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The frequency and severity of climate abnormal change displays an irregular upward cycle as global warming intensifies.Therefore,
this paper employs a doubly stochastic Poisson process with Black Derman Toy (BDT) intensity to describe the catastrophic
characteristics. By using the Property Claim Services (PCS) loss index data from 2001 to 2010 provided by the US Insurance
Services Office (ISO), the empirical result reveals that the BDT arrival rate process is superior to the nonhomogeneous Poisson
and lognormal intensity process due to its smaller RMSE, MAE, MRPE, and U and larger E and d. Secondly, to depict extreme
features of catastrophic risks, this paper adopts the Peak OverThreshold (POT) in extreme value theory (EVT) to characterize the
tail characteristics of catastrophic loss distribution. And then the loss distribution is analyzed and assessed using a quantile-quantile
(QQ) plot to visually check whether the PCS index observations meet the generalized Pareto distribution (GPD) assumption.
Furthermore, this paper derives a pricing formula for zero-coupon catastrophe bonds with a stochastic interest rate environment
and aggregate losses generated by a compound doubly stochastic Poisson process under the forward measure. Finally, simulation
results verify pricing model predictions and show how catastrophic risks and interest rate risk affect the prices of zero-coupon
catastrophe bonds.

1. Introduction

The Swiss Re Sigma world insurance database shows that
the significant increases of “what” over the past several
years are not due to an upward trend in the frequency and
severity of natural catastrophic risk events but rather to
increasing concentrations of population and property values
in catastrophe prone areas since the late 1980s, as revealed in
Figures 1, 2, and 3. The Property Claim Services (PCS) data
present an irregular upward cycle in Figures 4 and 5. The
Intergovernmental Panel on Climate Change (IPCC) Fifth
Assessment Report (2013) also forecasts that the frequency
of global extreme disasters will continue to increase in the
21st century, and this seriously influences the sustainable
development of the economy and the stability of society [1].
And faced with severe global climate changes, insurers might
not have sufficient reinsurance purchases, or reinsurance
providers might not have made sufficient capital to satisfy
their existing obligations. In any catastrophic risk event (such

as Hurricane Andrew in 1992 and Hurricanes Sandy in 2012),
after a catastrophic risk loss, the capital of reinsurer would be
seriously weakened; that is, new company formation through
initial public offeringswas insufficient to enable the insurance
market to recover to previous levels of reinsurance capacity
[2, 3].

Alternative risk transfer (also called ART) has become
increasingly more important over the past two decades,
especially due to an increasing risk of extreme losses caused
by irregular climate change and ascribed to a limited capacity
of traditional reinsurance markets [2]. In response to a
capacity shortage in reinsurance markets, ART intends to
provide additional (re)insurance coverage by transferring
(re)insurance risks to the powerful capital market, which
offers considerably higher capacities and can help meet the
demand. The most prominent type of ART is catastrophe
risk (CAT) bonds, which are fully collateralized financial
instrument that pays off on the occurrence of a preassigned
catastrophic risk event [4]. The first ever catastrophe bond
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Figure 1: Number of global natural catastrophes from 1970 to 2016.
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Figure 2: Adjusted total losses fromnatural catastrophes worldwide
during 1970–2016 (USD billion, 2016 prices).

was a USD 85 million issue by Hanover Re in 1994 [5].
The market for CAT bonds has developed rapidly since
their introduction about 20 years ago. Heading into 2016,
the catastrophe bonds market continued to provide an
increasingly attractive and valuable supplement to spon-
sor risk transfer programs; the Artemis Deal Directory
(http://www.artemis.bm/deal directory/) shows that USD
6.293 billion in risk capital was issued through 37 transactions
in 2016, and the volume of CAT bonds principal outstanding
rose to USD 25.752 billion due on March 2017.

Accurate pricing is the key point in theCATbonds issuing
and trading. Recently, some studies have mainly focused
on catastrophe bonds pricing models involved in a com-
pound doubly stochastic Poisson loss process to depict the
dynamic aggregate losses accurately [6, 7]. Nevertheless, the
assumption that resulting losses occur in terms of the Poisson
loss process has a constant arrival rate. As we all know,
for unanticipated catastrophic risk events, the frequency
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Figure 3: Adjusted global insured claims from natural catastrophes
during 1970–2016 (USD billion, 2016 prices).
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Figure 4: Number of natural CATs in the United States from 2001
to 2010.
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Figure 5: The PCS catastrophe loss data in the United States from
2001 to 2010 (USD billion, 2010 prices).
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and severity of climate abnormal change follow an irregular
upward cycle as the global warms.Therefore, it seems insuffi-
cient to assume that catastrophic risk arrival process follows
a Poisson process with a deterministic intensity function.
This paper utilizes a doubly stochastic Poisson process with
stochastic intensity to model the catastrophic risk arrival
process. Furthermore, this paper employs the catastrophe
loss index provided by Property Claim Services (PCS) from
2001 to 2010 to test the quality of the fitting between the
stochastic intensity and the deterministic intensity. Empirical
result shows that the doubly stochastic Poisson process is
appropriate to model the arrival process for catastrophic
risk events. This study’s primary contribution is to provide
a semianalytical solution for evaluating zero-coupon CAT
bonds with a doubly stochastic compound Poisson process
pricing framework under the forward measure.

The paper is organized as follows. Section 2 describes
the model assumptions and illustrates CAT claim models. In
Section 3 we show the forward-neutral measure and derive
the pricing formula for zero-coupon CAT bonds. Section 4
is devoted to empirical experiments. Section 5 presents a
numerical analysis. Finally, conclusions are presented in
Section 6.

2. Valuation Methodology and
the Modeling Assumptions

2.1. Setup and Notation. For ease of exposition, we first
introduce the basic setup, which will be generalized in the
following sections. Let {𝑉CAT(𝑡) : 𝑡 ∈ [0, 𝑇]} denote the
CAT bond price process, which is modeled by many factors:
type of region, kind of loss event, sort of insured property,
interest rate uncertainty, and so on. Let {𝐿 𝑡 : 𝑡 ∈ [0, 𝑇]}
denote the aggregate loss process of the insured up to time 𝑡.{N𝑡 : 𝑡 ∈ [0, 𝑇]} is a doubly stochastic Poisson point process
with an intensity parameter 𝜆𝑡. {𝑋𝑗 : 𝑗 ⩾ 1} is a sequence
of identically and independently distributed (i.i.d.) random
variables and accounts for the sizes of CAT loss.

In addition, let {𝑀(𝑚𝑡) : 𝑡 ∈ [0, 𝑇]} stand for a doubly
stochastic Poisson process with stochastic intensity 𝑚𝑡 and
represent the CAT number, and let {𝑟(𝑡) : 𝑡 ∈ [0, 𝑇]} denote
the risk-free short rate process (or the force of interest).{𝑊𝑚(𝑡) : 𝑡 ∈ [0, 𝑇]} and {𝑊𝑟(𝑡) : 𝑡 ∈ [0, 𝑇]} denote the
Wiener process and account for two sources of randomness of
the intensity rate of CAT occurrence and the uncertainty of
interest rates, respectively. The interest rate process and the
loss process are assumed to be stochastically independent.
Let (Ω,F,p) define a probability space, where Ω is the set
of states of the world, the filtrationF is 𝜎-algebra of subsets
of Ω and is defined by {F𝑡 : 𝑡 ∈ [0, 𝑇]}, where F𝑡 is𝜎(𝑊𝑟(𝑠),𝑊𝑚(𝑠), 𝑋𝑗 : 0 ≤ 𝑠 ≤ 𝑡, 𝑗 ≥ 1) and P is a probability
measure onF𝑡.

Let 𝐷(𝑡, 𝑇) denote the price at time 𝑡 of a (default-free)
discount bond that pays USD 1 at maturity date 𝑇, which is
given by

𝐷(𝑡, 𝑇) = 𝐸𝑄 (𝑒−∫
𝑇

𝑡
𝑟(𝑠)𝑑𝑠 | F𝑡) . (1)

Then, the spot forward rate at time 𝑡 for future date 𝑇 is
defined by

𝑓 (𝑡, 𝑇) = −𝜕 log𝐷 (𝑡, 𝑇)𝜕𝑇 . (2)

2.2. Valuation Theory. In a risk-free arbitrage financial mar-
ket, the price 𝑉(𝑡, 𝑋𝑡) of the contingent claim 𝜓(𝑋𝑇) at time𝑡 based on an underlying asset𝑋 at maturity 𝑇 is given by

𝑉 (𝑡, 𝑋𝑡) = 𝐸Q (𝑒−∫
𝑇

𝑡
𝑟(𝑠)𝑑𝑠𝜓 (𝑋𝑇) | F𝑡) , (3)

where 𝐸Q denotes the conditional expectation and 𝜓(𝑋𝑇)
is the payoff of the contingent claim. For more information
about the fundamental theorem of asset pricing, please refer
to Harrison and Kreps [8] and Harrison and Pliska [9].

