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The learning effect has gained much attention in the scheduling research recently, where many researchers have focused their
problems on only one optimization. This study further addresses the scheduling problem in which two agents compete to perform
their own jobs with release times on a common single machine with learning effect. The aim is to minimize the total weighted
completion time of the first agent, subject to an upper bound on the maximum lateness of the second agent. We propose a branch-
and-bound approach with several useful dominance properties and an effective lower bound for searching the optimal solution and
three simulated-annealing algorithms for the near-optimal solutions. The computational results show that the proposed algorithms

perform effectively and efficiently.

1. Introduction

In traditional scheduling problems, most studies assumed
that each of the operations of all job processing times
is known and fixed. But in some circumstances, the jobs
processing times are affected by learning effect. The “learning
effect” is the phenomenon that unit costs reduce as firms
produce more of a product and gain knowledge or experience.
Biskup [1] and Cheng and Wang [2] first brought the phe-
nomenon of learning effect into scheduling field. Afterwards
the learning effect is getting much to pay attention in the
scheduling research in the last decade such as Mosheiov [3],
Mosheiov and Sidney [4], Bachman and Janiak [5], Lee and
Wau [6], Kuo and Yang [7], and Koulamas and Kyparisis [8].
Biskup [9] provided the most recent learning effects survey
paper in scheduling research. More recent studies involving
learning effects were by Wang et al. [10], Janiak and Rudek
[11], Yin et al. [12], Toksari and Gtiner [13], Wang et al. [14],
Lee et al. [15], J.-B. Wang and C. Wang [16], Wu et al. [17],
Zhang et al. [18], Yin et al. [19], and Yang et al. [20], Yang et al.
[21], Wang et al. [22], ].-B. Wang and J.-]. Wang [23], Cheng
et al. [24], and so forth.

In addition, most research assumed that all jobs met a
single criterion. But jobs might come from different agents.
There might be multiple agents who compete on the same
resources, and each agent has its own objective. This concept
was first initiated and considered into scheduling field by
Baker and Smith [25] and Agnetis et al. [26]. After that time,
many researchers focused on multiagent in scheduling field.
However, little research has been done on scheduling problem
with learning effect and multiagent. Liu et al. [27] studied
the optimal polynomial time algorithms to solve a single-
machine scheduling problem with two-agent and position-
dependent processing time aging and learning effect. The
objective is to find a schedule that minimizes the total
completion time of the first agent with a maximum cost limit
of the second agent. Cheng et al. [28] investigated a two-
agent single-machine scheduling problem with a truncated
sum-of-processing times-based learning effect and developed
algorithms to minimize the total weighted completion time
of the jobs of the first agent, subject to the restriction that
no tardy job is allowed for the second agent. Li and Hsu
[29] investigated the job scheduling problem of two agents
competing for the usage of a common single machine with



learning effect. The objective is to minimize the total weighted
completion time of both agents with the restriction that the
makespan of either agent cannot exceed an upper bound.
Wau et al. [30] address a two-agent single-machine scheduling
problem with the co-existing sum-of-processing times-based
deteriorating and learning effects. The goal is to minimize the
total weighted completion time of the jobs of the first agent
given that no tardy job is allowed for the second agent.

The previous both scheduling issues were yet relatively
unexplored. In this paper, we therefore study a two-agent
scheduling problem with position-based learning competing
on a common single machine and further consider each job
a different release time. The objective is to minimize the
total weighted completion time of first agents, subject to
the constraint that the maximum lateness of second agent
the jobs cannot exceed an upper bound. In the classical
scheduling notation, the problem can be notated by a triplet
as 1 | r p]k = pXk“ | ZwACA LB < Q. As shown
by Agnetrs et al. [26] itisa Blnary NP- hard problem, even
without release time and learning effect (1 || ) wACA fmax)

The rest of this paper is organized as follows the
problem formulation is introduced in the next section. The
branch-and-bound and simulated-annealing algorithms are
employed to find the optimal solution and the near-optimal
solutions, respectively. Dominance properties and a lower
bound are developed to be used in the branch-and-bound
algorithm in Section 3. The details of simulated-annealing
algorithm are described in Section 4, and the computational
experiment results are given in Section 5. In the last section,
some conclusions and extensions are presented.

2. Problem Formulation

In this section, we describe a formal definition of the model
as there are » jobs from two competing agents (X = agent A
or agent B) to be scheduled. The number of jobs in the two
sets is recorded as n* and #”, such that n = n* + n®. The
processing time and weight of job j are known and denoted
as pj( and wj.( , respectively. Based on the learning effect, the
actual processing time p‘i of job j changes with position k

% where a < 0 and

and learnmg ratio g, that is p = pXk
k=1,2,.

