.

Proof. The following condition in the demand of the system
is assumed:

𝑑 (𝑡) = 0. (15)

Equation (2) can be formulated as

𝐶eq𝑝̈ + 𝛽𝑝̇ + 𝑘𝑝 = 0. (16)

From (16) we use energy as the Lyapunov function:

𝑉 (𝑝, 𝑝̇) =
1

2
𝐶eq𝑝̇
2
+
1

2
𝑘𝑝
2
, (17)

𝑑𝑉

𝑑𝑡
=
𝜕𝑉

𝜕𝑝

𝑑𝑝

𝑑𝑡
+
𝜕𝑉

𝜕𝑝̇

𝑑𝑝̇

𝑑𝑡
, (18)

𝑑𝑉

𝑑𝑡
= 𝑘𝑝 ⋅ 𝑝̇ + 𝐶eq𝑝̇ ⋅ 𝑝̈, (19)

𝑑𝑉

𝑑𝑡
= 𝑘𝑝 ⋅ 𝑝̇ + 𝐶eq ⋅ 𝑝̇ (

−𝛽

𝐶eq
𝑝̇ −

𝑘

𝐶eq
𝑝) . (20)

Eliminating terms from (20), the following condition is
achieved: −𝛽 ⋅ 𝑝̇2 ≤ 0. Finally, the presence of inventory level
in the system 𝛽 > 0 is a necessary and sufficient condition for
stability purposes.
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Figure 3: Schematic receding horizon control philosophy.

4. Model Predictive Control
Analysis for Demand Management

4.1.Model Predictive Control: TowardsOptimal Policies inDM.
Model predictive control (MPC) is a real time optimal control
strategy that has been applied in process control, aerospace,
automotive, management science, and robotic applications.
Besides these applications, MPC has other advantages such
as good tracking performance, physical constraints handling,
and extension to nonlinear systems [33]. MPC has been used
to address production-inventory systems. For example, in
adaptive MPC, the adapted model along with a smoothed
estimation of the future customer demand is used to predict
inventory levels over the optimization horizon [34]. MPC
policy shows improved performance, greater flexibility, and
higher functionality relative to an advanced order-up-to
policy based on control engineering principles found in the
literature [35]. The philosophy of MPC, also known as reced-
ing horizon control (RHC), has the advantage of handling
control and state constraints [36]. The RHC strategy takes
into account an objective function and many constraints; see
Figure 3. In RHC to define an optimal strategy, the first step
requires calculating a control law and repeating this process
indefinitely, each sampling time.

With MPC, an optimization problem is solved at each
time step to determine a plan of action over a fixed time
horizon [37]. MPC is a nonlinear control policy that handles
input and output constraints, as well as various control
objectives. Using MPC, a system can be controlled near its
physical limits, often outperforming linear control. It is well
known that the computation of predictive control laws is a
crucial task in every MPC application to systems with fast
dynamics due to the fact that an optimization problem has
to be solved online [38]. Other approaches, applying MPC
techniques, have been developed such as simplified MPC
algorithm for Markov jump systems [39] and constrained
robust MPC effective for uncertain Markov jump systems, as
previously shown [40].

For the active suspension analogy to DM-DP, we will use
a linear MPC for purposes of analysis and control. Based on
this, we are interested in optimal control problems of the form

min
𝑑𝑘 ,...𝑑𝑘+𝑁−1

𝐽 =

𝑁−1

∑

𝑘=0

󵄩󵄩󵄩󵄩𝑝𝑘 − 𝑝𝑟
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑑𝑘 − 𝑑𝑟

󵄩󵄩󵄩󵄩

2

, (21a)

Table 3: MPC design parameters for optimal and robust policies.

Policy case 𝑇
𝑠

𝑁
𝑝

𝑁
𝑢

Optimal policies 0.05 10 2
Robust policies 0.03 10 2

s.t. 𝑥
𝑘+1

= 𝐴 ⋅ 𝑥
𝑘
+ 𝐵 ⋅ 𝑑

𝑘
,

𝑝
𝑘
= 𝐶 ⋅ 𝑥

𝑘
+ 𝐷 ⋅ 𝑑

𝑘
,

𝑑min ≤ 𝑑𝑘 ≤ 𝑑max,

𝑝min ≤ 𝑝𝑘 ≤ 𝑝max,

𝑥
𝑘
= 𝑥 (𝑘) , 𝑘 = 0, . . . , 𝑁 − 1.

(21b)

Here 𝑥 : R → R𝑛 denotes the state, 𝑑 : R → R𝑛 the
control input, and 𝑝 : R → R𝑛 the output of the system.

The conventional linear MPC law is based on the follow-
ing algorithm.

Algorithm (linear MPC)

(1) Achieve the new state 𝑝
𝑘
.

