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We propose a dynamic vehicular routing algorithm with traffic prediction for improved routing performance. The primary idea of
our algorithm is to use real-time as well as predictive traffic information provided by a central routing controller. In order to evaluate
the performance, we develop a microtraffic simulator that provides road networks created from real maps, routing algorithms, and
vehicles that travel from origins to destinations depending on traffic conditions. The performance is evaluated by newly defined
metric that reveals travel time distributions more accurately than a commonly used metric of mean travel time. Our simulation
results show that our dynamic routing algorithm with prediction outperforms both Static and Dynamic without prediction routing
algorithms under various traffic conditions and road configurations. We also include traffic scenarios where not all vehicles comply
with our dynamic routing with prediction strategy, and the results suggest that more than half the benefit of the new routing

algorithm is realized even when only 30% of the vehicles comply.

1. Introduction

Recent data show that traffic conditions in metropolitan
areas continue to worsen with increased wasted hours,
extra fuel cost, and travel unreliability, for example, the
extra time needed to arrive at destinations [1]. Intelligent
Transportation Systems (ITS) attempt to solve this problem
by exploiting the advances in information technology, for
example, dynamically controlling traffic lights based on traffic
conditions and routing vehicles using current and historical
traffic information.

Intelligent Transportation System is one of the major
applications of the Internet of Things (IoT) technology, which
measures traffic conditions using various sensors including
cameras, loop detectors, and mobile devices, and collects
traffic-related data through communication channels and
then shares the data among vehicles on the road and road
facilities, for example, traffic lights and ramp meterings. As
several commercial platforms supporting the IoT architecture
have come into the market [2, 3] and wireless communication

technologies have been advanced, a car has become a sensor
platform and an essential element of Internet of Vehicles, a
representative instantiation of the IoT [4]. The technology
development and large-scale employment of the IoT intro-
duce new services and also make the existing services more
reliable and more sophisticated. One example is intelligent
vehicle navigation service which computes the least travel
time path or the most economical path based on real-time
traffic information rather than the traditional shortest path.

Specifically, we consider in this paper the scenario where
current traffic information is collected by the central vehic-
ular routing system using in-car navigation systems, traffic
sensors deployed in the road network, and other applications.
The routing system then computes the shortest path for
a given origin-destination (OD) pair at the request of an
individual vehicle and sends the route to each vehicle. Such
a system may reroute the path as updates of traffic conditions
continue to become available [5, 6].

For such a central vehicular routing system to oper-
ate efficiently, it is critical to incorporate predictive traffic



information. Otherwise, traffic routing would suffer from the
instability problem; that is, a road segment with little traffic
can quickly turn into a heavily congested segment as many
vehicles are routed or rerouted through this road segment
at the same time. This is because the system computes
for each vehicle its shortest path independently using the
current traffic condition without taking into account other
vehicles routed concurrently. In other words, instability arises
primarily because every vehicle responds to the same traffic
conditions with lack of knowledge about other vehicles.

In this work, we show that predictive traffic informa-
tion is important to improve road efficiency. We develop
a routing algorithm called Dynamic with prediction that
periodically reroutes all vehicles based on current and pre-
dictive traffic conditions. The central routing system collects
all the routing requests from the vehicles arriving at any
nodes (intersections) and randomizes the order of priority
of the requests. From the highest priority order to the
lowest, the central routing system computes new routes
considering the real-time traffic information and anticipatory
traffic changes on the links which will be occupied by the
vehicles with the higher priorities. We compare Dynamic
with prediction with two other routing strategies, namely,
Static and Dynamic. In the Static routing, vehicles fol-
low the routes computed initially without changes, and in
Dynamic, vehicles are rerouted periodically like Dynamic
with prediction, but only using the current traffic condi-
tions.

We develop a microlevel traffic simulator and use it to
evaluate the performance of the Dynamic with prediction
routing. The simulator consists of a map creator, a traffic
generator, a routing controller, a vehicle simulator, and a
performance evaluator. Although several microtraffic simu-
lators are available commercially or for research purposes
(e.g., VISSIM [7], VISSUM, and CORSIM [8]), they are not
suitable to test our routing algorithms mainly due to their
rigid routing policy. We use OpenStreetMap [9] to create a
realistic map and parse the map to extract the information
that we need for simulation.