Furthermore, we consider the problem of scheduling a
set S of n independent jobs with integer release times (1)
on single machine. The goal is to minimize the weighted sum
of completion times of the jobs from agent A, subject to the
constraint that the maximum lateness of the jobs from agent
B is not more than a given upper bound Q.

3. Branch-and-Bound Algorithm

The computational complexity of this problem does not
consider ready time and learning effect (1 || ). ij? : frﬁax),
which is showed a Binary NP-hard problem by Agnetis et al.
[26]. Therefore, the addressed problem here (1 | rj.(, pﬁ =

pfka | Y ij;\ : L2 ) is more complex than the problem
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(r | ijC}4 : fB ). We basically try to employ the
branch-and-bound algorithm to gain the optimal solution,
and for speeding up the searching process, several dominance
properties and a lower bound were presented in the following.

3.1. Dominance Property. Suppose that there are two con-
tiguous jobs (]iX and ]]X) in sequence S; = (m, ]iX,]]X, 7°),
where 7 and 7z° denote the scheduled and unscheduled partial
sequence, respectively. One can perform the contiguous
jobs X and ]JX interchanges to obtain another sequence
S, = (m, ]X, ]I.X, 7°). To show that S; dominates S,, it is
sufficient to ensure Cj((Sl) < C,-X(Sz) or [wiXCf((Sl) +
waf(Sl)] < [w;XC;X(Sz) + wj(Cj((Sz)]. Before proving the
proposed properties, we let t denote the completion time of

the last job in the scheduled partial sequence 7 to determine
the following properties.

Propertyl If]lx, ]X e J4, max{rA t} = max{r], t}, pf* < p}d‘,

and w > w , then S; dominates S,.

Proof. By the definition, the completion times of jobs J;* and
J JA in §; and S, are, respectively,

C(8) = max{r, 1} + p'k
C}(8,) = max{max {r/', ¢} + p/'k*,r }+p](k+1)
CH(S,) = max{ri,t} +pfk”, ®
C1H(52) = max max i + ik, )+ ik 1"

= max {r, t} + pk® + pk + 1)".

Since max{rf, t} > max{rl-A, t} and pf‘

Cf(Sz). Moreover,

< iy CiS) <

WiCH (5,) + w'Cl (5:) - (wf'CH () + wC) (1)
- wf (max {r.t} + )
w] (max {rf, ¢} + pk® + plte + 1)%)
wf (max it} + ')

{max {r], ¢} + p&”

)+ pjk)

w! (max it pie+1)%)
> wf (max [
+w) (max {rf', t} + pik® + pf(k + 1)?)
rfs e+ oK)
wi (max {rf, ¢} + p/'k® + pif e + 1))
(

- max o)

(max

(w + w; ) max{
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+ wf‘p‘.“k“ +w (pfk“ + pi(k+ 1))

—wpk® - wj‘ (pi'k" + pf(k +1)%).
)

By p* < p;\ and w?* > w;‘, we have

wfpfk“ +w’ (pfk“ + pi(k + 1)“) “

—w plk® - w;‘ (P + p}“(k +1)%) > 0,
hence [w*CA(S,) + waj‘(Sl)] < [wiCAS,) + w;‘Cf(Sz)], as
required. O

The proofs of Properties 2-4 are omitted since they are
similar to that of Property 1.

Property 2. If ¥, ]JX eJ4, 7’;-4‘ > max{r{’, t} + p{'k”, and p{* <

p;‘, then S; dominates S,.

Property 3. If JX, ]JX e 77, max{max{r/,t} + P,‘Bkan} +

pf(k+ 1)“—d? < 0, and max{riB,t}+pin“—df3 <0<

max{max{rf, t}+pfk“, riB}+pIB(k+ 1)“—d?, then S, dominates
S,.

Property 4. If IiX e JA, ]]X e JB, max{rf, t} > max{riA, t},
plA < pf, and max{max{rlfq, t}+plAk“, r}g}+pf(k+1)“—df <Q,
then S; dominates S,.

In addition, let (77, 7°) be a sequence of the jobs where 7
is the scheduled part with k jobs, and 7 is the unscheduled
part with (n — k) jobs. The following property is found for
determining the sequence feasibility by the unscheduled J f .
Moreover, Cyy; is the completion time of the last job in 7.

