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Reducing the computational complexity of the near-field sources and far-field sources localization algorithms has been considered
as a serious problem in the field of array signal processing. A novel algorithm caring formixed sources location estimation based on
oblique projection is proposed in this paper.The sources are estimated at two different stages and the sensor noise power is estimated
and eliminated from the covariance which improve the accuracy of the estimation ofmixed sources. Using the idea of compress, the
range information of near-field sources is obtained by searching the partial area instead of the whole Fresnel area which can reduce
the processing time. Compared with the traditional algorithms, the proposed algorithm has the lower computation complexity and
has the ability to solve the two closed-spaced sources with high resolution and accuracy.The duplication of range estimation is also
avoided. Finally, simulation results are provided to demonstrate the performance of the proposed method.

1. Introduction

In the past few years, source location has received a sig-
nificant amount of attention [1–3]. In practice, the near-
field and far-field sources coexist in most cases, and the
conventional algorithms for the far-field sources always to
estimate the parameters of the sources. For instance, the
traditional MUSIC algorithm [4] and ESPRIT (Estimation
of Signal Parameters via Rotational Invariance Techniques)
algorithm [5] cannot solve the above situation. Some specific
algorithms are presented for near-field sources [6–16], such
as two-dimensional (2-D)MUSICmethod [6], themaximum
likelihood method [10], the path following method [11], and
the polynomial rooting method [12].The high-order ESPRIT
method was presented in [13]. However, when dealing with
the mixed sources, the performances of these algorithms
would decline. The computational complexity will increase
meanwhile. Thus the research issues of estimating for near-
field and far-field sources simultaneously have important
practical significance and have gradually become a new hot
spot.

Several algorithms for both the near-field and far-field
signals which coexist are presented. Most of them are based
on high-order cumulant. TSMUSIC (two-stage MUSIC)

method [17] solves mixed signal by constructing two special
cumulants, avoiding the estimation failure problem. How-
ever, the computational complexity increases as well. Similar
to those existing methods aforementioned, the algorithm
proposed in [18] is improved based on TSMUSIC. The high-
order cumulant is constructed, and the DOA and range of
mixed sources are obtained by reconstructing the sparse
matrix. [19] is also improved based on TSMUSIC. Mixed-
order MUSIC algorithm and a sparse symmetric array are
used in [19]. However they use the high-order cumulant, thus
suffering from burdensome computation as well. Moreover,
the high-order cumulant-based algorithms would fail in the
presence of Gaussian sources. And the paramount disad-
vantage of these methods is that they need large number
of snapshots. Such simultaneous estimation influences the
estimation performance of near-field sources.

According to the signal model, we know that the near-
field sources have two parameters to estimate, while the
far-field sources only have one. It means that so far most
literatures about mixed sources estimation estimate the range
information of far-field sources which is no need. It not only
increases the computation complexity but also reduces the
estimation accuracy. In this paper, we consider that the far-
field sources only need to estimate one parameter which is
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different from near-field sources. Two kinds of sources will
be estimated separately.Meanwhile the algorithms aforemen-
tioned for near-field sources need to search the whole Fresnel
area which increases the processing time. The proposed
algorithm uses the idea of compress and obtains the distance
information of near-field sources by searching the part of
Fresnel area instead of the whole Fresnel area which can
reduce the processing time.

The proposed algorithm includes four steps as follows:
(1) utilize MUSIC algorithm to obtain the DOA of far-field
sources and utilize the angle information of far-field sources
to construct the oblique projector operation; (2) the sensor
noise power is estimated and eliminated from the covari-
ance. Meanwhile utilize the oblique projector operation to
eliminate the information of far-field sources fromcovariance
matrix and retain the information of near-field sources; (3)
construct the polynomial by the symmetrical structure of
the arrays and obtain the DOA of the near-field sources by
solving the root of polynomial; (4) use the idea of compress
and obtain the distance information of near-field sources
which is obtained by searching the part of Fresnel area instead
of the whole Fresnel area.

The rest of this paper is organized as follows. The
mixed sources model including far-field sources and near-
field sources is introduced in Section 2. The estimation of
far-field sources is shown in Section 3. The algorithm for
near-field sources is shown in Section 4. The performance
analysis about the proposed algorithm is given in Section 5.
The discussion about the proposed algorithm is given in
Section 6. Simulation results are presented in Section 7, and
conclusion is in Section 8.

2. Signal Model of Mixed Source

As shown in Figure 1, 𝐾 narrowband sources, contained by
𝐾
𝑛
near-field sources and𝐾

𝑓
far-field sources, are impinging

on a symmetric uniform linear array with 2𝑁 + 1 nondi-
rectional sensors. The center of array is considered as phase
reference point.The data received by array 𝑖 can be expressed
as
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(1)

where 𝑠
𝑓
𝑘

(𝑡) is the 𝑘th narrowband far-field source, 𝑠
𝑛
𝑘

(𝑡) is
the 𝑘th narrowband near-field source, and 𝑛

𝑖
(𝑡) is the additive

Gaussian noise received by the 𝑖th array.
The vector formof data received by array can be expressed

as

x (𝑡) = A
𝑛
(𝜃, 𝑟) s

𝑛
(𝑡) + A

𝑓
(𝜃) s
𝑓
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far-field sources; n(𝑡) is the 2𝑁+1 additive complex Gaussian
white noise vector.
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Figure 1: Symmetric uniform linear array configuration.

A
𝑛
(𝜃, 𝑟) and A

𝑓
(𝜃) represent the near-field and the far-

field sources manifold matrix separately, which are expressed
as
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, 𝜙
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are
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(4)

where 𝜃
𝑘
and 𝑟
𝑘
𝑘 = [1, 2, . . . , 𝐾

𝑛
] are the DOA and range

of the 𝑘th near-field source, respectively, and 𝜃
𝑘
𝑘 =

[1, 2, . . . , 𝐾
𝑓
] are theDOAof 𝑘th far-field source, respectively.

In this paper, we make the assumptions as follows:

(1) the signals are statistically independent;
(2) the sensor noise is the additive white Gaussian noise,

which is independent of the signal sources;
(3) the antenna spacing 𝑑 is within a quarter-wavelength.