Mean travel time, which is the average time taken for
all vehicles to move from the origin to the destination,
is popularly used for performance evaluation [10, 11]. This
metric, however, does not reveal travel time variations effec-
tively that may be more important for individual driver
experience. For example, mean travel time can be similar
in two vastly different cases with respect to travel time
distributions. We develop a new metric that captures the
travel time distribution of entire vehicles and evaluate the
performance based on this metric. Our results indicate that
Dynamic with prediction effectively reduces travel time in
comparison to the Static and Dynamic routings under a
variety of traffic conditions.

The rest of this paper is organized as follows. Section 2
formulates our problem and discusses related work. Section 3
discusses details of our simulator, and Section 4 presents
the three routing algorithms that we develop and com-
pare. Section 5 defines metrics for performance evaluation.
Section 6 presents results and their analysis followed by
conclusions and future work in Section 7.
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2. Related Work

Vehicular route guidance deals with the problem of assigning
an optimal path to each vehicle from its origin to the
destination. The optimality in this problem is defined on
several criteria, for example, the shortest path, the shortest
time, and the least usage of local paths. The traditional routing
algorithms embedded in vehicle navigation systems used only
road network features and have evolved to consider real-time
traffic information in part thanks to broadcasting networks
such as DAB in Europe and DMB in Korea [12, 13]. Recent
navigation software runs on mobile platforms and receives
route updates periodically from a central telecommunication
center over the cellular network [14, 15]. While both real-
time traffic information and historical data are used to
compute those route updates, the effects of individual routing
decisions on overall system stability are not considered and
well studied.

In the literature, there have been attempts to design route
guidance strategies that effectively find shortest paths for
given OD pairs while achieving stability when road networks
are large and dynamically change. Claes et al. [10] develop
a decentralized routing guidance system for anticipatory
vehicle routing in which vehicles are routed based on cur-
rent as well as forecast traffic information. Their system is
modeled after the food foraging mechanism in ant colonies
using pheromones. Multiagents are deployed in vehicles,
infrastructure, and the central server, and they collect and
communicate traffic information to compute the best path for
a given OD pair. Most literature on dynamic routing systems
did not show the details of how traffic prediction is obtained
or how routing algorithm deals with traffic predictions. There
are some dynamic routing algorithms receiving a traffic
prediction as an input, but the prediction is based on a traffic
flow model or traffic history [16, 17].

Most commonly used routing algorithms are Dijkstra’s
and A™ algorithms. One fundamental problem with them is
their prohibitively high time complexity when the number of
nodes (intersections) in the network increases. Jagadeesh et
al. [18] use hierarchical routing to reduce this time complexity
and propose a simple heuristic method that compensates
the loss of accuracy in route quality, which is inevitable in
hierarchical routing. Motivated by the same problem, Song
and Wang [19] also use hierarchical routing but rather focus
on scalability by reducing heavy precomputation, storage,
and querying costs. They use recently discovered aspects
of network topology, specifically hierarchical communities,
to decompose the network and to design a heuristic for
fast search. While lowering the computational complexity
of routing algorithms is important, rerouting as the traffic
conditions dynamically change is another critical challenge.
There have been several attempts to tackle such a problem
using different approaches including dynamic programming,
genetic algorithms, and hierarchical routing [20-22]. Kim et
al. show that dynamic route determination can be modeled
as a Markov deception process and propose procedures for
identifying unnecessary traffic data that can be removed
for route decision making. Using their approach, we can
selectively use only a subset of vast real-time traffic data in
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route selection; otherwise, dealing with all of the incoming
data will be computationally challenging.

Forecasting traffic conditions has been investigated as an
important problem in ITS research. Lv et al. and Huang et al.
adopt a deep learning approach and architecture [23, 24] to
predict traffic flows. Abadi et al. [25] propose a traffic flow
prediction algorithm with current demands, historical data,
and limited real-time data based on an estimated dynamic
origin-destination matrix and simulations. Recent work on
traffic flow prediction or forecasting can be found in [23, 26].
To the best of our knowledge, however, the traffic prediction
methods used by the work in the literature do provide system-
wide optimal route guidance.