An indispensable point is the choice of the numeraire
when determining the forward-neutral measure Q𝑇. That
is, the common unit on the basis of which asset prices is
expressed. Any asset price can be selected as a numeraire,
as long as it has a strictly positive value in any state of the
world. A very popular choice is to adopt the 𝑇-maturity
bond𝐷(𝑡, 𝑇) as a numeraire for contingent claims that have a
payoff𝜓(𝑋𝑇) at time𝑇. By applying the Change of Numeraire
Theorem, the prices 𝑉(𝑡, 𝑋𝑡)/𝐷(𝑡, 𝑇) are martingales for 𝑡 <𝑇 under the measure Q𝑇. Hence, by applying the definition
of a martingale, we obtain

𝐸Q𝑇 (𝑉 (𝑇,𝑋𝑇)𝐷 (𝑇, 𝑇) | F𝑡) = 𝑉 (𝑡, 𝑋𝑡)𝐷 (𝑡, 𝑇) . (4)

However, at maturity 𝑇, the price of the discount bond𝐷(𝑇, 𝑇) ≡ 1 and the price of the contingent claim are given
by the payoff 𝑉(𝑇,𝑋𝑇) = 𝜓(𝑋𝑇). So, (4) reduces to

𝑉 (𝑡, 𝑋𝑡) = 𝐷 (𝑡, 𝑇) 𝐸Q𝑇 (𝑉 (𝑇,𝑋𝑇) | F𝑡)
= 𝐷 (𝑡, 𝑇) 𝐸Q𝑇 (𝜓 (𝑋𝑇) | F𝑡) . (5)

Taking derivatives of (1) with respect to 𝑇 yields

−𝜕𝐷 (𝑡, 𝑇)𝜕𝑇 = 𝐸Q (𝑒−∫
𝑇

𝑡
𝑟(𝑠)𝑑𝑠𝑟 (𝑇) | F𝑡)

= 𝐷 (𝑡, 𝑇) 𝐸Q(𝑒−∫
𝑇

𝑡
𝑟(𝑠)𝑑𝑠

𝐷 (𝑡, 𝑇) 𝑟 (𝑇) | F𝑡)
= 𝐷 (𝑡, 𝑇) 𝐸Q𝑇 (𝑟 (𝑇) | F𝑡) ,

(6)

where we have used the Change of NumeraireTheorem in the
last step with Randon-Nikodym derivative

𝑑Q𝑇

𝑑Q = 𝑒−∫
𝑇

𝑡
𝑟(𝑠)𝑑𝑠

𝐷 (𝑡, 𝑇) . (7)

Then we can simplify (2) to

𝑓 (𝑡, 𝑇) = 𝐸Q𝑇 (𝑟 (𝑇) | F𝑡) . (8)

Therefore, the spot forward rate 𝑓 is a martingale under
the measureQ𝑇.
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2.3. Interest Rate Dynamics. There is no doubt that the
interest rate risk is one of the important risk sources for both
the insurer and reinsurer. To assess the effect of interest rate
risk on the catastrophe bond prices,most previous studies use
a constant interest rate or single-factor equilibrium model,
such as Burnecki and Kukla (2003) [6] and Härdle and
Cabrera (2010) [7]. However, a disadvantage of such models
is that they give a set of theoretical prices for bonds that
will not normally precisely match the actual prices that we
observe in themarkets.Therefore, this paper assumes that the
(re)insurer operates in an environment where interest rates
are stochastic and follow the Hull-White model [10].The spot
interest rate process is denoted by the following stochastic
differential equation (SDE):

𝑑𝑟 (𝑡) = (𝜃 (𝑡) − 𝜅𝑟 (𝑡)) 𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟 (𝑡) , (9)

where 𝜅 and 𝜎𝑟 are positive constants and 𝜃(𝑡) is a deter-
ministic function of time. The parameter 𝜃(𝑡) here can be
analytically computed as

𝜃 (𝑡) = 𝜕𝑓 (0, 𝑡)𝜕𝑡 + 𝜅𝑓 (0, 𝑡) + 𝜎2
𝑟2𝜅 (1 − 𝑒−2𝜅𝑡) . (10)

Let 𝑟(𝑡) = 𝑦(𝑡)+𝛽(𝑡) and𝛽(𝑡) = 𝑒−𝜅𝑡(𝑟(0)+∫𝑡
0 𝑒𝜅𝑢𝜃∗(𝑢)𝑑𝑢).

Then, the mean and variance of 𝑦(𝑇) are given by

mean (𝑦 (𝑇)) = 𝑒−𝜅(𝑇−𝑡)𝑦 (𝑡) ,
Var (𝑦 (𝑇)) = 𝜎2

𝑟2𝜅 (1 − 𝑒−2𝜅(𝑇−𝑡)) , (11)

for 0 ≤ 𝑡 ≤ 𝑇.
2.4. Aggregate Claim Dynamics. The aggregate claim has
a compound distribution with two main components: the
frequency and severity of catastrophic risk events [11].

2.4.1. The Claim Arrival Process. As we all know, the pure
Poisson process has been frequently used as a claim arrival
process, which generally assumes that the number of claims
observed until time 𝑡 is a (non)homogeneous Poisson pro-
cess, denoted by 𝑀𝑡, with the intensity 𝑚𝑡 of the counting
process varying with time 𝑡 (e.g., see [12, 13]). However,
for unanticipated catastrophic events, the assumption that
resulting claims occur in terms of a pure Poisson process
is insufficient because it has deterministic intensity [14].
Research has shown that the doubly stochastic Poisson
process is more appropriately used as a claim arrival process
as it can explain the assumption that catastrophic risk events
occur periodically [15].

Let {𝑀𝑡} be a point process adapted toF𝑡, and let 𝑚𝑡 be
a nonnegative process. Suppose that 𝑚𝑡 is F𝑡− measurable,𝑡 ≥ 0, and that

∫𝑡

0
𝑚𝑠𝑑𝑠 < ∞ almost surely (noexplosions). (12)

If for all 0 ≤ 𝑡1 ≤ 𝑡2 and 𝑢 ∈ R

𝐸 {𝑒𝑖𝑢(𝑀𝑡2−𝑀𝑡1 ) | F𝑡1} = exp((𝑒𝑖𝑢 − 1)∫𝑡2

𝑡1
𝑚𝑠𝑑𝑠) , (13)

then𝑀𝑡 is calledF𝑡−doubly stochastic Poisson process with
intensity𝑚𝑡.

Equation (13) yields, for all 𝑡1 ≤ 𝑠 ≤ 𝑡2 and 𝑘 ≥ 0,
P {𝑀𝑡2 −𝑀𝑡1 = 𝑘 | 𝑚𝑠; 𝑡1 ≤ 𝑠 ≤ 𝑡2}

= 𝑒−∫
𝑡2

𝑡1
𝑚𝑠𝑑𝑠 (∫𝑡2

𝑡1
𝑚𝑠𝑑𝑠)𝑘𝑘! ,

(14)

where 𝑘! denotes a factorial.
Thus, the probability of no occurrences within the inter-

val [𝑡1, 𝑡2] for the process 𝑀𝑡 with intensity 𝑚𝑡 > 0 is given
by

P {𝑀𝑡2 −𝑀𝑡1 = 0} = 𝐸 [exp(−∫𝑡2

𝑡1
𝑚𝑠𝑑𝑠)] . (15)

Accordingly, to capture more features of the catastrophic
process, we employ a doubly stochastic Poisson process
to describe the catastrophic events arrival process, whose
intensity follows the Black, Derman, and Toy (BDT) model
[16], which is given by the following SDE:

𝑑 ln (𝑚𝑡) = 𝛼 (𝑡) 𝑑𝑡 + ]𝑑𝑊𝑚 (𝑡) , (16)

where 𝛼(𝑡) is a deterministic function of 𝑡 and ] is a positive
constant.