3. DOA Estimation for Far-Field Sources

According to (2), these received data can be expressed in
another way:

x (𝑡) = [A
𝑓

A
𝑛
] [s
𝑓
(𝑡) s
𝑛
(𝑡)]
𝑇

+ n (𝑡) = Âŝ (𝑡) + n (𝑡) . (5)

Collect 𝑀 snapshots and define X = [x(1), x(2), . . . ,
x(𝑀)], which is denoted as

X = ÂŜ + N, (6)
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where Ŝ ∈ C𝐾×𝑀 is the source matrix for𝑀 samples andN ∈

C𝐾×2𝑁+1 is the noise matrix.
The covariance matrix R received by the array can be

estimated with𝑀 snapshots by

R = 𝐸 [XX𝐻] = ÂR
𝑆
Â𝐻 + 𝜎2I

= A
𝑓
R
𝑓
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𝑓
+ A
𝑛
R
𝑛
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+ 𝜎
2I
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𝑆
Λ
𝑆
U𝐻
𝑆
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𝑁
Λ
𝑁
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𝑁
,

(7)

whereU
𝑆
represents the eigenvectors corresponding to the𝐾

large values.U
𝑁
represent the eigenvectors corresponding to

the last small values.
In this paper, the DOAs for far-field sources are estimated

by MUSIC algorithm.
Spatial spectrum function is constructed as follows:

𝑃MUSIC =
1

a𝐻
𝑓
(𝜃)U
𝑁
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𝑁
a
𝑓
(𝜃)
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))]

𝑇

.

(9)

Continuously changing the value of 𝜃 to search spectral
spectrum peak, the DOA estimation for far-field sources will
be obtained, but the DOA estimation for near-field sources
cannot be obtained in this processing, as themanifold vectors
of the near-field and the far-field source are described by
different equations. They belong to two different manifold
curves within the same observation space. When using this
manifold vector of far-field sources to search spectrum peak,
it will not form the peaks in near-field sources position.Thus
in this method we can only obtain the DOA estimation for
far-field sources.

4. DOA Estimation for Near-Field Sources

In order to estimate DOA for near-field source separately, we
need to remove far-field source from the received data covari-
ance matrix. According to the oblique projection operation’s
characteristics, we can use oblique projection operation to
extract near-field source from the data covariance matrix.

Our aim is to retain the near-field sources corresponding
informationA

𝑛
and eliminate far-field sources corresponding

information A
𝑓
. Therefore, we can first obtain projection

operator EA
𝑓
A
𝑛

just containing the far-field sources A
𝑓
and

then obtain the information of near field source by subtract-
ing the information of far-field sources.

Utilizing the character of oblique projection operator, we
will structure oblique projection operator EA

𝑓
A
𝑛

satisfying
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𝑓
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However, P⊥A
𝑛

of (10) needs the steer vector A
𝑛
of the

near-field sources to construct it. In other words, it needs the
information of near-field sources. Thus it cannot be realized.
According to the literature [20], when 𝐾 < (2𝑁 + 1), EA

𝑓
A
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can be expressed as
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where # means pseudoinverse.
According to the character of oblique projection opera-

tion, we have
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𝑓
A
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𝑓
A
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[A
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𝑓
0] . (12)

Thus, we can obtain the covariancematrixR
𝑛
of near-field

sources

R
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(13)

where �̂�2 is the estimation of sensor noise power and it is
obtained from themean of the 2𝑁+1−𝐾 smallest eigenvalues
of R [21]:

�̂�
2

=
1

2𝑁 + 1 − 𝐾

2𝑁+1

∑
𝑖=𝐾+1

𝜆
𝑁𝑖
, (14)

where 𝜆
𝑁𝑖

is the last small eigenvalues of R.

4.1. DOA Estimation of the Near-Field Sources. Now we use
the new matrix R

𝑛
which only contains the information of

near-field signals to estimate the direction and the range
information of near-field sources. Eigenvalue decomposition
function (12) can be obtained as follows:

R
𝑛
= U
𝑐
Λ
𝑐
U𝐻
𝑐
= U
𝑁𝑛
Λ
𝑁𝑛

U𝐻
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+ U
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Λ
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where U
𝑁𝑛

∈ 𝐶(2𝑁+1)×(2𝑁+1−𝐾𝑛) represents the eigenvectors
corresponding to the 2𝑁 + 1 − 𝐾

𝑛
small values spanning

the noise subspace of R
𝑛
; U
𝑆𝑛

∈ 𝐶(2𝑁+1)×𝐾𝑛 represents the
eigenvectors corresponding to the 𝐾

𝑛
large values spanning

the signal subspace ofR
𝑛
.ThusU

𝑆𝑛
should be given as a linear

combination of all array response vectors; thenwe can rewrite
U
𝑆𝑛
as A
𝑛
G:

U
𝑆𝑛
= A
𝑛
G, (16)

where G is a full-rank matrix
The literature [15] divides the ULA into two subarrays as

shown in Figure 1. The first subarray is formed with the first
𝑁+𝑚+1 sensors in ascending order (from sensor −𝑁 to𝑚),
and the second subarray is formed with the last 𝑁 + 𝑚 + 1

sensors in descending order (from sensors𝑁 to sensors −𝑚).
In this paper,𝑚 is defined as 0; the signal subspace of the two
subarrays can be written as

A
𝑛
G = [

A
𝑛1
G

the last 𝑁 rows] = [
the first 𝑁 rows

JA
𝑛2
G ] . (17)
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U
𝑆𝑛
can be rewrite as

U
𝑆𝑛
= [

U
𝑆𝑛1

the last 𝑁 rows] = [
the first 𝑁 rows

U
𝑆𝑛2

] , (18)

where A
𝑛1
and A

𝑛2
represent the steering vector of subarrays

1 and 2, respectively. U
𝑆𝑛1

and U
𝑆𝑛2

represent the signal
subspace of subarrays 1 and 2, respectively.

The algorithm proposed in [15] utilizes the symmetric
antenna structure to construct the spectrum function as
follows:

PMUSIC = 1

× ( det ([(D (𝜃
1
) − 𝜓 (𝜃)) a

𝑛1
(𝜃
1
, 𝑟
1
) ⋅ ⋅ ⋅

(D (𝜃
𝐾
𝑛
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𝑛1
(𝜃
𝐾
𝑛

, 𝑟
𝐾
𝑛

)]G))
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,

(19)

where D(𝜃
𝑘
) = diag[exp(−𝑗(4𝜋 sin(𝜃

𝑘
)𝑁/𝜆)), . . . , 1]; the

form of 𝜓(𝜃) is similar to D(𝜃
𝑘
); the difference here is that

𝜃 of 𝜓(𝜃) is unknown:

𝜓 (𝜃) = diag [exp(−𝑗(4𝜋 sin (𝜃)𝑁
𝜆

)) , . . . , 1] . (20)

In order to reduce the computational complexity, the
proposed algorithm uses the polynomial instead of the
spectrum peak search. The constructed polynomial is shown
as

𝑓 (𝑧) = det (W𝐻JU
𝑆2
−W𝐻P (𝑧)U

𝑆1
)