3. Traffic Simulator

In this section, we discuss our approach for creating a map,
running an experiment, and modeling roads and vehicle
movement in the simulator.

3.1. Map Creation. The first step in a simulation is to create a
map where a vehicle moves from the source to the destination
passing through intersections. We consider the map as a
graph & = (A, &), where 4 is a set of nodes and &
is a set of edges. A node »; denotes an intersection where
traffic light systems are in operation, and an edge ¢;; denotes
a road segment from n; to n; in the road network. Our
simulator reads the map as an image and converts it into
an adjacency linked list, which is a data structure popularly
used to represent a graph. A major challenge is to automate
this map creation process, so that the user does not need
to manually create a complex map, which is tedious and
time consuming; for example, the user needs to enter map
information manually with CORSIM [8] and VISSIM [7]. We
use OpenStreetMap [9] for this purpose. With the help of
OpenStreetMap, we can grab an area of interest of the map
image and convert that into an XML file. We then parse the
XML file filtering unnecessary information (e.g., stores and
gas stations) leaving only the information that we need such
as intersections and road segments between intersections. We
can extract the properties of each link and node including the
number of lanes, the distance of a link, and even speed limits.
After parsing, our preprocessor converts the simplified XML
file into a target adjacency linked list. The preprocessing steps
for map creation are summarized in Figure 1.

In our simulations, we use a real map topology instead of
artificially made ones, namely, the Greater Rochester area in
New York, the United States, as shown in Figure 2.

3.2. Simulator Structure. Our simulator runs on a discrete
time basis, which is modeled as time tick. Events occur at
each time tick such as vehicles movement, turning at inter-
sections, recomputing their routes, changing their next move,
departure from the origins, and arrival at the destinations. Of
course, the time tick value that represents the wall clock time
is parametrized to be changed according to the time scale in a
simulation, for example, 1 tick as 1 second in our experiments.
The overall simulator structure is illustrated in Algorithm 1,

where R(t) is the set of vehicles on the road at time ¢ and
N(R(t)) is the number of elements in R(t).

3.3. Modeling Roads and Vehicle Movement. An intersection
and the street between two intersections are modeled as a
node and a link in the graph, respectively. A vehicle arriving
at the intersection can proceed in three directions; namely, it
can turn left, go straight, and turn right. In the real world, the
vehicle goes straight or turns left/right following the traffic
lights, while no traffic light control exists in the simulator.
Each direction maintains a queue where incoming vehicles
await their turn. Since no trafhic light control is provided, the
vehicles in the queues can move to their next road segment
at every tick. However, if the next road segment experiences
traffic congestion, that is, there is no room for a vehicle
to enter, the vehicle needs to wait leading to delay at the
intersection. The delay in this case is the time elapsed from
when the vehicle arrives at the queue to when the vehicle
departs the intersection.

A road segment has three primary properties: distance,
the number of lanes, and capacity. The capacity of the road
segment is defined as the number of vehicles in transit and
can be computed as the product of distance and the number
of lanes. Different road segments have different capacities.
For example, highways have high capacity mainly due to long
distance, road segments in downtown in a metropolitan area
have high capacity due to the high number of lanes, and local
roads have low capacity due to short distance and the small
number of lanes.

Several car-following models exist in the literature [27],
and these models can be used to keep track of the position
of each vehicle on the road. For simplicity, however, we use a
vehicle moving rule instead based on traffic conditions. The
velocity of a vehicle v on a road segment is determined by

Vmax P = Pon
V=19 Vmin — V @
M M (5 — p) + Vinax  Otherwise,
1= py

where v, and v, ;, are the speed limit and the minimum
speed of the segment, respectively, p, is a constant between
0 and 1, and p is the ratio between the number of current
vehicles and the maximum number of vehicles that the road
segment can accommodate denoted by N, which is in turn
computed as

ax’

dL
N = 2
1 @
in which d is the length of the road segment, L is the number
of lanes, I, is the average length of a vehicle, and 4 is the
average headway. An example of a vehicle’s velocity is shown
in Figure 3.

4. Routing Controller

Using the map, roads, and vehicle movement defined earlier,
we design a routing controller in this section. We first discuss
how travel time is estimated and then provide details of our
route guidance algorithms.
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FIGURE 2: A map of the Great Rochester area in New York, the United States.