In addition, to describe a complex periodic characteristic
of catastrophic risk events, this paper takes here 𝛼(𝑡) = 𝑎 +𝑏 sin(𝜋(𝑡 + 𝑐)), where 𝑎 ≥ 0, 𝑏 and 𝑐 are constants.

By integrating both sides of (16), this paper obtains the
exact solution of the instantaneous intensity:

ln (𝑚𝑡) = ln (𝑚0) + ∫𝑡

0
𝛼 (𝑠) 𝑑𝑠 + ∫𝑡

0
] 𝑑𝑊𝑚 (𝑠)

= ln (𝑚0) + ∫𝑡

0
𝛼 (𝑠) 𝑑𝑠 + ]𝑊𝑚 (𝑠) .

(17)

Then,

𝑚𝑡 = 𝑚0 exp [∫𝑡

0
𝛼 (𝑠) 𝑑𝑠 + ]𝑊𝑚 (𝑡)] , (18)

or for all 0 ≤ 𝑢 ≤ 𝑡
𝑚𝑡 = 𝑚𝑢 exp [∫𝑡

𝑢
𝛼 (𝑠) 𝑑𝑠 + ] (𝑊𝑚 (𝑡) − 𝑊𝑚 (𝑢))] , (19)

where 𝛼(𝑡) = 𝑎 + 𝑏 sin(𝜋(𝑡 + 𝑐)), 𝑎 ≥ 0, and 𝑏 and 𝑐
are constants. Figure 6 presents an example of a trajectory
followed by the BDT intensity process. It can be observed that
these curves exhibit certain periodic and upward trends.

2.4.2. Modeling Loss Severities. Extreme value theory (EVT)
provides a simple technique for evaluating probabilities
of future extreme levels of a process based on historical
observations. Generally, being a large claimmeans exceeding
some prespecified threshold value. The generalized Pareto
distribution (GPD) can be used to set the value of this



Discrete Dynamics in Nature and Society 5

0 0.5 1 1.5 2 2.5 3
18

20

22

24

26

28

30

32

Year

St
oc

ha
sti

c i
nt

en
sit

y 
(m

t)

] = 0.1

]1 = 0.2

]2 = 0.3

Figure 6: Example of path for the stochastic intensity𝑚𝑡.The graph
corresponds to the parameter values 𝑚0 = 20, 𝑎 = 0.05, 𝑏 = −0.3,
and 𝑐 = −0.5.
threshold (see for a detailed account in the book by
Embrechts et al. [17]). Suppose insured claims are denoted by
random variables𝑋 over a high threshold 𝑢with distribution
function 𝐹. Then the distribution is defined by

𝐹𝑢 (𝑦) = 𝑝 (𝑋 ≤ 𝑢 + 𝑦 | 𝑋 > 𝑢) = 𝐹 (𝑦 + 𝑢) − 𝐹 (𝑢)1 − 𝐹 (𝑢)
= 𝐹 (𝑥) − 𝐹 (𝑢)1 − 𝐹 (𝑢) , (20)

which denotes the probability that the value of 𝑥 exceeds the
threshold 𝑢 by at most an amount 𝑦 given that 𝑥 exceeds the
threshold 𝑢. Balkema and de Haan [18] and Pickands III [19]
showed that, for sufficiently large threshold𝑢, the distribution
function of the excess can be approximated by the GPD such
that, as the threshold𝑢 gets high, the excess distribution𝐹𝑢(𝑦)
converges to the GPD, which is

𝐺𝜉,𝜎𝑋 (𝑥) =
{{{{{{{{{{{
1 − (1 + 𝜉 𝑥𝜎𝑋

)−1/𝜉

if 𝜉 ̸= 0,
1 − exp(− 𝑥𝜎𝑋

) if 𝜉 = 0, (21)

where 𝜎𝑋 > 0, and the range for 𝑥 is 𝑥 ≥ 0, when 𝜉 ≥ 0,
and 𝑥 ∈ [0, −𝜎𝑋/𝜉] when 𝜉 < 0. The parameters 𝜎 and 𝜉 are
expressed as the scale and shape parameters, respectively.

Suppose that 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑛𝑢} is a random sam-
pling of the GPD, where 𝑛𝑢 denote the sample exceeding a
threshold level 𝑢. For each of these exceedances we calculate
the amount 𝑦𝑖 = 𝑋𝑖 − 𝑢 (𝑖 = 1, 2, . . . , 𝑛𝑢) of the excess
loss. These generalized Pareto distribution parameters may
be evaluated bymaximum likelihood estimation (MLE) using
the following stages:

(1) Make log-likelihood function for 𝜉 ̸= 0
𝑙 (𝜃 | 𝑦) = ln [𝐿 (𝜃 | 𝑦)]

= −𝑛𝑢 ln (𝜎𝑋)
− 𝑛𝑢∑

𝑖=1
[(1 + 1𝜉) ln(1 + 𝜉𝑦𝑖𝜎𝑋

)] ,
(22)

where 𝜃 = (𝜉, 𝜎𝑋), 𝜎𝑋 > 0, 1 + 𝜉𝑦𝑖/𝜎𝑋 > 0.
(2) Solve the maximization of (22) by using numerical

optimization algorithms.Through differentiating (22)
with respect to 𝜉 and 𝜎𝑋 and then equating to zero,
this paper gets the following equations:

𝜕𝑙 (𝜃 | 𝑦)𝜕𝜉 = 1𝜉2
𝑛𝑢∑
𝑖=1

ln(1 + 𝜉𝑦𝑖𝜎𝑋 + 𝜉𝑦𝑖
) − 𝑛𝑢∑

𝑖=1

𝑦𝑖𝜎𝑋 + 𝜉𝑦𝑖

= 0,
𝜕𝑙 (𝜃 | 𝑦)𝜕𝜎𝑋

= − 𝑛𝑢𝜎𝑋
+ (1𝜉 + 1)

𝑛𝑢∑
𝑖=1

𝜉𝑦𝑖𝜎2
𝑋 + 𝜎𝑋𝜉𝑦𝑖

= 0.
(23)

2.4.3. Doubly Stochastic Compound Poisson Process. The risk
faced by the (re)insurance industry is intrinsic in their
exposure to aggregate claims. This paper assumes that the
process of aggregate claims is a compound doubly stochastic
Poisson process. Then we need to make some assumptions
about the aggregate claims process.

(i) There exists a doubly stochastic Poisson process𝑀𝑠 (𝑠 ∈ [0, 𝑇]) representing potentially catastrophic
events. The Poisson point arrival process is assumed
to be a predictable bounded process 𝑚𝑠. This paper
denotes themoments of these potentially catastrophic
risk as 0 ≤ 𝑡1 ≤ ⋅ ⋅ ⋅ ≤ ⋅ ⋅ ⋅ ≤ 𝑡𝑗 ≤ ⋅ ⋅ ⋅ ≤ 𝑇.

(ii) The insured claims incurred by each catastrophic risk
in the flow {𝑡𝑗}𝑗=1,... are assumed to be independently
and identically distributed randomvariables {𝑋𝑗}𝑗=1,...
with a distribution function 𝐹(𝑥) = P{𝑋𝑗 < 𝑥} and a
density function 𝑓(𝑥).

Therefore, a left-continuous and predictable aggregate
claims process can be defined as

𝐿 𝑡 = ∑
𝑡𝑗<𝑡

𝑋𝑗 = 𝑀𝑡∑
𝑗=1
𝑋𝑗, (24)

where𝑀𝑡 and𝑋𝑗 are assumed to be independent.
In addition, there is also another assumption:

(iii) The threshold level is the time 𝜏 when the aggregate
claims 𝐿 𝑡 exceeds the threshold value 𝐷; then, 𝜏 =
inf{𝑡 : 𝐿 𝑡 ≥ 𝐷}. Now defining a new process N𝑡 =1{𝐿 𝑡 ≥ 𝐷}, Baryshnikov et al. [20] showed that it is
a doubly stochastic Poisson process with stochastic
intensity:

𝜆𝑠 = 𝑚𝑠 (1 − 𝐹 (𝐷 − 𝐿 𝑠)) 1 {𝐿 𝑠 < 𝐷} . (25)
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However, in that paper, the proof of 𝜆𝑡 is rather loose.
So, this paper will give a detailed proof of the result in
Appendix A.