= det (W𝐻 [(D (𝜃
1
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𝑛
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𝐾
𝑛

)]G) ,
(21)

where P(𝑧) = diag ([1, 𝑧, . . . , 𝑧𝐾𝑛]𝑇).
When 𝑧 = exp(−𝑗(4𝜋𝑑 sin(𝜃

𝑘
)/𝜆)), 𝑓(𝑧) will become

zero.
According to calculating roots of𝑓(𝑧)method, we get the

DOA of the near-field sources.
Noting order of the polynomial 𝑓(𝑧) is 2(𝑁 − 1), which

is together with (𝑁 − 1) pairs of roots, among them each pair
of roots has conjugate relationship, and 2𝐾

𝑛
roots are being

distributed on the whole circle:

𝑧 = exp(−𝑗(
4𝜋𝑑 sin (𝜃

𝑘
)

𝜆
)) 1 ≤ 𝑘 ≤ 𝐾

𝑛
. (22)

It satisfies (19) when knowing the covariance matrix of
this case accurately, while in practical application, only 𝐾

𝑛

roots approximately lay on the unit circle; unfortunately the
existing error in the estimated covariance matrix cannot be
avoided through the limited snapshot number:

𝜃
𝑘
= arcsin(−

𝜆 arg (𝑧)
4𝜋𝑑

) 1 ≤ 𝑘 ≤ 𝐾
𝑛
. (23)

The DOA estimation of near-field sources is obtained by
the above method.

𝜀1

𝜀2

𝜑1 𝜑2 𝜑𝛽

1/𝛾

𝜀𝛽

𝜑/m

Figure 2: Spatial range dividing, where the length of the 𝑖th range
sector in𝑚 = 1/𝑟 space is 𝜀

𝑖
(𝜀
𝑖
= 𝜅/𝛽 = 𝜀) and the length in 𝑟 space

is 𝜑 = [𝜑
1
, 𝜑
2
, . . . , 𝜑

𝛽
].

4.2. Range Estimation of Near-Field Sources. After getting the
DOA of near field sources, the traditional algorithms often
substitute the angle information into steer vectors to estimate
range information. This idea can avoid the parameter pair
problem. But it needs to search in the whole area, leading to
increase of the computation. The algorithm in this paper just
searches part of the area instead of the whole area, reducing
the complexity.

In order to reduce the computational complexity, the total
range field-of-view is divided into 𝛽 small sectors 𝜑

𝑖
, 𝑖 =

1, 2, . . . , 𝛽, which is shown in Figure 2:

𝜑 = [𝜑
1
, 𝜑
2
, . . . , 𝜑

𝛽
] . (24)

Here, the length of each section in the inverse space is
given by

𝜀
1
= 𝜀
2
= 𝜀
3
⋅ ⋅ ⋅ 𝜀
𝛽
=
𝜅

𝛽
= 𝜀, (25)

where 𝜅 = (1/0.62(𝑟3/𝜆)
0.5

− 1/2(𝑟2/𝜆)).
It can be seen from Figure 2 that ∀𝑟

𝑚
∈ 𝜑
𝑚
,𝑚 = 1, 2, . . . ,

𝛽, and there exists ∀𝑟
𝑘
∈ 𝜑
𝑘
,𝑚 = 1, 2, . . . , 𝛽, 𝑘 ̸= 𝑚 satisfying

1

𝑟
𝑚

=
1

𝑟
𝑘

+ (𝑘 − 𝑚) 𝜀. (26)

Let 𝑎
𝑛
𝑝

(𝜃
𝑚
, 𝑟
𝑚
), 𝑝 = 1, 2, . . . , 2𝑁 + 1 denote the 𝑝th

element of a
𝑛
(𝜃, 𝑟); then

𝑎
𝑛
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𝑚
, 𝑟
𝑚
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+ (𝑘 − 𝑚) 𝜀))



Mathematical Problems in Engineering 5

= exp(
−𝑗2𝜋𝑑𝑝 sin (𝜃
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(27)

where 𝜒
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is a constant given by
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Noting that 𝜀 and 𝑠 are fixed here, 𝜒
𝑘,𝑝
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and 𝑝. It is implied by (27) that

a
𝑛
(𝜃
𝑚
, 𝑟
𝑚
) = [𝜒

𝑘,0
𝑎
𝑛
1

(𝜃
𝑚
, 𝑟
𝑘
) , . . . , 𝜒

𝑘,2𝑁+1
𝑎
𝑛
2𝑁+1

(𝜃
𝑚
, 𝑟
𝑘
)]
𝑇

= [𝜒
𝑘,0
, . . . , 𝜒

𝑘,2𝑁+1
]

⊙ [𝑎
𝑛
1

(𝜃
𝑚
, 𝑟
𝑘
) , . . . , 𝑎

𝑛
2𝑁+1

(𝜃
𝑚
, 𝑟
𝑘
)]
𝑇

= 𝜒
𝑘
⊙ a
𝑛
(𝜃
𝑚
, 𝑟
𝑘
) ,

(29)

where ⊙ stands for Hadamard product and 𝜒
𝑘
is a (2𝑁+1)×1

vector which is defined as

𝜒
𝑘
= [𝜒
𝑘,0
, 𝜒
𝑘,1
, . . . , 𝜒

𝑘,2𝑁+1
]
𝑇

. (30)

Assuming that 𝑟
𝑚

∈ 𝜑
𝑚
, 𝑚 = 1, 2, . . . , 𝛽 is the range

information of the𝑚th source and according to the orthogo-
nality between the steering vector and the noise subspace, we
have

a
𝑛
(𝜃
𝑚
, 𝑟
𝑚
)
𝐻u
𝑖
= 0, 𝑖 = 1, 2, . . . , (2𝑁 + 1 − 𝐾

𝑛
) , (31)

where u
𝑖
is the 𝑖th column of noise subspace U

𝑁𝑛
.

Substituting (29) into (30), we have

a
𝑛
(𝜃
𝑚
, 𝑟
𝑚
)
𝐻u
𝑖
= (𝜒
𝑘
⊙ a
𝑛
(𝜃
𝑚
, 𝑟
𝑘
))
𝐻u
𝑖

= ((a
𝑛
(𝜃
𝑚
, 𝑟
𝑘
)
∗

)
𝑇

⊙ (𝜒
∗

𝑘
)
𝑇

) u
𝑖

= a
𝑛
(𝜃
𝑚
, 𝑟
𝑘
)
𝐻

((𝜒
∗

𝑘
) ⊙ u
𝑖
) = 0.