(2) Solve the optimization problem (21a) and (21b).
(3) Calculate the law 𝑑(𝑘) = 𝑑(𝑘 + 0 | 𝑘).
(4) 𝑘 ← 𝑘 + 1. Go to (1).

Computational Complexity Analysis. The complexity of the
solver for the optimization problem (21a) and (21b) depends
on the choice of the performance index, the model, and
constraints. For our algorithm the optimization problem is
a quadratic program (QP).

Based on the nature of the proposed algorithm, which
is a QP related to an active set method, each iteration
has cost 𝑂(𝑛2) floating point operations (flops), where 𝑛 is
the number of decision variables and 𝑛 is proportional to
horizon𝑁

𝑝
. It is important to notice that active set methods

are exponential in the worst case but show good practical
performance. Also, active set methods work best for small
and medium size problems.

4.2. Simulations Results. After the presented analysis two
scenario simulations are shown for optimal policies in Figures
4 and 5. The robust policies for DM are presented in Figures
6 and 7. The main goal is to contribute in the performance
of MPC for optimal policies and robust policies in DM and
to compare it with linear quadratic regulator (LQR). The
application of tracking MPC in DM approaches achieves
a suitable response for optimal policies. In Figure 6 price
level is shown taking into account capacity fixed and unfixed
responses. It is important to notice that the demand response,
in Figure 7, is constrained.

MPC design parameters for optimal and robust policies
are present in Table 3. It is important to note that 𝑇

𝑠
is the

sampling time, 𝑁
𝑝
is the prediction horizon, and 𝑁

𝑢
is the

control horizon, where𝑁
𝑢
< 𝑁
𝑝
.

In Figure 4, the MPC simulation reflects under optimal
policies a performance with small overshoot in prices and
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Table 4: Design parameter for DM-active suspension dynamical system.

Policy case 𝐶
𝑢

𝐶
𝑓

𝑘
𝑢

𝑘
𝑓

𝛽

Optimal policies 300 50 2000 2000 500
Robust policies 500 300 10000 10000 1000
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Figure 4: Simulation response for optimal policy price level-
tracking MPC.
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Figure 5: Optimal policies for demand management.

considerable fluctuations in demand. It is important to
remember that we have the price level as output for the
dynamical system and demand as input.

The MPC simulation shows in Figure 6 the performance
in the application of the robust policies obtained from the
analysis showed in Section 3.2. It is important to note that
the price level in both responses is reduced by half compared
with scenario 1 from Figure 10.This reduction is based on the
notion that there is a relation between inventory level and
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Figure 6: Simulation response for robust policy price level-tracking
MPC.
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Figure 7: Robust policies for demand management.

capacity equivalent for the robust policy. Under variations
in this relation, the price level is reduced and the demand
presents small variations.

Design parameters for DM-active suspension are shown
in Table 4, for optimal and robust policies. It is important to
note that these parameters are the same over both policies for
purposes of control via MPC and LQR.
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Figure 8: Optimal policies for capacity via LQR.

In summary, from demand curve in economics, which
establish that if price is lower consumers are ready to buy
more, based on this context, with an optimal policy, the prices
are higher and demand is low. However for robust policies
the prices are lower than in optimal policies and the demand
is higher. In this case the relation between the price and the
demand is satisfied from economic theory.

Linear Quadratic Regulator. Consider that MPC is an online
solution of a LQR optimization problem. The approach here
is to introduce the LQR methodology and compare it with
the MPC results. In the state-feedback version of the LQR
problem we assume that the whole state 𝑥 can be measured
and therefore it is available to control [41].The state-feedback
control law 𝑢(𝑡) = −𝐾𝑥(𝑡)minimizes the cost function:

𝐽LQR = ∫
∞

0

(𝑥
𝑇
𝑄𝑥 + 𝑢

𝑇
𝑅𝑢) 𝑑𝑡, (22)

where 𝐾 = 𝑅
−1
𝐵
𝑇
𝑃, and 𝑃 is solved by an algebraic Riccati

equation. The results achieved by the application of LQR in
the optimal and robust policies are presented in Figures 8 and
9.

Once LQR is applied for optimal and robust policies,
simulations present more oscillations when compared to
MPC, using the same parameters from Table 4. In Figure 8,
for optimal policies the price level achieves more overshoot
and a larger setting time. Also in Figure 9 the demand level
presents higher variation than in MPC optimal policies. The
demand level is reduced at the end of time horizon, as it has
been proposed in DM theory.

Robust policies achieve an oscillatory performance in the
price level as it is noted in Figure 10; however, the price level
is reduced considerably when compared to optimal policies
via LQR. In Figure 11, demand level achieves a low value in
units at the end of time horizon, which is expected, but the
oscillation is persistent.
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Figure 9: Optimal policies for demand management via LQR.
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Figure 10: Robust policies for capacity via LQR.