3. Valuation of Zero-Coupon CAT Bonds

In this section, this paper adopts a compounddoubly stochas-
tic Poisson process pricing methodology and incorporates
more realistic interest rates into models. Before deriving
a zero-coupon CAT bond pricing formula, this paper first
derives the equivalent martingale measure when the arrival
process of catastrophic risk follows a doubly stochastic
Poisson process with stochastic intensity.

3.1. Equivalent Martingale Probability Measure. Because the
natural catastrophe claims process has jumps, the catastrophe
bond market is incomplete and there is no unique equivalent
martingalemeasure.Hence, catastrophe bond price could not
be unique. This paper adopts Merton’s assumption that the
risk associated with jumps can be diversified away [21]. That
is, there exits a zero risk premium (this stance is supported by
the empirical studies of Cummins and Weiss [22]). Thus, the
jump activity rate and distribution are not altered from the
physical measure 𝑃 to the risk-neutral measure 𝑄.
Proposition 1. Let 𝜂1(𝑡) denote the Radon-Nikodym deriva-
tive process for the CAT process and the Hull-White process as
follows:

log 𝜂1 (𝑡) = log(𝑑Q𝑑P)𝑡

= −12 ∫
𝑡

0
𝜆2

𝑟 (𝑠) 𝑑𝑠 + ∫𝑡

0
𝜆𝑟 (𝑠) 𝑑𝑊𝑟 (𝑠)

+ 𝑀(𝑚𝑡)∑
𝑗=1

log𝜑 (𝑋𝑗, 𝑡𝑗)
+ ∫𝑡

0
∫∞

0
[1 − 𝜑 (𝑥, 𝑠)𝑚𝑠𝑓 (𝑥)] 𝑑𝑥 𝑑𝑠,

(26)

where ∫𝑡
0 𝜆2

𝑟(𝑢)𝑑𝑢 < ∞ and ∫𝑡
0 ∫∞

0 [1−𝜑(𝑥, 𝑠)𝑚𝑠𝑓(𝑥)]𝑑𝑥 𝑑𝑢 <∞. 𝜑(𝑥, 𝑠), 𝜆𝑟(𝑢) may be expressed as the component of the
market prices associated with the CAT risk premium associated
with the CAT loss and the Winner Process for the interest rate,
respectively. For detailed discussion of the jump risk premium𝜑(𝑥, 𝑠), see Glasserman and Kou [23]. By the Radon-Nikodym
process, the new Winner Process of the interest rate 𝑊Q

𝑟 (𝑡) is
defined by𝑊Q

𝑟 (𝑡) = 𝑊𝑟(𝑡) + ∫𝑡
0 𝜆𝑟(𝑠)𝑑𝑠. Then the new arrival

rate at time 𝑠, 𝑠 ∈ [0, 𝑡] becomes𝑚Q
𝑠 = 𝜑(𝑥, 𝑠)𝑚𝑠𝑓(𝑥)𝑑𝑥.

Note that this paper follows the Merton measure and has
a zero risk premium.That is, 𝜑(𝑥, 𝑠) = 1.

The forward martingale measure Q𝑇 is defined to be the
equivalent measure when choosing the 𝑇 maturity discount
bond as the numèraire asset. This paper assumes that the

interest rate follows the Hull-White model, which has the
following analytical expression:

𝐷 (𝑡, 𝑇) = 𝐴 (𝑡, 𝑇) 𝑒−𝐵(𝑡,𝑇)𝑟(𝑡), (27)

where

𝐵 (𝑡, 𝑇) = 1𝜅 [1 − 𝑒−𝜅(𝑇−𝑡)] ,
log𝐴 (𝑡, 𝑇) = log 𝐷(0, 𝑇)𝐷 (0, 𝑡) − 𝐵 (𝑡, 𝑇) 𝜕 log𝐷(0, 𝑡)𝜕𝑡

− 𝜎2
𝑟4𝜅 (1 − 𝑒−2𝜅𝑡) 𝐵 (𝑡, 𝑇)2 .

(28)

Hence, the price process satisfies

𝑑𝐷 (𝑡, 𝑇)𝐷 (𝑡, 𝑇) = 𝑟𝑡𝑑𝑡 − 𝜎𝑟𝐵 (𝑡, 𝑇) 𝑑𝑊Q
𝑟 (𝑡) . (29)

Let 𝜂2(𝑡) denote the Radon-Nikodym derivative process
for forward measureQ𝑇 as follows:

𝜂2 (𝑡) = log(𝑑Q𝑇

𝑑Q )
𝑡

= −12 ∫
𝑡

0
𝜎2
𝑟𝐵2 (𝑠, 𝑇) 𝑑𝑆 − ∫𝑡

0
𝜎𝑟𝐵 (𝑠, 𝑇) 𝑑𝑊Q

𝑠 ,
(30)

where 𝜂2(0) = 1 and suppose 𝐸Q[𝜂2(𝑡)] = 1 for all 𝑡. Accord-
ing to Girsanov’s theorem, there exists a forward measure
Q𝑇 such that

𝑊Q𝑇

𝑟 (𝑡) = 𝑊Q
𝑟 (𝑡) + ∫𝑡

0
𝜎𝑟𝐵 (𝑠, 𝑇) 𝑑𝑠. (31)

3.2. The Pricing Formula of Zero-Coupon CAT Bonds. Once
the forward-neutral measure is determined, a contingent
claim can be priced by the discounted expectation of its
various payoffs. This paper considers a zero-coupon CAT
bond at maturity time 𝑇 contingent on threshold time 𝜏 > 𝑇.
Defining the process 𝑃CAT(𝑠) = 𝐸(𝑃CAT | F𝑠), which requires
that 𝑃CAT(𝑠) be a predictable process, it can be expressed to
mean that the payment at maturity 𝑇 is not directly linked to
the occurrence of the threshold.Therefore, this paper obtains
the following result.

Theorem 2. The nonarbitrage price of the zero-coupon CAT
bond at time 𝑡 associated with the threshold level 𝐷 and the
catastrophic flow 𝑀𝑠 with stochastic intensity 𝑚𝑠, and a loss
distribution function 𝐹(𝑥) paying principal amount 𝑃𝐶𝐴𝑇 at
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Table 1: Summary statistics for PCS loss index.

Statistic Value Percentile Value
Sample size 260 Min 0.2541
Range 458.63 5% 0.5471
Mean 8.7048 10% 0.7574
Variance 1213.4 25% (Q1) 1.2697
Std. deviation 34.834 50% (Median) 2.1332
Coef. of variance 4.0017 75% (Q3) 5.0707
Std. error 2.1603 90% 11.451
Skewness 9.8807 95% 24.0
Excess kurtosis 115.24 Max 458.88
Unit: one hundred million dollars.

time to maturity 𝑇 under the forward-neutral pricing measure
Q𝑇 is given by

𝑉𝐶𝐴𝑇 (𝑡) = 𝐸Q𝑇 (𝑃𝐶𝐴𝑇𝑒−∫
𝑇

𝑡
𝑟𝑠𝑑𝑠 [1

− ∫𝑇

𝑡
𝑚𝑠 (1 − 𝐹 (𝐷 − 𝐿𝑆)) 1 {𝐿 𝑠 < 𝐷} 𝑑𝑠] | F𝑡)

= 𝐵𝐻𝐿 (𝑡, 𝑇, 𝑦) 𝐸(𝑃𝐶𝐴𝑇 [1
− ∫𝑇

𝑡
𝑚𝑠 (1 − 𝐹 (𝐷 − 𝐿𝑆)) 1 {𝐿 𝑠 < 𝐷} 𝑑𝑠] | F𝑡) ,

(32)

where 𝐵𝐻𝐿 (𝑡, 𝑇, 𝑦) = exp {𝐴 (𝑡, 𝑇) − 𝐵 (𝑡, 𝑇) 𝑦𝑡} ,
𝐴 (𝑡, 𝑇) = 𝜎2

𝑟2𝜅3 (𝜅 (𝑇 − 𝑡) − 2 (1 − 𝑒−𝜅(𝑇−𝑡))
+ 12 (1 − 𝑒−2𝜅(𝑇−𝑡))) − ∫𝑇

𝑡
𝛽 (𝑠) 𝑑𝑠,

𝐵 (𝑡, 𝑇) = 1 − 𝑒−𝜅(𝑇−𝑡)

𝜅 ,
𝛽 (𝑇) = 𝑓 (0, 𝑇) + 𝜎2

𝑟2𝜅2 (1 − 𝑒−𝜅𝑇)2 .