(32)

u
𝑖,𝑘
= 𝜒∗
𝑘
⊙ u
𝑖
is the 𝑖th column of noise subspace U

𝑘
:

U
𝑘
= [u
1,𝑘
, u
2,𝑘
, . . . , u

(2𝑁+1−𝐾
𝑛
),𝑘
]

= [𝜒
∗

𝑘
⊙ u
1
,𝜒
∗

𝑘
⊙ u
2
, . . . ,𝜒

∗

𝑘
⊙ u
(2𝑁+1−𝐾

𝑛
)
]

=
[
[

[

𝜒
∗

𝑘
,𝜒
∗

𝑘
, . . . ,𝜒

∗

𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(2𝑁+1−𝐾𝑛)

]
]

]

⊙ [u
1
, u
2
, . . . , u

(2𝑁+1−𝐾
𝑛
)
] .

(33)

In order to facilitate the derivation, let U
1
= U
𝑁𝑛

.

Virtual
rangerangeVirtual

rangerange
Virtual
rangerange rangerange

True

2(R2/𝜆)
𝜀 𝜀 𝜀 𝜀 𝜀

0.62(R3/𝜆)0.5
· · ·

Figure 3:The virtual range information by the proposed algorithm.

Therefore,U
𝑘
, 𝑘 = 1, 2, . . . , 𝛽 is called noise-like subspace

cluster (NLSC), and the intersection of NLSC is defined by

span (Unew) = ∩ span (U
𝑘
) . (34)

It can be seen from (30) that a
𝑛
(𝜃
𝑚
, 𝑟
𝑚
) ⊥ span(U

1
)

is equivalent to a
𝑛
(𝜃
𝑚
, 𝑟
𝑘
) ⊥ span(U

𝑘
), where 𝑟

𝑘
∈ 𝜑
𝑘
,

𝑘 = 1, 2, . . . , 𝛽, 𝑘 ̸= 𝑚. Since Unew is the intersection of
U
𝑘
, 𝑘 = 1, 2, . . . , 𝛽, and span(Unew) = ∩ span(U

𝑘
), we have

a
𝑛
(𝜃
𝑚
, 𝑟
𝑘
) ⊥ span (Unew) , 𝑘 = 1, 2, . . . , 𝛽. (35)

Based on suchmultiple orthogonal between a(𝜃
𝑚
, 𝑟
𝑘
) and

span(Unew), a new spectrum function is defined as follows:

max
𝑟

𝑃new (𝑟) =
1

a𝐻
𝑛
(𝜃
𝑚
, 𝑟) ÛnewÛ𝐻newa𝑛 (𝜃𝑚, 𝑟)

=
1


Û𝐻newa𝑛 (𝜃𝑚, 𝑟)



.

(36)

It can be seen clearly from (35) that, for each true ROA
(range of arrive) 𝑟, there exists one spectrum peak by the
proposed algorithm in each range sector simultaneously,
where𝛽−1 virtual ROA are given by 𝑟

𝑘
, 𝑘 = 1, 2, . . . , 𝛽, 𝑘 ̸= 𝑚;

this means that, for each true source, the spatial spectrum
of the proposed algorithm generates 𝛽 − 1 is equivalent
to virtual sources, which is shown in Figure 3. Traditional
algorithms search on the whole Fresnel area. While the
proposed algorithm only needs search on the part of Fresnel
area to get the range information 𝑟

1
and then, using (26),

to calculate the other range information 𝑟
2
, 𝑟
3
, . . . , 𝑟

𝛽
. Since

the steering vector a(𝜃
𝑚
, 𝑟) is orthogonal to the original

noise subspace only at the range of the true incident range
information 𝑟

𝑖
, we can select the true range information 𝑟

𝑖

among the 𝑟
1
, 𝑟
2
, 𝑟
3
, . . . , 𝑟

𝛽
by minimizing 1/‖Û𝐻

𝑁𝑛
a
𝑛
(𝜃
𝑚
, 𝑟)‖.

How to get the intersection of NLSCUnew is the core steps
of the proposed algorithm. The specific process is given as
follows.

Before constructing the intersection of NLSC Unew, we
introduce the intersection of SLSC (signal-like subspace
cluster) Lnew as an intermediate variable

L
𝑘
= [l
1,𝑘
, l
2,𝑘
, . . . , l

𝐾
𝑛
,𝑘
]

= [𝜒
∗

𝑘
⊙ l
1
,𝜒
∗

𝑘
⊙ l
2
, . . . ,𝜒

∗

𝑘
⊙ l
𝐾
𝑛

]

= [

[

𝜒
∗

𝑘
,𝜒
∗

𝑘
, . . . ,𝜒

∗

𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐾
𝑛

]

]

⊙ [l
1
, l
2
, . . . , l

𝐾
𝑛

] 𝑘 ∈ [1, . . . , 𝛽] .

(37)

Proof. See Appendix A.
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Unlike the algorithm proposed in [22] which uses the
noise subspace to construct the new matrix Unew, the pro-
posed algorithm here in this paper adopts the signal subspace
to construct the new matrix Unew. The advantage of it is
that it can reduce the computational complexity. Since the
dimensions of signal subspace are much smaller than that of
noise subspace [23].

The steps of getting NLSC Unew are summarized as
follows.

(1) Construct the orthogonalmatrix of signal subspace as
follows:

T
𝑘
= L
𝑘
(L𝐻
𝑘
L
𝑘
)
−1

L𝐻
𝑘
= L
𝑘
L𝐻
𝑘
. (38)

(2) Use T
𝑘
, 𝑘 = 1, 2, . . . , 𝛽 to define the following matrix

Q:

Q =

𝛽

∑
𝑘=1

T
𝑘
, (39)

whose null space is Null(Q) = {𝛿/𝛿 ∈ 𝐶𝑀,Q𝛿 = 0}.
Then we have

span (Unew) = Null (Q) . (40)

Proof. See Appendix B.