FIGURE 3: Example of a vehicle’s velocity curve (v, = 60km/h,

Vmin = 12km/h, and py, = 0.3).

max

4.1. Travel Time Estimation. Two types of delay arise as a
vehicle travels: (1) delay to travel from one intersection to
another and (2) delay waiting at an intersection. The latter
is hard to measure because it depends on traffic signals with
probabilistic characteristics. In this research, we focus only
on delay on road segments (the former, also known as link
delay) for route guidance, and the latter will be dealt with in
the future work. Specifically, we estimate delay d;; on link ;;
as follows:

ij
dij = Z > (3)
]

where [;; is the length of ¢;;, that is, the distance from n; to n;,
and v;; is the velocity of a vehicle on the link calculated by (15.

4.2. Route Guidance. With this estimated link delay, our route
guidance mechanism directs each vehicle to its destination
along a high-quality path. We assume that a central server
possesses the entire map information including vehicle posi-
tions, delays at both intersections, and road segments and
computes paths for all vehicles. Before a vehicle leaves from
the origin, the vehicle sends its routing request to the server,
which in turn computes the shortest path from the origin to
the destination. The vehicle may be rerouted in the middle
of travel. We use a well-known single-source shortest path
algorithm like the Dijkstra or Bellman-Ford algorithms [28]
for routing.

We formally define network state X () as a column vector
of all link delays. Let us consider a road network with three
vertices, n,, n,, and n;, and the corresponding edges e,,, e,3,
and e, ; as shown in Figure 4. Then the state at time t is X(¢) =
[diy(t) dyy(t) dys(t) day(t) dys(t) dsy(£)]7, where d;;(t) is
the delay from n; to n; as a function of time representing
the dynamic nature of the traffic network. The three routing
strategies that we use and compare for route guidance are
described in the following in detail.

(i) Static Routing. For a vehicle with an OD pair generated
at time ¢, we find the shortest path from the origin to the
destination using X(t). This vehicle does not change the route
until it reaches the destination.

(ii)) Dynamic Routing. Unlike static routing, we reroute all
vehicles periodically. When a vehicle arrives at any intersec-
tions at time ¢, it is rerouted based on the current traffic
conditions which is represented by X(t). This rerouting
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FIGURE 4: An example of simple road network and notations.

(1) t « 0 & Continue «— TRUE

(2) empty R(t)

(3) N « Number of vehicles generated at each tick
(4) while Continue = TRUE do

(11) for i — 1,N(R(#)) do
(12) Update position

(20) end for

(22) endif
(23) te—t+At
(24) end while

(5) if Vehicles to be generated remain then

(6) Generate N vehicles

(7) Update R(t) to include generated vehicles
(8) Assign OD pairs randomly for N vehicles
9) Get a route guidance for N vehicles

(10) endif

(13) if Arrive at the destination then

(14) Store time t & Remove from R(t)

(15) else

(16) if Dynamic routing algorithm & Arrive at a node then
(17) Get a new direction for the next link

(18) end if

(19) end if

(21) if R(t) is empty then Continue = FALSE

ALGORITHM 1

repeats at every intersection through the journey until the
vehicle reaches its destination.

(iii) Dynamic Routing with Prediction. One potential draw-
back of dynamic routing is its limited knowledge on future
network states since it only utilizes current traffic information
when rerouting vehicles. So, all vehicles arriving at the same
intersection with the same destination will be guided into
same links, which may lead to traffic jam on those links. One
way to mitigate this problem is to consider the network states
at time t + k, kK > 0, when vehicles are routed at time t.
In other words, dynamic routing is extended to incorporate
predictive information. Unlike many other researches on
dynamic routing algorithm in which traffic conditions are
predicted statistically with a long time horizon, for example,
30 minutes or 1 hour, our proposed algorithm corresponds to
the case when k = 1. Prediction over multiple ticks (which is

proportional to the prediction time horizon) is not necessary
because we reroute all vehicles at every tick. There is no
guarantee that vehicles will travel as predicted after multiple
ticks elapse. They will receive new routes calculated using
updated traffic condition.