(33)

Proof. The proof is given in Appendices B and C.

4. Empirical Experiments

This section evaluates zero-coupon CAT bonds whose total
losses are linked to the PCS index in the US that occurred
between 2001 and 2010 (http://www.verisk.com/insurance/
products/property-claim-services/pcs-catastrophe-loss-index
.html. A set of 260 catastrophe loss data and 264 catastrophe
events in US from 2001 to 2010) and adjust for inflation
using the Consumer Price Index (CPI) provided by the US
Department of Labor (https://www.bls.gov/cpi/data.htm)
That is, the losses are converted to 2010 dollars using the CPI.

4.1. Exploratory Data Analysis. There are 260 observations
in the data set. Table 1 gives a brief summary of descriptive
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Figure 7: Log histogram of the PCS loss index from 2001 to 2010.

statistics for PCS loss index. According to Table 1, the
skewness coefficient is 9.880; then the loss data are considered
to be right-skewed.Therefore, this paper utilizes the log-scale
to depict the histogram of PCS loss index. In Figure 7 we can
discover that the histogram is markedly right-skewed. Table 1
also shows an excess kurtosis of over 115, which is well above
the value (i.e., 3). The data are extremely heavy-tailed and
should not be modeled by a normal distribution.

To go further to detect the tail behavior, another two
graphical techniques deserve special mention: the expo-
nential quantile-quantile (Q-Q) plots and the mean excess
function. Figure 9 displays the graph of 𝑒𝑛(𝑢) for PCS loss
index. The heavy-tailed character is obvious from the visible
upward trend. The concave behavior of the exponential
QQ-plot is also apparent in Figure 8, suggesting a heavy-
tailed underlying distribution.Therefore, the graphs strongly
suggest that the hypotheses that PCS loss index follows aGPD
distribution is acceptable.

4.2. Parameter Estimation of Generalized Pareto Distribution
(GPD). One of the main concerns about the GPD is the
selection of an appropriate threshold value. If lower threshold
value is applied, themean exceedance plot could not be linear.

http://www.verisk.com/insurance/products/property-claim-services/pcs-catastrophe-loss-index.html
http://www.verisk.com/insurance/products/property-claim-services/pcs-catastrophe-loss-index.html
http://www.verisk.com/insurance/products/property-claim-services/pcs-catastrophe-loss-index.html
https://www.bls.gov/cpi/data.htm
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Figure 8: Exponential QQ-plot of the PCS loss index from 2001 to
2010.
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Figure 9: Mean excess plot of the PCS loss index from 2001 to 2010.

To identify the optimal threshold value, two methods are
available for this purpose: one is the mean excess function.
An immediate result of Section 4.1 enables us to provide
a graphical tool to choose the threshold value 𝑢, through
choosing 𝑢 > 0 such that 𝑒(𝑥) is approximately linear (tends
towards infinity) for 𝑥, 𝑢. The other is the Hill plot.

Let 𝑋1 > 𝑋2 > ⋅ ⋅ ⋅ > 𝑋𝑛 be the ordered statistics of
random observations. The Hill estimator of the tail index 𝜉
using 𝑘 + 1 ordered statistics is defined by

𝐻𝑘,𝑛 = 1𝑘
𝑘∑

𝑖=1
ln

𝑋𝑖𝑋𝑘+1
, (34)

where 𝑘 is the number of upper order statistics. The Hill plot
is the plot of ((𝑘,𝐻−1

𝑘,𝑛), 1 ≤ 𝑘 < 𝑛).
Based on previous work by Reiss and Thomas [24],

Loretan and Phillips [25], and Zhou et al. [26], this paper uses
the following rules:

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

Order statistics

Hill plot



Figure 10: Hill plot versus 𝑘 upper order statistics (𝑘 ≤ 260).
(1) The number of the turning points is not more than𝑘1 = [𝑛/10].
(2) The Hill estimator has a relative large deviation.
(3) The turning point is the last number of observation

point that satisfies the two above-mentioned condi-
tions.

Figure 10 shows the Hill plot corresponding to PCS loss
indexwith a 95 percent confidence interval.This paper selects
the last area to 𝑘 = 0.1∗260 = 26, where the Hill plot is more
stable. From a closer inspection of the plot in Figure 9, which
zooms the function for a smaller range of values for 𝑢, this
paper suggests selecting the value 𝑢 = 11.49 for the threshold
value because it is located at the beginning of a portion of
the mean excess plot which is roughly linear. Therefore, this
chooses 𝑢 = 11.49.

Applying the maximum likelihood estimation method,
this paper evaluates the values 𝜉 = 0.9238 and 𝜎̂ = 15.5797
which maximize the log-likelihood function 𝑙 = −116.7433
for the PCS loss index. Again it may be best to apply a QQ-
plot to visually checkwhether the observationsmeet theGPD
assumption. Figure 11 depicts the plot of the PCS loss index
quantiles against 𝐺𝜉,𝜎 quantiles. So it can be concluded that
the fit is satisfactory.

4.3. Parameter Estimation of Stochastic Intensity. The param-
eters of BDT stochastic intensity for the arrival rate of
catastrophic events will be estimated. This paper takes the
same approach as Lin et al. [27]; given ] = 0, by applying
the Nonlinear Least Square procedure we conclude that𝑚0 =22.3512, 𝑎 = 0.0457, 𝑏 = 0.7338, 𝑐 = −0.6423; that is,𝑚𝑡 = 22.3512 exp[∫𝑡

0 0.0457 + 0.7338 sin𝜋(𝑠 − 0.6423)𝑑𝑠].
Lin et al. [27] proposed a lognormal intensity function of
the form 𝜆1

𝑑(𝑡) = 𝜆1
𝑑(0) exp[𝛼𝑡 − (1/2)]2 + ]𝑊𝑚(𝑡)]. In the

same way, it can be concluded that 𝜆1
𝑑(0) = 19.6681, 𝛼 =0.0515; that is, 𝜆1

𝑑(𝑡) = 19.6681 exp[0.0515𝑡]. This paper
also considers a pure Poisson process, Burnecki et al. [28]
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Figure 11: QQ-plot of PCS loss index quantiles against 𝐺𝜉,𝜎 quan-
tiles.

proposed a nonhomogeneous Poisson intensity function of
the form 𝜆2

𝑑(𝑡) = 𝑎+𝑏⋅2𝜋⋅sin{2𝜋(𝑡−𝑐)}. Using the Nonlinear
Least Square procedure we conclude that 𝑎 = 20.1985, 𝑏 =1.0397 and 𝑐 = 0.1991.
4.3.1. Model Evaluation. To assess these Poisson intensities
precisely, it is necessary to calculate the errors based on the
comparison of observation value with the values calculated
by these Poisson intensities. This paper uses six goodness-of-
fit measures to evaluate the performance of the intensity: the
root mean square error, the mean absolute error, the mean
relative percentage error, Theil’s coefficient, Nash-Sutcliffe
model coefficient of efficiency, and the index of agreement:

RMSE = √ 1𝑁
𝑁∑
𝑖=1
(𝑂𝑖 − 𝑃𝑖)2,

MAE = 1𝑁
𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝑂𝑖 − 𝑃𝑖
󵄨󵄨󵄨󵄨 ,

MRPE = 1𝑁
𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝑂𝑖 − 𝑃𝑖
󵄨󵄨󵄨󵄨𝑂𝑖
,

𝑈 = √(1/𝑁)∑𝑁
𝑖=1 (𝑂𝑖 − 𝑃𝑖)2√(1/𝑁)∑𝑁

𝑖=1 (𝑂𝑖)2 + √(1/𝑁)∑𝑁
𝑖=1 (𝑃𝑖)2 ,

𝐸 = 1.0 − ∑𝑁
𝑖=1 (𝑂𝑖 − 𝑃𝑖)2∑𝑁
𝑖=1 (𝑂𝑖 − 𝑂)2 ,

𝑑 = 1.0 − ∑𝑁
𝑖=1 (𝑂𝑖 − 𝑃𝑖)2∑𝑁

𝑖=1 (󵄨󵄨󵄨󵄨󵄨𝑃𝑖 − 𝑂󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑂𝑖 − 𝑂󵄨󵄨󵄨󵄨󵄨)2 ,

(35)

where 𝑂𝑖 denotes the observed value, the overbar represents
the mean for the full time period of the evaluation, 𝑃𝑖 is the
theoretical value, and𝑁 is all the number of observations.The

MAE, RMSE, andMRPE statistics have, as the lower limit, the
value of zero, which is the optimum value for them as it for𝑈. On the contrary, higher values of E and d represent better
agreement between the theoretical values and observations
[29].