Therefore, we can use SVD to get the orthogonal basis for
Null(Q), also giving an orthogonal basis for the intersection
of NLSC equivalently. The SVD ofQ can be shown as

Q = ΠΩΞ
𝐻

, (41)

where Π = [𝜋
1
,𝜋
2
, . . . ,𝜋

2𝑁+1
] and Ξ = [𝜉

1
, 𝜉
2
, . . . , 𝜉

2𝑁+1
]

are the left and right singular matrix of Q, respectively.
Ω = diag(𝜏

1
, 𝜏
2
, . . . , 𝜏

2𝑁+1
) is a diagonal matrix and 𝜏

𝑖
is

the 𝑖th singular value of Q. The proposed algorithm has 𝛽𝐾
𝑛

equivalent sources; there must exist 𝛽𝐾
𝑛
larger and 2𝑁 + 1 −

𝛽𝐾
𝑛
smaller diagonal elements in Ω. Hence 𝜏

𝑖
can be sorted

as

𝜏
1
≥ 𝜏
2
≥ ⋅ ⋅ ⋅ ≥ 𝜏

𝛽𝐾
𝑛

> 𝜏
𝛽𝐾
𝑛
+1
= ⋅ ⋅ ⋅ 𝜏

2𝑁+1
= 0. (42)

Therefore, (41) can be rewritten as

Q = Π
𝑠
Ω
𝑠
Ξ
𝐻

𝑠
+Π
𝑛
Ω
𝑛
Ξ
𝐻

𝑛
, (43)

where

Π
𝑠
= [𝜋
1
,𝜋
2
, . . . ,𝜋

𝛽𝐾
𝑛

] ,

Π
𝑛
= [𝜋
𝛽𝐾
𝑛
+1
,𝜋
𝛽𝐾
𝑛
+2
, . . . ,𝜋

2𝑁+1
] ,

Ξ
𝑠
= [𝜉
1
, 𝜉
2
, . . . , 𝜉

𝛽𝐾
𝑛

] ,

Ξ
𝑛
= [𝜉
𝛽𝐾
𝑛
+1
, 𝜉
𝛽𝐾
𝑛
+2
, . . . , 𝜉

2𝑁+1
] .

(44)

𝜉
𝑖
, 𝑖 = 𝛽𝐾

𝑛
+ 1, . . . , 2𝑁 + 1 are associated with the zero

singular values of Q. According to the relationship between
the singular values and singular vector, we have

Q𝜉
𝑖
= 0𝜉
𝑖

𝑖 = 𝛽𝐾
𝑛
+ 1, . . . , 2𝑁 + 1. (45)

Therefore, 𝜉
𝑖
, 𝑖 = 𝛽𝐾

𝑛
+ 1, . . . , 2𝑁 + 1 are linearly

independent satisfying 𝜉
𝑖
∈ C2𝑁+1, Q𝜉

𝑖
= 0. Hence, these

vectors offer an orthogonal basis for Null(Q). According to
(41), we have

Unew = (𝜉
𝛽𝐾
𝑛
+1
, 𝜉
𝛽𝐾
𝑛
+2
, . . . , 𝜉

2𝑁+1
) = Ξ
𝑛
. (46)

The steps of the proposed algorithm can be described as
follows.

Step 1. Use (8) to construct the spatial spectrum function
𝑃MUSIC, searching spectral spectrum peak, to get the DOA of
far-field sources.

Step 2. Based on the information of far-field sources which
is obtained, use (11) to construct the oblique project operator
EA
𝑓
A
𝑛

.

Step 3. Utilize (13) to obtain the R
𝑛
only containing the

information of near-field sources.

Step 4. Implement the EVD of R
𝑛
and then construct the

polynomial (21) to obtain the roots of it. Based on (23), the
DOA estimation of near-field sources is acquired.

Step 5. Choose the number of subregions 𝛽 and calculate the
orthogonal matrix of signal subspace T

𝑘
by (38). Based on

the matrix T
𝑘
, the matrix Q is obtained by (39). Finally, the

matrix Unew is obtained by (41).

Step 6. Construct Pnew(𝑟) by (36) and search only over sector
𝜑
1
to obtain the spectral peak 𝑟

1
. Use (26) to compute the

other candidate range information by

𝑟
𝑘
=

𝑟
1

1 + 𝑟
1
(1 − 𝑚)

, 𝑘 = 2, 3, . . . , 𝛽. (47)

Step 7. Select the true range information among the 𝑟
𝑖
, 𝑖 =

1, 2, . . . , 𝛽 by maximizing 1/‖Û𝐻
𝑁𝑛

a(𝜃, 𝑟)‖.

5. Performance Analysis

In this section, we analyze the computational complexity and
the aperture freedomof the proposed algorithm and compare
it with that of TSMUSIC algorithm.

5.1. Complexity Analysis. We only consider the majority
parts of the computational complexity such as multiplication
needed in constructing the cumulant matrix, EDV, and
spectral search.

(1) The TSMUSIC algorithm requires constructing two
different dimensional four order cumulant matrices,
one is a (2𝑁+1)×(2𝑁+1)matrix and the other is (4𝑁+

1) × (4𝑁 + 1) matrix, while the proposed algorithm
only constructs one (2𝑁 + 1) × (2𝑁 + 1) covariance
matrix and one oblique projection operation with
(2𝑁 + 1) × (2𝑁 + 1) dimension.
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(2) When estimating the information of the range, the
TSMUSIC algorithm estimates the distance of the far-
field sources and the near-field sources simultane-
ously. If there are 𝐿 sources, the traditional algorithms
need 𝐿 times estimation for range. Since the far-
field sources and near-field sources are estimated at
two different stages in the proposed algorithm, the
proposed algorithm only needs estimating the range
of near-field sources. The time of 1-D search will be
less than 𝐿. The more number of far-field sources
is, the less the time the proposed algorithm costs
comparing to the other algorithms.

(3) Meanwhile, the proposed algorithm only needs to
search the part of Fresnel area instead of the whole
Fresnel areawith the idea of compress, further leading
to reducing the computational complexity ideally.

5.2. Aperture Freedom Analysis. The total number of the mix
sources which can be estimated by the proposed algorithm is
2𝑁 which is less than the number of arrays. The number of
the near-field sourceswhich can be estimated by the proposed
algorithm is associated with the the number of subregions 𝛽:
the larger the value of 𝛽 is, the less the number of sources is.
The relationship between the value𝛽 and the number of near-
field sources 𝑘

𝑛
is given as follows:

𝑘
𝑛
≤ ⌊

2𝑁

𝛽
⌋

𝑘
𝑓
≤ 2𝑁 − 𝑘

𝑛
,

(48)

where ⌊⋅⌋ is under the integral function and 𝑘
𝑓
is the number

of the far-field sources which can be stimated by the proposed
algorithm.

6. Discussion

The proposed algorithm can extend to a 3D array geometry.
The detailed process is given as follows.

Consider three uniform linear arrays consisting of 2𝑁+1

identical sensors which are located in the coordinate system
𝑥-axis, 𝑦-axis, and 𝑧-axis. The distance between the arrays is
𝑑(𝑑 = 𝜆/4); it is depicted in Figure 4 and the regulation of
angle expressed is also shown in Figure 4.