At time ¢, a priority order is randomly generated for
each vehicle arriving at intersections. Let k be the number of
vehicles to be rerouted at time ¢. We define an order function
I(-) that maps integers 1 to k to randomly arranged k vehicle
IDs. The vehicle with ID I(1) is rerouted first, the vehicle
with I(2) is rerouted second, and then the vehicle with I(3) is
rerouted. The random function I(-) is different at every time
t.

When the first vehicle is rerouted to one of the links
connected to the current node, this link will be occupied
by the vehicle at time t + 1. This prediction is taken into
account when the second vehicle is rerouted. After the second
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(1) Update X(t) & C(t)
(3) X,(1) — X(¢)

(5) for i «— 1,k do

(8) end for

(2) k « the number of vehicles arriving at some nodes
(4) Create an order function I with integers 1 to n randomly arranged

(6) Get a routing guidance for vehicle with I(7) based on X P(i)
(7) Update X P(i + 1) including vehicle with I(i)’s route

PSEUDOCODE 1

rerouting is completed, another change is predicted on the
link into which the second vehicle is guided. The change
caused by the second vehicle as well as the first vehicle is taken
into consideration when the third vehicle is rerouted, and
this process continues until all k vehicles are rerouted. This
means that the road segments which will be occupied by the
already rerouted vehicles are penalized when the next vehicles
are rerouted, so the penalized roads have lower chances to be
selected by the vehicles rerouted later.

The pseudocode for dynamic routing with prediction
is described in Pseudocode 1, where C(t) is the set of all
the vehicles arriving at some nodes, X(f) is the state vector
representing the current traffic condition, and X p(i) is a
temporary state vector that takes into account the predictive
future traffic condition caused by previous rerouted vehicles
with I(n),n=1,...,i— 1.

5. Performance Metrics

Most intelligent traffic control systems use the average time
elapsed from departure to arrival for all vehicles. Specifically,
the metric widely used is given by

AN
ﬁ;Tm OF (4)

where N is the number of vehicles and T),,(i) is the measured
travel time of the ith vehicle. This measure, however, does not
provide traffic conditions that individual vehicles experience
accurately. For an example, assume that three vehicles trav-
eled as shown in Table 1. The average travel time for three
vehicles is 1 hour. However, Vehicle #1 experienced heavier
traffic, compared with Vehicle #2 and Vehicle #3. It can be told
that Vehicle #2 took a journey without any traffic interrupts.
However, the metric like (4) does not inform such individual
experiences.

Motivated by this drawback, we develop a new perfor-
mance metric that evaluates traffic conditions more accu-
rately. Our metric is defined as

M (ex) = Percentage of the vehicles that satisfy

(5)
T,<(1+a)T,,

where T,, is the measured travel time of a vehicle, « is a
parameter, and T, is the expected shortest travel time of the
vehicle, that is, the time taken by the vehicle to travel from the

TABLE 1: A simple example of vehicle travel time.

Estimated Measured travel
Vehicle ID shortest travel .
. time
time
1/6 of an hour 1 hour
1 hour 1 hour
1/2 hour 1 hour

origin to its destination along the shortest route without any
traffic interruptions.

One interpretation of this metric is that the higher M(«)
is, the better the performance is, for a fixed a. For example,
if routing algorithm A gives a higher percentage of vehicles
whose measured travel time is less than or equal to 120% of
the expected shortest travel time than routing algorithm B
does, then more vehicles by algorithm A than algorithm B
finish their travels in the 20% extended time. Note that the
conventional average travel time metric like (4) does not tell
about such a distribution of travel time.

Of course, instead of the percentage value of the vehicles
satisfying (5), we can compute « as the percentage values
change. In such a case, for a fixed percentage value, smaller
« values imply better performance. For instance, algorithm
A performs better than algorithm B if algorithm A gives 50
vehicles satisfying (5) with « = 0.1 and algorithm B gives 50
vehicles with o = 0.2 for a total of 100 vehicles. In this case, the
vehicles following algorithm A travel in less time than those
following algorithm B for the same number of vehicles.