In summary,MPC simulations fromFigures 4 to 7 present
better performance than LQR which are shown in Figures 8
to 11, for optimal and robust policies.

Based on this context and these results, we aim to explore
other control oriented approaches for DM-active suspension
analogy via dynamic pricing such as robust control tech-
niques, as developed in [42, 43] with the goal to compare its
performance with MPC techniques. Also we plan to explore
adaptive control techniques [44], output feedback control
[45], and sample data control present [46] and to develop a
trade-off with optimal control techniques.

5. Conclusions

This research work presents a novel DM-DP approach based
on MPC for second order systems with damping, which
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in terms of DM tell us that dissipation process is present
with inventory storage level in the system. Our results of
the stability analysis from Lyapunov direct method show
that an inventory level is needed in the system. The one-
quarter active suspension model presents the analogy for
a DM-DP process system behavior. Besides the sensitivity
analysis shows us that an equivalent capacity level will
provide reduced price level. Simulations results show that
under robust policies the price level is reduced by half; this
is because of the ratio between inventory level and capacity
in the active suspension dynamical system. For future work,
the intention is to develop a full active suspension model
for multiple product system as well as to achieve inventory
level dynamics via first order ordinary differential equations.
Another future research area will focus on the exploration of
a full active suspensionmodel for one ormultiple products in
a multistage supply chain.

Appendices

A. Inventory Level Derivation

The derivation of the value of 𝛽 requires the following
analysis:

Let 𝛽 (𝑡) = ∫
∞

0

𝑒
−𝑡/𝛽

𝑑𝑡, Finally 𝛽 (𝑡) = 𝛽. (A.1)

B. Infinite Dimensional Analysis for
Demand Management

We propose the following generalized wave equation which
describes the behavior of flexible systems, presented first in
[30]:

𝑚(𝑥)
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡
2

+ 𝛽
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ 𝐾𝑢 (𝑥, 𝑡) = 𝐹 (𝑥, 𝑡) . (B.1)

The purpose is to obtain a PDE description for demand
management via dynamic pricing. Based on this

𝐶 (𝑝)
𝜕
2
𝜑 (𝑝, 𝑡)

𝜕𝑡
2

+ 𝛽[
𝜕𝜑 (𝑝, 𝑡)

𝜕𝑝
+ 𝛼

𝜕𝜑 (𝑝, 𝑡)

𝜕𝑡
]

+ 𝑘𝜑 (𝑝, 𝑡) = 𝐷 (𝑝, 𝑡) ,

(B.2)

where

𝜕𝜑

𝜕𝑡
=
𝜕𝜑

𝜕𝑝

𝜕𝑝

𝜕𝑡
= V
𝑝

𝜕𝜑

𝜕𝑝
, (B.3)

substituting (B.3) in (B.2) which gives

𝐶 (𝑝) [
𝜕

𝜕𝑡
(V
𝑝

𝜕𝜑 (𝑝, 𝑡)

𝜕𝑝
)] + 𝛽

𝜕𝜑 (𝑝, 𝑡)

𝜕𝑝

+ 𝛼𝛽
𝜕𝜑 (𝑝, 𝑡)

𝜕𝑡
+ 𝐾𝜑 (𝑝, 𝑡) = 𝐷 (𝑝, 𝑡) .

(B.4)

Developing partial derivatives:

𝐶 (𝑝)(V
𝑝

𝜕
2
𝜑 (𝑝, 𝑡)

𝜕𝑝𝜕𝑡
+ 𝑎
𝑝

𝜕𝜑 (𝑝, 𝑡)

𝜕𝑝
) + 𝛽

𝜕𝜑 (𝑝, 𝑡)

𝜕𝑝

+ 𝛼𝛽
𝜕𝜑 (𝑝, 𝑡)

𝜕𝑡
+ 𝐾𝜑 (𝑝, 𝑡) = 𝐷 (𝑝, 𝑡) .

(B.5)

Define 𝐶(𝑝) ≡ 1 and 0 ≤ 𝛼 ≤ 1.
The PDE description for demand management is

V
𝑝

𝜕
2
𝜑 (𝑝, 𝑡)

𝜕𝑝𝜕𝑡
+ (𝛽 + 𝑎

𝑝
)
𝜕𝜑 (𝑝, 𝑡)

𝜕𝑝

+ 𝛼𝛽
𝜕𝜑 (𝑝, 𝑡)

𝜕𝑡
+ 𝐾𝜑 (𝑝, 𝑡) = 𝐷 (𝑝, 𝑡) ,

(B.6)

where 𝛽 + 𝑎
𝑝
> 0.
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