Based on the signal model in the literature [24], the
signals which are received by three linear uniformly spaced
arrays are given as follows:

𝑥
𝑖
(𝑡) =

𝐾
𝑛

∑
𝑘=1

𝑎
𝑛𝑥
𝑖

(𝛼
𝑘
, 𝑟
𝑘
) 𝑠
𝑛
𝑘

(𝑡) +

𝐾
𝑓

∑
𝑘=1

𝑎
𝑓𝑥
𝑖

(𝛼
𝑘
) 𝑠
𝑓
𝑘

(𝑡) + 𝑛
𝑖
(𝑡)

− 𝑁 ≤ 𝑖 ≤ 𝑁

𝑦
𝑖
(𝑡) =

𝐾
𝑛

∑
𝑘=1

𝑎
𝑛𝑦
𝑖

(𝛽
𝑘
, 𝑟
𝑘
) 𝑠
𝑛
𝑘

(𝑡) +

𝐾
𝑓

∑
𝑘=1

𝑎
𝑓𝑦
𝑖

(𝛽
𝑘
) 𝑠
𝑓
𝑘

(𝑡) + 𝑛
𝑖
(𝑡)

− 𝑁 ≤ 𝑖 ≤ 𝑁

0

Source

X-axis

Z-axis

Y-axis

𝛽𝛾

𝛼

N

N

N−N

−N

−N

Figure 4: Symmetric uniform linear array configuration of 3D
geometry.

𝑧
𝑖
(𝑡) =

𝐾
𝑛

∑
𝑘=1

𝑎
𝑛𝑧
𝑖

(𝛾
𝑘
, 𝑟
𝑘
) 𝑠
𝑛
𝑘

(𝑡) +

𝐾
𝑓

∑
𝑘=1

𝑎
𝑓𝑧
𝑖

(𝛾
𝑘
) 𝑠
𝑓
𝑘

(𝑡) + 𝑛
𝑖
(𝑡)

− 𝑁 ≤ 𝑖 ≤ 𝑁,

(49)

where

a
𝑛𝑥
(𝛼
𝑘
, 𝑟
𝑘
) = [exp (𝑗 (−𝑁𝜔

𝑥𝑘
+ 𝑁
2

𝜙
𝑥𝑘
)) ⋅ ⋅ ⋅

exp (𝑗 (𝑁𝜔
𝑥𝑘
+ 𝑁
2

𝜙
𝑥𝑘
))]
𝑇

a
𝑓𝑥
(𝛼
𝑘
) = [exp (−𝑗𝑁𝜔

𝑥𝑘
) ⋅ ⋅ ⋅ exp (𝑗𝑁𝜔

𝑥𝑘
)]
𝑇

a
𝑛𝑦
(𝛽
𝑘
, 𝑟
𝑘
) = [exp (𝑗 (−𝑁𝜔

𝑦𝑘
+ 𝑁
2

𝜙
𝑦𝑘
)) ⋅ ⋅ ⋅

exp (𝑗 (𝑁𝜔
𝑦𝑘
+ 𝑁
2

𝜙
𝑦𝑘
))]
𝑇

a
𝑓𝑦
(𝛽
𝑘
) = [exp (−𝑗𝑁𝜔

𝑦𝑘
) ⋅ ⋅ ⋅ exp (𝑗𝑁𝜔

𝑦𝑘
)]
𝑇

a
𝑛𝑧
(𝛾
𝑘
, 𝑟
𝑘
) = [exp (𝑗 (−𝑁𝜔

𝑧𝑘
+ 𝑁
2

𝜙
𝑧𝑘
)) ⋅ ⋅ ⋅

exp (𝑗 (𝑁𝜔
𝑧𝑘
+ 𝑁
2

𝜙
𝑧𝑘
))]
𝑇

a
𝑓𝑧
(𝛾
𝑘
) = [exp (−𝑗𝑁𝜔

𝑧𝑘
) ⋅ ⋅ ⋅ exp (𝑗𝑁𝜔

𝑧𝑘
)]
𝑇

(50)

and 𝜔
𝑥𝑘
, 𝜙
𝑥𝑘
, 𝜔
𝑦𝑘
, 𝜙
𝑦𝑘
, 𝜔
𝑧𝑘
, 𝜙
𝑧𝑘
are

𝜔
𝑥𝑘
= −

2𝜋𝑑 cos (𝛼
𝑘
)

𝜆
, 𝜙

𝑥𝑘
=
𝜋𝑑
2 sin (𝛼

𝑘
)
2

𝜆𝑟
𝑘

𝜔
𝑦𝑘
= −

2𝜋𝑑 cos (𝛽
𝑘
)

𝜆
, 𝜙

𝑦𝑘
=
𝜋𝑑2 sin (𝛽

𝑘
)
2

𝜆𝑟
𝑘

𝜔
𝑧𝑘
= −

2𝜋𝑑 cos (𝛾
𝑘
)

𝜆
, 𝜙

𝑧𝑘
=
𝜋𝑑2 sin (𝛾

𝑘
)
2

𝜆𝑟
𝑘

.

(51)

We use the proposed algorithm to process the data
received by three orthogonal uniform linear arrays, respec-
tively; the angle information of the far-field sources and the
angle information and the range information of the near-
field sources were measured. It can be seen from a signal
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model that there is no direct link between the information
of the three angles (𝛼, 𝛽, 𝛾), so we need to match angle to
get the direction of the signal by some rules. The relationship
between the three angles is shown as follows:

(cos𝛼)2 + (cos𝛽)2 + (cos 𝛾)2 = 1. (52)

Match process is finished by function (52).
Therefore the proposed algorithm in this paper can be

extended to 3D space through the array model which is
shown in Figure 4 and match process.

7. Simulations

In this section, several simulation results are presented to
verify the performance of the proposed algorithm, which are
compared with the TSMUSIC algorithm. In all experiences,
we consider using a symmetric linear array consisting of 2𝑁+

1 = 17 sensors with 𝑑 = 𝜆/4 for the proposed algorithm and
the comparedmethods. 500Monte-Carlo runs are performed
to obtain the experimental results, and the root mean square
error (RMSE) is expressed as

RMSE = √
𝐿

∑
𝑘=1

𝑀

∑
𝑛=1

(�̂�
𝑘
− 𝛼
𝑘
)
2

𝑀𝐿
, (53)

where �̂�
𝑘
and𝛼
𝑘
represent the estimation value and true value

of the DOA 𝜃
𝑘
or the range 𝑟

𝑘
, respectively.

In the first experiences, we consider four signals which
contained two far-field sources and near-field sources. Two
near-field sources are located at {𝜃

1
= 20∘, 𝑟

1
= 4𝜆} and {𝜃

1
=

27∘, 𝑟
1
= 5𝜆}. Two far-field sources are coming from {𝜃

3
=

40∘}, {𝜃
4
= 47∘}, and the number of subregions is 𝛽 = 3.