For ease of computation, we define (i) for a vehicle i as

L0

B@@) = T. () (6)
With f3(i), M(«) is now computed as
 ON(fi1 B0 <) ;
M (e) = # of vehicles routed 100. )
In addition, we define
1 N
B N;ﬁ

Note that f3,, is similar to the average travel time in (4) as
large (small) 8, corresponds to large (small) average travel
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TaBLE 2: Comparison of M(«) values for the routing strategies when « = 0.1, 0.2, 5, and 10 and vehicles are generated at rate = 1, 2, 5, 7, and

10 per sampling time.

Gen. rate Algorithms M(0.1) M(0.2) M(5) M(10)
Static 74.32 98.85 100.00 100.00

1 Dynamic 74.32 98.85 100.00 100.00
Dynamic/prediction 73.01 97.20 99.99 100.00

Static 69.76 98.68 100.00 100.00

2 Dynamic 69.76 98.68 100.00 100.00
Dynamic/prediction 68.37 93.83 99.98 100.00

Static 52.14 67.59 84.10 95.51

5 Dynamic 52.17 67.59 84.10 95.51
Dynamic/prediction 53.75 74.54 99.19 99.95

Static 48.53 66.83 78.19 88.66

7 Dynamic 48.60 67.01 78.18 88.64
Dynamic/prediction 47.48 72.57 93.32 98.60

Static 38.52 55.90 75.325 84.65

10 Dynamic 35.76 52.94 7771 86.57
Dynamic/prediction 34.26 51.25 91.20 96.68

time. Moreover, a large f3,, suggests heavy traffic conditions
during simulation, about which a simple average travel time
does not give any information.

6. Simulation Results

We compare the performance of the routing strategies dis-
cussed in Section 4 using the developed traffic simulator.
The results are analyzed based on the metrics proposed in
Section 5.

6.1. Vehicle Generation Rates. We first examine which routing
strategy minimizes M(«) for different vehicle generation
rates. For this experiment, we use a part of the Rochester
map with 337 intersections and a total of 20,000 vehicles
generated. The vehicle generation rate varies from one to 10
every sampling time. The simulation begins when the first
vehicle departs the origin and ends when all the vehicles
generated arrive at their destinations. The results are sum-
marized in Table 2. As an example, M(0.1) when Dynamic
with prediction is used is 53.75% when the vehicle generation
rate is 5. This means that 53.75% of the vehicles arrive at
the destinations with S(i) < 0.1, that is, less than 110% of
the shortest expected travel time. The results show that the
values of M(«) decrease in general as the vehicle generation
rate becomes high (from 1 to 10), which indicates that more
vehicles arrive at their destinations late. This is because more
vehicles are added to traffic over a fixed duration as the rate
increases.

These results are also graphically depicted in Figure 5.
Note that more vehicles arrive at their destination close to
the shortest travel time with higher M(«) values. In the
figure, all the algorithms perform similarly under light traffic
conditions regardless of o, whereas Dynamic with prediction
outperforms the other two under heavy traffic conditions, for
example, when the vehicle generation rate is 7 or 10.

TABLE 3: 3, for Static, Dynamic, and Dynamic with prediction with
different vehicle generation rates.

Generation rate Algorithms B
Static 0.087
1 Dynamic 0.087
Dynamic/prediction 0.102
Static 0.090
2 Dynamic 0.090
Dynamic/prediction 0.121
Static 1.929
5 Dynamic 1.929
Dynamic/prediction 0.455
Static 2.883
7 Dynamic 2.888
Dynamic/prediction 0.913
Static 3.707
10 Dynamic 3.283
Dynamic/prediction 1.450

In addition, we compute [3,, (similar to average travel
time) for the routing strategies and compare them under
the same traffic conditions as Table 3. Like M(«), Dynamic
with prediction shows the lowest [3,, values under heavy
traffic conditions, while all the three algorithms behave
similarly when not many vehicles are on the road. With
higher vehicle generation rates, f3,, for the Static and Dynamic
algorithms increases more abruptly than that of Dynamic
with prediction, as shown in Figure 6. It can be interpreted
as Dynamic with prediction results in low average travel
time and low M(«) while being more robust to dynamically
changing traffic conditions.

6.2. Map Topology. Our routing strategies are also tested with
five different maps for more reliable performance evaluation.
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FIGURE 5: M («) under various vehicle generation rates: blue = Static, red = Dynamic, and green = Dynamic with prediction.
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FIGURE 6: f3,, under various vehicle generation rates (blue = Static, red = Dynamic, and green = Dynamic with prediction).