Table 2 gives a summary of six measurements. Obviously,𝑚𝑡 is superior to two other intensities ascribable to its smaller
RMSE, MAE, MRPE, and U and larger E and d.

5. Numerical Analysis

This section considers a numerical analysis for the prices of
zero-coupon CAT bonds using theMonte Carlomethod with
20000 paths. First, the parameter of the stochastic interest
rates applied in our numerical analysis were fitted inHull and
White [10]. Then, a base set of parameters is summarized in
Table 3.

Figure 12 shows that the zero-coupon CAT bond prices
with respect to trading time 𝑡 to expiry 𝑇 and threshold
level 𝐷 under the GPD, DSPP, and Hull-White interest rate
assumptions. It is obvious that the zero-coupon CAT bond
prices increase with the trading time 𝑡 as the occurrence
probability exceeding a threshold value will decrease, and
it decreases as the threshold level 𝐷 decreases because
one expects a high probability exceeding threshold value.
This means that the increase in trading time 𝑡 reduces
the probability of a trigger event, causing a higher price,
and simultaneously much less coupons are expected to be
received, which also leads to a higher price. When 𝑡 = 1.95
years and 𝐷 = 20000, the zero-coupon CAT bond price
approaches the value exp{𝐴(1.95, 2) − 𝐵(1.95, 2)𝑦1.9} ≈0.99659.

To measure how stochastic interest rates influence the
zero-coupon CAT bond prices, this paper considers the price
difference from the Hull-White model and a discount bond.
When time 𝑡 = 0, the Hull-White extended-Vasicek model
value is equal with the discount bond 𝐷(0, 𝑇) = exp{−𝑍𝑇𝑇},
when time 𝑡 = 𝑇, 𝐵𝐻𝐿(𝑇, 𝑇, 𝑦𝑇) = 𝐷(𝑇, 𝑇) = 1; that
is, 𝐷(𝑡, 𝑇) = exp{−𝑍𝑇−𝑡 × (𝑇 − 𝑡)}. Figure 13 shows the
price difference between Hull-White interest rates and the
deterministic interest rate. It can be observed that the price
differences increase first and subsequently decrease, and
the deterministic interest rate overestimates the bond price
change substantially from trading time 0 to 2 years.

Finally, this paper presents a sensitivity analysis for
the zero-coupon CAT bond prices with different parameter
values using theDSPP and theGPD. Table 4 displays the zero-
coupon CAT bond prices under various parameter values
of the threshold level, the CAT intensity volatility, and loss
scale parameter. As is expected, the higher the threshold
level, the smaller the CAT intensity volatility and CAT loss
scale parameter and the higher the zero-coupon CAT bond
prices. For example, when the CAT intensity volatility (])
is 0.8 and the loss scale parameter (𝜎𝑋) is 13 and the zero-
coupon CAT bond price will increase by 519 basis points as
the threshold value increases from 14000 to 15000, while the
zero-couponCAT bond price will increase by 416 basis points
as the threshold value increases from 15000 to 16000.
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Table 2: Summary of the statistical tests for the Poisson intensity.

Poisson intensity Performance
RMSE MAE MAPE U E d𝑚𝑡 2.3807 1.8595 0.0695 0.0443 0.7964 0.9406𝜆1

𝑑(𝑡) 3.5495 2.9540 0.1099 0.0602 0.5475 0.8341𝜆2
𝑑(𝑡) 5.2764 4.6800 0.1780 0.0990 −2.5791𝑒 − 011 9.1819𝑒 − 006

Note: the optimum value is in boldface.

Table 3: Parameters, definitions, and base values.

Parameters Description Values
Interest rate parameters𝜅 Magnitude of mean-reverting force 0.1𝜎𝑟 Volatility of interest rate 0.01, 0.03, 0.05𝑍𝑡 Continuously compounded zero-coupon rate 0.08 − 0.05𝑒−0.18𝑡
Catastrophe loss parameters𝜉𝑋 Shape parameter of the GPD of the amount of catastrophe losses for the insurer 0.9238𝜎𝑋 Scale parameter of the GPD of the amount of catastrophe losses for the insurer [12, 16]𝑎, 𝑏, 𝑐 Drift parameters of intensity function for catastrophic events 0.0457, 0.7388, −0.6423
] Volatility of intensity function for catastrophic events [0.5, 1.0]𝑚0 Initial value of intensity function for catastrophic events 22.3512
Other parameters𝑇 Time to expiry 2𝑡 Trading time [0, 2]𝑉 Face value of the CAT bond 1𝐷 Threshold levels [10000, 20000]
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Figure 12: The zero-coupon CAT bond price with respect to the
threshold level and trading time. The model parameters are 𝜉𝑋 =0.9238, 𝜎𝑋 = 15.5797, 𝑚0 = 22.3512, 𝑎 = 0.0457, 𝑏 =0.7388, 𝑐 = −0.6423, ] = 0.5, 𝜅 = 0.1, and 𝜎𝑟 = 0.01.

6. Conclusion

Consider an upward trend-cycle movement of catastrophic
risk events and the severity of aggregate catastrophe claims;
this paper reinvestigates and incorporates these catastrophic
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Figure 13:The difference between the zero-coupon CAT bond price
in stochastic interest rates and the deterministic interest rate under
the lognormal and the DSPP assumptions. The model parameters
are 𝜉𝑋 = 0.9238, 𝜎𝑋 = 15.5797, 𝑚0 = 22.3512, 𝑎 = 0.0457, 𝑏 =0.7388, 𝑐 = −0.6423, ] = 0.5, 𝜅 = 0.1, and 𝜎𝑟 = 0.01.

characteristics into the valuation of zero-coupon CAT bonds
and provides a semianalytical solution for evaluating zero-
coupon catastrophe bonds with the compound doubly
stochastic Poisson process pricing framework under the
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Table 4: The zero-coupon CAT bond prices with trading time 𝑡 to expiry 𝑇.
(𝜎𝑋, ]) Threshold level (D)