(1) RMSE and resolution probability versus SNR: the
number of snapshots is fixed at 200, when SNR varies
from 0 to 40 dB; the resolution probability and the
RMSE of DOA for far-field sources and near-field
sources of the two algorithms are shown in Figures
5 and 6, respectively. It obviously can be seen that
the performance of the proposed algorithm is much
better than the performance of TSMUSIC algorithm
in all SNR. This is because the proposed algorithm
estimates the two kinds of sources separately, which
reduces the interaction between different kinds of
signals. From Figure 7, it can be seen that the RMSE
of the range information of the proposed algorithm
outperforms the TSMUSIC algorithm in resolution
probability and estimation accuracy in all SNR.This is
because the accuracy of range information is affected
by the accuracy of the DOA of near-field sources.The
accuracy of DOA of the proposed algorithm is better
than that of the TSMUSIC algorithm. So the accuracy
of ROA of the proposed algorithm is better than that
of the TSMUSIC algorithm.

(2) RMSE and resolution probability versus the snapshot
number: the SNR is fixed at 20 dB, when the snapshot
number is varied from 50 to 500. From Figures
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Figure 5: Resolution probability versus SNR.
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Figure 6: MSE of DOA estimation versus SNR.

8, 9, and 10, it can be seen that the TSMUSIC
algorithm is sensitive to the snapshot number. When
the snapshot number is small, the performance of
TSMUSIC is poor. However, the proposed algorithm
is not sensitive to the snapshot number.The proposed
algorithm outperforms the TSMUSIC algorithm in
resolution probability and estimation accuracy for the
same snapshot number.

In the second experiences, we consider four signals which
contained two far-field sources and near-field sources, while
the position of the sources is varied. The initial position of
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Table 1: The resolution probability versus angular gap.

The angle interval/∘ The proposed algorithm
for near-field source

The proposed algorithm
for far-field source

The TSMUSIC for far-field
source

The TSMUSIC for
near-field source

11 100% 100% 91% 95%
9 100% 100% 89% 93%
7 100% 100% 73% 82%
5 94% 100% 54% 63%
3 90% 100% 3% 9%
1 87% 100% 0% 0%

TSMUSIC
The proposed algorithm
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Figure 7: MSE of range estimation versus SNR.
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Figure 8: Resolution probability versus snapshots.
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the near-field sources is located at {𝜃
1
= 20∘, 𝑟

1
= 4𝜆} and

{𝜃
2
= 31∘, 𝑟

2
= 5𝜆}, and the initial position of far-field sources

is located at {𝜃
3
= 40∘}, {𝜃

4
= 51∘}.

(1) The resolution probability versus angular gap: the
SNR is fixed at 10 dB, the number of snapshot is fixed
at 300, the value of 𝜃

1
and 𝜃

3
is fixed. The value of

𝜃
2
is changed from 31∘ to 21∘, and the value of 𝜃

4

is changed from 51∘ to 41∘. From the Table 1, it is
clearly that the ability of estimating the closed-space
sources of the proposed algorithm is much better
than that of the TSMUSIC algorithm. The proposed
algorithm uses the independent analysis methods for
near-field sources and far-field sources, because they
are estimated separately and each estimate is using
all the data. Therefore, it is equivalent to reducing
the number of sources, and the sensor noise power
is estimated and eliminated from the covariance. So it
is possible to estimate closely-space sources with high
resolution probability and estimation accuracy.

(2) The resolution probability versus angular gap between
the near-field source and far-field source. The SNR
is fixed at 10 dB and the number of snapshots is
fixed at 300. The position of the near-field sources
is located at {𝜃

1
= 20∘, 𝛾

1
= 4𝜆} and {𝜃

2
=

25∘, 𝛾
1
= 5𝜆} and the position of far-field sources

is located at {𝜃
3

= 26
∘

}, {𝜃
4

= 31
∘

}. In order to
distinguish the estimation performance of the two
algorithms. The proposed algorithm uses the peak
search instead of polynomial rooting. From Figure 12,
it is clearly seen that the TSMUSIC algorithm cannot
distinguish the angle 𝜃

2
of near-field source and the

angle 𝜃
3
of the far-field sources, because of close

space between the two sources. From the Figure 11,
it is clearly seen that the proposed algorithm can
easily distinguish the four sources, since the proposed
algorithm estimates the near-field sources and far-
field sources at different stages, which can effectively
prevent mutual interference between the different
kinds of sources (Figure 11).

(3) Calculate the simulation time of the proposed algo-
rithm and the TSMUSIC algorithm. We use a MAT-
LAB7.11 to compare the simulation timewith different
algorithms in Table 2. We assume that the parameters
of mixed sources are the same with the second
experience. The SNR is fixed at 15 dB. The number
of near-field sources is fixed, the number of far-field
sources is changed from 2 to 6, and the number
of subregions 𝛽 = 2, 3, 4. From Table 2, it is clear
that the running time of the TSMUSIC algorithm
increases with the increase of the number of far-field
sources. However, the running time of the proposed
algorithm is almost not changed. This is because
the proposed algorithm does not need to estimate
the range information of far-field sources, while the
TSMUSIC algorithm needs. In the meanwhile, it can
be seen that the larger 𝛽 is, the less time the proposed
algorithm uses. The simulation result is identical to
the theoretical analysis.

Table 2: The cost time versus the number of far-field sources.

The number of far-field sources 2 3 4 5

The proposed algorithm
𝛽 = 2 1.09 1.05 1.04 1.05
𝛽 = 3 0.66 0.67 0.6 0.64
𝛽 = 4 0.34 0.3 0.32 0.32

The TSMUSIC algorithm 2.59 3.36 4.12 4.82
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Figure 11: The spatial spectrum of the proposed algorithm for
closely spaced sources.

8. Conclusion

In this paper, oblique projector technology is applied to esti-
mate themixed sources locations; thus the two different kinds
of sources are estimated at two different stages. Utilizing the
symmetric antenna structure, the polynomial is constructed
and the roots of this polynomial are obtained, which are the
DOAs of the near-field sources. Searching areas is focusing
on part of Fresnel area instead of the whole Fresnel area
with the idea of compress. Simulation result shows that the
proposed algorithm has lower computation complexity, and
it can solve the closely spaced signals and improve accuracy of
estimating DOA and range. In the meanwhile, the proposed
algorithm requires neither multidimensional searching nor
high-order statistics computations calculation. In the future,
we will focus on themixed sources DOA estimation based on
conformal array [2, 25, 26].

Appendices

A. Proof of the Equation (37)
Based on the theory that the space spanned by steering vector
is the same with the space spanned by signal subspace, we
have

span (a
𝑛
(𝜃
1
, 𝑟
1
) , . . . , a

𝑛
(𝜃
𝐾
𝑛

, 𝑟
𝐾
𝑛

)) = span (l
1
, . . . , l

𝐾
𝑛

) .