Specifically, the number of intersections in the maps is 79, 144,
199, 255, and 337, in which different areas of the Rochester
map are included with various numbers of intersections. In
Figure 7, the results (f3,,) are plotted in both relatively light
and heavy traffic cases, when the vehicle generation rate is 10
in Figure 7(a) and the rate is 20 in Figure 7(b).

In Figure 7(a), the Dynamic with prediction algorithm
exhibits the lowest f3,, for all the maps but the number of
intersections equals 255. This trend is more pronounced in
Figure 7(b) where heavy traffic occurs. We observe that all
the algorithms perform poorly with high 8, and Static yields
slightly lower f,, than the other two when the number of
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FIGURE 7: Use of different routing strategies on various road maps (blue = Static, red = Dynamic, and green = Dynamic with prediction).
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FIGURE 8: M («) with different numbers of intersections (blue = Static, red = Dynamic, and green = Dynamic with prediction).

intersections equals 255. Although the reason behind this
outlier is not clearly understood, we surmise that certain
properties of map topology affect the performance.

The results of M(1) and M(10) are also plotted for the
same data set in Figure 8. We see that M(1) and M(10) of
the Dynamic with prediction algorithm are higher than the
others for all the maps including the number of intersection

equal to 255, and this observation is more pronounced in
M(10), which is under heavy traffic.

6.3. Coexisting Routing Strategies. In practice, it is unlikely
that all the vehicles in a particular region adopt a new
route guidance system altogether at the same time, not to
mention to convince all the drivers to comply with the
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FIGURE 9: f3,, as vehicles following Dynamic with prediction coexist with the ones using the Static routing and their percentage increases

from 0% to 100%.

routing guidance. Hence, it is important for our system to be
incrementally deployable, not to disrupt the existing system,
but to gradually improve the overall performance. To get
a glimpse on how well our routing strategies coexist with
others, we measure f3,, at different compliance levels. We
define a compliance level as the percentage of the vehicles that
follow a dictated routing guidance. We assume that the rest of
the vehicles use the Static algorithm for their routing; that is,
these vehicles drive through the best route given at departure
and do not comply with rerouting decisions provided by the
central routing controller. For this experiment, we use a map
of 337 intersections with 20,000 vehicles generated at a rate of
5 vehicles per sampling. Note that other cases show a similar
trend.

In Figure 9, the f3,,, results of vehicles using the Dynamic
with prediction routing are illustrated as their compliance
level changes from 0% to 100%. The results were obtained by
10 simulations with different random seeds. The case with 0%
indicates that all vehicles follow the Static routing algorithm,
whereas the case with 100% means that all vehicles comply
with Dynamic with prediction. In the figure, f3,, is high
(a little less than 2) when the compliance level is 0% and
monotonically decreases as the level increases to 100% (less
than 0.5). More interestingly, f3,, drops sharply at around
the compliance level of 30% implying that more than half
of the travel time reduction already occurs then. Nearly all
travel time reduction occurs at the compliance level of 50%.
This result demonstrates high potentials of the Dynamic with
prediction routing algorithm, as the results imply that the
algorithm can be deployed for higher road efficiency even
when not all the vehicles are equipped with the new routing
guidance and even if not all the drivers comply with the
guidance.

7. Conclusions and Future Work

We have demonstrated that traffic routing can benefit from
using predictive information as it helps reduce travel time and
improve road efficiency based on simulation studies. We pro-
pose a traffic routing algorithm that utilizes both current and

near-future traffic conditions using already routed vehicles.
The performance of this routing algorithm is evaluated via
simulations under various traffic conditions including light
and heavy traffic and small to large areas of the road network.
Our results show that the algorithm outperforms other more
conventional ones and also successfully reduces travel time
even when not all vehicles comply with the guidance of the
algorithm.

This study has some limitations including the assump-
tions made in the simulator, for example, traffic light control
at intersections. A more realistic simulation may be possible
with traffic light control, car-following dynamics, lane change
rules, and routing algorithms that take into account inter-
section delays. Such simulations will certainly help assess the
proposed algorithm more accurately.
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