10000 12000 14000 15000 16000 18000 200000(11, 0.5) 0.85979 0.87052 0.87703 0.87940 0.88139 0.88451 0.88686(11, 0.6) 0.85291 0.86607 0.87370 0.87644 0.87871 0.88225 0.88488(11, 0.7) 0.84807 0.86383 0.87277 0.87595 0.87857 0.88263 0.88563(11, 0.8) 0.82802 0.84938 0.86050 0.86432 0.86744 0.87443 0.87900(11, 0.9) 0.79958 0.83459 0.85176 0.85713 0.86136 0.86765 0.87211(11, 1.0) 0.71016 0.78851 0.83038 0.84227 0.85026 0.86082 0.86766(12, 0.5) 0.85435 0.86670 0.87409 0.87677 0.87907 0.88252 0.88514(12, 0.6) 0.84583 0.86149 0.87028 0.87341 0.87599 0.87999 0.88296(12, 0.7) 0.83958 0.85842 0.86888 0.87245 0.87544 0.88005 0.88345(12, 0.8) 0.81497 0.84244 0.85567 0.86014 0.86374 0.86921 0.87583(12, 0.9) 0.77814 0.82329 0.84477 0.85132 0.85638 0.86376 0.86892(12, 1.0) 0.68427 0.76604 0.81381 0.82973 0.84100 0.85456 0.86289(13, 0.5) 0.84853 0.86269 0.87103 0.87405 0.87655 0.88046 0.88338(13, 0.6) 0.83771 0.85659 0.86670 0.87025 0.87316 0.87766 0.88098(13, 0.7) 0.82996 0.85261 0.86462 0.86878 0.87218 0.87738 0.88119(13, 0.8) 0.80197 0.83468 0.85048 0.85567 0.85983 0.86607 0.87155(13, 0.9) 0.75495 0.81135 0.83677 0.84487 0.85094 0.85960 0.86555(13, 1.0) 0.66265 0.73558 0.79589 0.81432 0.82917 0.84737 0.85762(14, 0.5) 0.84230 0.85849 0.86787 0.87123 0.87401 0.87835 0.88158(14, 0.6) 0.82974 0.85130 0.86293 0.86694 0.87022 0.87525 0.87894(14, 0.7) 0.81878 0.84631 0.86019 0.86493 0.86876 0.87461 0.87886(14, 0.8) 0.78749 0.82580 0.84486 0.85090 0.85567 0.86278 0.86783(14, 0.9) 0.73149 0.79677 0.82715 0.83756 0.84494 0.85514 0.86199(14, 1.0) 0.64217 0.70692 0.77544 0.79836 0.81474 0.83888 0.85173(15, 0.5) 0.83556 0.85407 0.86458 0.86831 0.87140 0.87619 0.87973(15, 0.6) 0.82113 0.84553 0.85894 0.86348 0.86715 0.87275 0.87684(15, 0.7) 0.80613 0.83943 0.85549 0.86086 0.86518 0.87173 0.87645(15, 0.8) 0.77167 0.81523 0.83871 0.84576 0.85125 0.85932 0.86499(15, 0.9) 0.70721 0.77951 0.81801 0.82894 0.83823 0.85032 0.85820(15, 1.0) 0.62390 0.68638 0.75536 0.77876 0.80034 0.82825 0.84502(16, 0.5) 0.82819 0.84942 0.86115 0.86530 0.86870 0.87396 0.87784(16, 0.6) 0.81226 0.83908 0.85472 0.85983 0.86394 0.87017 0.87467(16, 0.7) 0.79374 0.83183 0.85047 0.85657 0.86143 0.86873 0.87396(16, 0.8) 0.75732 0.80475 0.83192 0.84020 0.84652 0.85567 0.86202(16, 0.9) 0.68834 0.76069 0.80744 0.82038 0.83045 0.84507 0.85416(16, 1.0) 0.60683 0.66721 0.72777 0.76147 0.78190 0.81540 0.83718
Note: other parameter values are 𝜉𝑋 = 0.9238, 𝑚0 = 22.3512, 𝑎 = 0.0457, 𝑏 = 0.7388, 𝑐 = −0.6423, 𝜅 = 0.1 and 𝜎𝑟 = 0.05, 𝑡 = 0.8, and 𝑇 = 2.

forward measure. Using the PCS loss data from 2001 to 2010,
the empirical results reveal that the PCS loss index following
aGPDdistribution is acceptable and the fit is satisfactory, and
the BDT arrival rate is more superior to the mean-reverting
arrival process and the deterministic time intensity due to its
smaller RMSE, MAE, MRPE, and U and larger E and d. This
paper briefly demonstrates how catastrophic components, the
CAT intensity volatility, loss scale parameter, and financial
components, as well as the interest rate volatility and the
threshold level affect the value of zero-coupon CAT bonds.
In short, the numerical results show that the proposed model
is feasible and effective.

Appendix

A. Proof of (25)

This appendix is devoted to the proof of doubly stochastic
Poisson processN𝑡 withF𝑡−intensity 𝜆𝑡.

Representing N𝑡 as ∫𝑇
𝑡 𝑑N𝑠 and from the definition of

N𝑡, it follows that𝑑N𝑠 = 1 {𝐿 𝑠 < 𝐷; 𝑋𝑖(𝑠) ≥ 𝐷 − 𝐿 𝑠} 𝑑𝑀𝑠, (A.1)
where 𝑖(𝑡) denotes the index of the first event following 𝑡
(finite a.e.); that is, 𝑖(𝑡) = min{𝑖 : 𝑡𝑖 ≥ 𝑡}.
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Let 𝐶𝑡 be a nonnegative F𝑡−predictable process. Then,
by using the basic properties of conditional expectation and
Fubini’s theorem, we have

𝐸[∫𝑠

𝑡
𝐶𝜍𝑑N𝜍]

= 𝐸[∫𝑡

𝑠
𝐶𝜍1 {𝐿𝜍 < 𝐷; 𝑋𝑖(𝜉) ≥ 𝐷 − 𝐿𝜍} 𝑑𝑀𝜍]

= ∫𝑠

𝑡
𝐸 [𝐶𝜍1 {𝐿𝜍 < 𝐷; 𝑋𝑖(𝜍) ≥ 𝐷 − 𝐿𝜍}] 𝑑𝑀𝜍

= ∫𝑠

𝑡
𝐸 [𝐶𝜍𝐸 [1 {𝐿𝜍 < 𝐷; 𝑋𝑖(𝜍) ≥ 𝐷 − 𝐿𝜍} | F𝜍]] 𝑑𝑀𝜍.

(A.2)

For the last equality, use the fact that 𝐶𝑡 is F𝑡−measurable.
Since𝑋𝑖(𝜍) is independent ofF𝜍, we have

∫𝑠

𝑡
𝐸 [𝐶𝜍𝐸 [1 {𝐿𝜍 < 𝐷; 𝑋𝑖(𝜍) ≥ 𝐷 − 𝐿𝜍} | F𝜍]] 𝑑𝑀𝜍

= ∫𝑠

𝑡
𝐸[𝐶𝜍𝐸 [1 {𝑋𝑖(𝜍) ≥ 𝐷 − 𝐿𝜍}]

⋅ 𝐸 [1 {𝐿𝜍 < 𝐷}
F𝜍

]]𝑑𝑀𝜍

= ∫𝑠

𝑡
𝐸 [𝐶𝜍𝑃 (𝑋𝑖(𝜍) ≥ 𝐷 − 𝐿𝜍) 𝐸 [1 {𝐿𝜍 < 𝐷} |

F𝜍]] 𝑑𝑀𝜍 = ∫𝑠

𝑡
𝐸 [𝐶𝜍 (1

− 𝑃 (𝑋𝑖(𝜍) < 𝐷 − 𝐿𝜍)) 1 {𝐿𝜍 < 𝐷}] 𝑑𝑀𝜍

= 𝐸[∫𝑠

𝑡
𝐶𝜍𝑚𝜍 (1 − 𝐹 (𝐷 − 𝐿𝜍)) 1 {𝐿𝜍 < 𝐷} 𝑑𝜍] .

(A.3)

Let 𝜆𝜍 = 𝑚𝜍(1 − 𝐹(𝐷 − 𝐿𝜍))1{𝐿𝜍 < 𝐷}. Therefore, we have

𝐸[∫𝑠

𝑡
𝐶𝜍𝑑𝑁𝜍] = 𝐸[∫𝑠

𝑡
𝐶𝜍𝜆𝜍𝑑𝜍] (A.4)

which is verified for all nonnegative F𝑡−predictable process𝐶𝑡; then N𝑡 is a doubly stochastic Poisson process with
F𝑡−intensity 𝜆𝑡.

B. The Price of a Discount Bond

The price𝑉(𝑡, 𝑋) of the contingent claim at time 𝑡, which has
a payoff 𝜓(𝑋𝑇) at maturity 𝑇 satisfies the partial differential
equation:

𝑉𝑡 (𝑡, 𝑋) + (𝜃∗ (𝑡) − 𝜅𝑟)𝑉𝑟 (𝑡, 𝑋) + 12𝜎2
𝑟𝑉𝑟𝑟 (𝑡, 𝑋)

− 𝑟𝑉 (𝑡, 𝑋) = 0, (B.1)

where 𝑉(𝑇,𝑋) = 𝜓(𝑇) = 1, 𝜃∗(𝑡) = 𝜃(𝑡) − 𝜆𝑟(𝑡)𝜎𝑟, 𝑟(𝑡)
follows the Hull-White model and 𝜆𝑟(𝑡) denotes the market
price of interest rate risk.

First, consider the following transformation of variables.
The process 𝑟(𝑡) can be written as follows:

𝑟 (𝑡) = 𝑦 (𝑡) + 𝛽 (𝑡) , (B.2)

where 𝛽(𝑡) = 𝑒−𝜅𝑡(𝑟(0) + ∫𝑡
0 𝑒𝜅𝑢𝜃∗(𝑢)𝑑𝑢), which guarantees𝑦(0) = 0.