(A.1)
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Figure 12: The spatial spectrum of the TSMUSIC algorithm for
closely spaced sources.

Assuming that 𝑟
𝑚
∈ 𝜓
𝑚
𝑚 = 1, 2 ⋅ ⋅ ⋅ 𝛽 is the range infor-

mation of the𝑚th source, according to (A.1), we have

a
𝑛
(𝜃
𝑚
, 𝑟
𝑚
) = (l

1
, . . . , l

𝐾
𝑛

)G, (A.2)

where l
𝑖
is the 𝑖th column of signal subspace L.

Substituting (A.2) into (28), we have

𝜒
𝑘
⊙ a
𝑛
(𝜃
𝑚
, 𝑟
𝑚
)

= 𝜒
𝑘
⊙ (l
1
, . . . , l

𝐾
𝑛

)G → a
𝑛
(𝜃
𝑚
, 𝑟
𝑘
)

= (l
1𝑘
, . . . , l

𝐾
𝑛
𝑘
)G,

(A.3)

where l
𝑖,𝑘
= 𝜒∗
𝑘
⊙ l
𝑖
is the 𝑖th column of S

𝑘
.

The expression of signal-like subspace cluster is expressed
as follows:

L
𝑘
= [l
1,𝑘
, l
2,𝑘
, . . . , l

𝐾
𝑛
,𝑘
]

= [𝜒
∗

𝑘
⊙ l
1
,𝜒
∗

𝑘
⊙ l
2
, . . . ,𝜒

∗

𝑘
⊙ l
𝐾
𝑛

]

= [

[

𝜒
∗

𝑘
,𝜒
∗

𝑘
, . . . ,𝜒

∗

𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐾
𝑛

]

]

⊙ [l
1
, l
2
, . . . , l

𝐾
𝑛

] , 𝑘 ∈ [1, . . . , 𝛽] .

(A.4)

B. Proof of the Equation (40)

It follows from (37) that (𝑖, 𝑗) th element of P
𝑘
P𝐻
𝑘
is given by

(L
𝑘
L𝐻
𝑘
)
𝑖,𝑗

= (𝜒
∗

𝑘,𝑖
l
𝑖
)
𝐻

(𝜒
𝑘,𝑗
l
𝑗
) = (𝜒

∗

𝑘,𝑖
𝜒
𝑘,𝑗
) l𝐻
𝑖
l
𝑗

= (𝜒
∗

𝑘,𝑖
𝜒
𝑘,𝑗
) (L
1
L𝐻
1
)
𝑖,𝑗

,

(B.1)

where l
𝑖
and l
𝑗
are the 𝑖th and the 𝑗th row of L

1
, respectively:

L
𝑘
L𝐻
𝑘
= (𝜒
∗

𝑘
𝜒
𝑇

𝑘
) ⊙ (L

1
L𝐻
1
) . (B.2)

Similarly we can prove that

U
𝑘
U𝐻
𝑘
= (𝜒
∗

𝑘
𝜒
𝑇

𝑘
) ⊙ (U

1
U𝐻
1
) . (B.3)

Thus it follows from (B.2) and (B.3) that

L
𝑘
L𝐻
𝑘
+ U
𝑘
U𝐻
𝑘
= (𝜒
∗

𝑘
𝜒
𝑇

𝑘
) ⊙ (U

1
U𝐻
1
+ L
1
L𝐻
1
)

= (𝜒
∗

𝑘
𝜒
𝑇

𝑘
) ⊙ I = I.

(B.4)

P
𝑘
= I − U

𝑘
U𝐻
𝑘
. (B.5)

Substituting (B.5) into (38), we have

Q =

𝛽

∑
𝑘=1

T
𝑘
=

𝛽

∑
𝑘=1

I − U
𝑘
U𝐻
𝑘
= 𝛽I −

𝛽

∑
𝑘=1

U
𝑘
U𝐻
𝑘
. (B.6)

Suppose 𝛿 ∈ span(Unew); then we have 𝛿 ∈ span(U
𝑘
),

𝑘 = 1, . . . , 𝛽. Since U
𝑘
U𝐻
𝑘
is the orthogonal projection onto

span(U
𝑘
), we have 𝛿 = U

𝑘
U𝐻
𝑘
𝛿, which implies that ‖(I −

U
𝑘
U𝐻
𝑘
)𝛿‖ = 0. Therefore, we obtain

‖Q𝛿‖ =


(𝛽I −
𝛽

∑
𝑘=1

U
𝑘
U𝐻
𝑘
)𝛿



≤

𝛽

∑
𝑘=1


(I − U

𝑘
U𝐻
𝑘
) 𝛿


= 0.

(B.7)

Thus, we have Q𝛿 = 0, and, therefore, 𝛿 ∈ Null(Q). Since
𝛿 is an arbitrary vector of span(Unew), we have

span (Unew) ⊆ Null (Q) . (B.8)

On the other hand, assuming that 𝛿 ∈ Null(Q), we obtain

Q𝛿 = (𝛽I −
𝛽

∑
𝑘=1

U
𝑘
U𝐻
𝑘
)𝛿 = 𝛽𝛿 −

𝛽

∑
𝑘=1

U
𝑘
U𝐻
𝑘
𝛿 = 0. (B.9)

Hence, we have

𝛽 ‖𝛿‖ =



𝛽

∑
𝑘=1

U
𝑘
U𝐻
𝑘
𝛿



≤

𝛽

∑
𝑘=1


U
𝑘
U𝐻
𝑘
𝛿

. (B.10)

Noting thatU
𝑘
U𝐻
𝑘
𝛿 is the projection 𝛿 onto span(U

𝑘
), we

must have ‖U
𝑘
U𝐻
𝑘
𝛿‖ ≤ ‖𝛿‖. Therefore, we further obtain

𝛽 ‖𝛿‖ ≤

𝛽

∑
𝑘=1


U
𝑘
U𝐻
𝑘
𝛿

≤

𝛽

∑
𝑘=1

‖𝛿‖ = 𝛽 ‖𝛿‖ . (B.11)

Therefore, we have 𝛿 = U
𝑘
U𝐻
𝑘
𝛿. This implies that 𝛿 =

U
𝑘
U𝐻
𝑘
𝛿 ∈ span(Unew). As 𝛿 is an arbitrary vector of Null(Q),

we have

Null (Q) ⊆ span (Unew) . (B.12)

It is implied by (B.8) and (B.12) that span(Unew) =

Null(Q), and the proof is completed.
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