The price 𝑉(𝑡, 𝑋) of the contingent claim in terms of the
new variable 𝑦(𝑡) can be written as 𝑔(𝑡, 𝑦); that is, 𝑉(𝑡, 𝑋) ≡𝑔(𝑡, 𝑦). We can establish the following relationships between𝑉(𝑡, 𝑋) and 𝑔(𝑡, 𝑦):

𝑉 (𝑡, 𝑋) ≡ 𝑔 (𝑡, 𝑦) ,
𝑉𝑡 (𝑡, 𝑋) = 𝑔𝑡 (𝑡, 𝑦) − (−𝜅𝛽 (𝑡) + 𝜃∗ (𝑡)) 𝑔𝑦 (𝑡, 𝑦) ,
𝑉𝑟 (𝑡, 𝑋) = 𝑔𝑦 (𝑡, 𝑦) ,
𝑉𝑟𝑟 (𝑡, 𝑋) = 𝑔𝑦𝑦 (𝑡, 𝑦) .

(B.3)

Substituting these relations into (B.1) and using 𝑟(𝑡) = 𝑦(𝑡) +𝛽(𝑡), the partial differential equation reduces to

𝑔𝑡 (𝑡, 𝑦) − 𝜅𝑦 (𝑡) 𝑔𝑦 (𝑡, 𝑦) + 12𝜎2
𝑟𝑔𝑦𝑦 (𝑡, 𝑦)

− (𝑦 + 𝛽 (𝑡)) 𝑔 (𝑡, 𝑦) = 0. (B.4)

Under the equivalent martingale measureQ, the spot interest
rate is generated by

𝑑𝑦 (𝑡) = −𝜅𝑦 (𝑡) 𝑑𝑡 + 𝜎𝑟𝑑𝑊Q
𝑦 (𝑡) ,

𝑟 (𝑡) = 𝑦 (𝑡) + 𝛽 (𝑡) , (B.5)

where𝑊Q
𝑦 (𝑡) = 𝑊𝑟(𝑡) + ∫𝑡

0 𝜆𝑟(𝑠)𝑑𝑠 is still a Wiener process.
Given a value 𝑦𝑡 at any point in time 𝑡, the probability

distribution of 𝑦𝑇 for some future time 𝑇 > 𝑡 is a normal
distribution with mean,

𝑒−𝜅(𝑇−𝑡)𝑦 (𝑡) , (B.6)

and variance,

𝜎2
𝑟2𝜅 [1 − 𝑒−2𝜅(𝑇−𝑡)] . (B.7)

Using the Feynman-Kac formula, we can express solu-
tions to the partial differential equation (B.3) in terms of the
boundary condition 𝜓(𝑋𝑇) at time 𝑇 as

𝑔 (𝑡, 𝑦) = 𝐸Q (𝑒−∫
𝑇

𝑡
(𝑦𝑠+𝛽(𝑠))𝑑𝑠𝜓 (𝑋𝑇) | F𝑡) . (B.8)

Applying the forward measure Q𝑇, the price 𝑔(𝑡, 𝑦) can be
expressed as

𝑔 (𝑡, 𝑦) = 𝐷 (𝑡, 𝑇, 𝑦) 𝐸𝑄𝑇 (𝜓 (𝑋𝑇) | F𝑡) , (B.9)

where 𝐷(𝑡, 𝑇, 𝑦) denotes the price of a discount bond with
maturity 𝑇 at time 𝑡 and is given by

𝐷(𝑡, 𝑇, 𝑦) = exp {𝐴 (𝑡, 𝑇) − 𝐵 (𝑡, 𝑇) 𝑦 (𝑡)} , (B.10)
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where

𝐴 (𝑡, 𝑇) = 𝜎2
𝑟2𝜅3 (𝜅 (𝑇 − 𝑡) − 2 (1 − 𝑒−𝜅(𝑇−𝑡)) ,

+ 12 (1 − 𝑒−2𝜅(𝑇−𝑡))) − ∫𝑇

𝑡
𝛽 (𝑠) 𝑑𝑠,

𝐵 (𝑡, 𝑇) = 1 − 𝑒−𝜅(𝑇−𝑡)

𝜅 .
(B.11)

Under the forward measureQ𝑇, 𝑦𝑡 can be represented by the
following SDE:

𝑑𝑦𝑡 = (−𝜎2
𝑟𝐵 (𝑡, 𝑇) − 𝜅𝑦𝑡) 𝑑𝑡 + 𝜎𝑟𝑑𝑊Q𝑇

𝑦 (𝑡) , (B.12)

where 𝑊Q𝑇

𝑟 (𝑡) = 𝑊Q
𝑟 (𝑡) + ∫𝑡

0 𝜎𝑟𝐵(𝑠, 𝑇)𝑑𝑠 is still a Wiener
process.

Under the forward measure Q𝑇, the mean and variance
of 𝑦(𝑇) are given by

mean (𝑦 (𝑇)) = 𝑦 (𝑡) 𝑒−𝜅(𝑇−𝑡) − 𝜎2
𝑟2𝜅2 (1 − 𝑒−𝜅(𝑇−𝑡))2 ,

Var (𝑦 (𝑇)) = 𝜎2
𝑟2𝜅 [1 − 𝑒−2𝜅(𝑇−𝑡)] .

(B.13)

The next step is to determine the value of 𝛽(𝑇) by fitting
the model analytically to the initial term-structure of interest
rates. Set 𝑡 = 0, 𝑦 = 0; by using (B.10), we have

log𝐷 (0, 𝑇) = 𝐴 (0, 𝑇) . (B.14)

Substituting the definition for𝐴 given in (B.11) and taking
derivatives with respect to 𝑇 and simplifying yield

𝛽 (𝑇) = −𝜕 log𝐷 (0, 𝑇)𝜕𝑇 + 𝜎2
𝑟2𝜅2 (1 − 𝑒−𝜅𝑇)2 . (B.15)

Combining with (2), we get

𝛽 (𝑇) = 𝑓 (0, 𝑇) + 𝜎2
𝑟2𝜅2 (1 − 𝑒−𝜅𝑇)2 . (B.16)

C. Proof of Theorem 2

This paper follows the Merton measure and has a zero
risk premium. Therefore, under a forward-neutral pricing
measure Q𝑇, those events that depend only on financial
variables are independent of those events that depend on
catastrophic risk variables. Then, we can derive that the price
of a CAT bond paying 𝑃CAT at maturity 𝑇at time 𝑡 < 𝜏 is
𝑉CAT (𝑡) = 𝐸Q𝑇 (𝑃CAT𝑒−∫

𝑇

𝑡
𝑟(𝑠)𝑑𝑠 (1 −N𝑇) | F𝑡)

= 𝐸Q𝑇 (𝑒−∫
𝑇

𝑡
𝑟(𝑠)𝑑𝑠 | F𝑡)𝐸Q (𝑃CAT (1 −N𝑇) | F𝑡) , (C.1)

where interest rates follow the extended Vasicek model.

Taking (25), (B.10)-(B.11), and (B.16) as a substitution for
(C.1), we have

𝑉CAT (𝑡) = 𝐵𝐻𝐿 (𝑡, 𝑇, 𝑦)
⋅ 𝐸(𝑃CAT [1 − ∫𝑇

𝑡 𝑚𝑠 (1 − 𝐹 (𝐷 − 𝐿𝑆)) 1 {𝐿 𝑠 < 𝐷} 𝑑𝑠]
F𝑡

) , (C.2)

where

𝐵𝐻𝐿 (𝑡, 𝑇, 𝑦) = exp {𝐴 (𝑡, 𝑇) − 𝐵 (𝑡, 𝑇) 𝑦} ,
𝐴 (𝑡, 𝑇) = 𝜎2

2𝜅3 (𝜅 (𝑇 − 𝑡) − 2 (1 − 𝑒−𝜅(𝑇−𝑡))
+ 12 (1 − 𝑒−2𝜅(𝑇−𝑡))) − ∫𝑇

𝑡
𝛽 (𝑠) 𝑑𝑠,

𝐵 (𝑡, 𝑇) = 1 − 𝑒−𝜅(𝑇−𝑡)

𝜅 ,
𝛽 (𝑇) = 𝑓 (0, 𝑇) + 𝜎2

𝑟2𝜅2 (1 − 𝑒−𝜅𝑇)2 .

(C.3)
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