Property 5. If there is a ]}3 in 7° such that max{C[k],rf }+

pf n’ —d? > Q, then sequence (71, 1°) is not a feasible solution.

Proof. Since max{Cy, rf b+ pf n® — df > Q, lateness of
the unscheduled jobs J f must exceed the given bound Q. So
(77, %) is not a feasible sequence. O

The next property is for assigning the unscheduled | ;‘ in
(k + 1)th position.

Property 6. Ifall the unscheduled jobs belong to J* and there
exists an ]J‘.A such that max{C;, r}q} + p;‘(k +1)% < r*, where
r* = min{rlfq} for all jobs ],-A € n° and ]iAqE]]A, then job ]]‘-4
may be assigned to the (k + 1)th position.

3.2. Lower Bound. In addition to the previous properties, we
hatch up alower bound to speed up the building of searching
trees in the branch-and-bound algorithm. Assume that PS
and US are the two partial scheduling sequences. PS is the
scheduled k jobs, and US is the remaining (n—k) unscheduled
jobs in which n, is agent A jobs and n, is agent B jobs, where

n, + n, = n — k. The lower bound is obtained by scheduling
agent A jobs first and then scheduling agent B jobs in any
order. To elaborate this, let Cfi be the completion time of the
last job in PS; then the completion time for the (k + 1)th job
is

A X A A a
Ciroy () = max {Cfi (S), fiuyy} + Plrsy (K + 1)
> rf,‘m] + pfl‘m](k +1)° (4)

A A a
2 ey + Plee)™ -

Similarly, the completion time for the (k + ) job is

A A A A
C[k+l] (S) = max {C[k+l—1] (), r[k”]} + P[k+l] (k + l)a 5
5
A A
= r[k+l] + p[k+l]naa 2< l < ng.
Hence the lower bound of the partial sequence PS can thus be
found as follows:
= AcA | @ A A, A
LB = ijC].+n ij(r], +pj)_ (6)
JieAs JAeus

4. Simulated-Annealing Algorithm

The simulated-annealing algorithm is one of the meta-
heuristic methods to solve large-scaled combinatorial mini-
mization problems [28, 31-34]. It was first described by Kirk-
patrick et al. [35] based upon the research of Metropolis et al.
[36]. The major advantage of this approach is that it avoids
getting trapped in local minima for global optimization by
controlling the parameter which influences the probability
of accepting a worse solution in the iterative process. Here,
we employ SA algorithm to obtain near-optimal solutions as
described in the following.

Step 1 (initial feasible solution). An initial feasible sequence
was generated by putting agent B in front of agent A for
considering the conditionality objective. Thus, we employ the
earliest due date (EDD) rule for agent B first, and for agent
A, four different rules are employed as EDD rule, shortest
processing time (SPT) rule, shortest release time (SRT) rule,
and weighted shortest processing time (WSPT) rule; they
were denoted by SA|, SA,, SA;, and SA,, respectively.

Step 2 (adjusting the solution). To improve on the initial
schedule, we shift the neighborhood job schedules. The
exchange sequence strategy procedures were to choose two
different locations randomly and irregularly select one of
the three resources (pairwise interchanges, extraction, and
forward/backward shifted reinsertions) to ameliorate the
quality of the SA.

Step 3 (acceptance probability). If there exists a new schedule
that improves the value of the objective, it replaces the
previous schedule. Besides, the SA algorithms prevent it to
get stuck to local minima with an acceptance probability. The
acceptance probability, given in the next equation, is based on
the exponential distribution:

P (accept) = exp (-1 x AWC), (7)



where A is the control parameter and AWC is the variation
of the objective value. If P(accept) > rand(0,1), the new
sequence is accepted, otherwise new sequence will be reject-
ed. Ben-Arieh and Maimon [37] suggested that A in the kth
iteration is

A, = 7 (8)
B
where f3is an experimental constant. After preliminary trials,
B =2 was used in our experiment.

4.1. Stopping Condition Iterations. The SA algorithms were
terminated after 300 iterations in our preliminary experi-
ments, where # is the number of jobs.

5. Computational Experiments

A computational experiment was conducted to assess the
performance of the proposed branch-and-bound algorithm
and the accuracy of the SA algorithms. All the algorithms
were coded in Compaq Visual Fortran version 6.6 and run
on an Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz with 4 GB
RAM operating system under Windows 7 environment. The
experimental design followed Chu’s [38] and Fisher [39]
framework, where the normal job processing times were
generated randomly from a uniform distribution over the
integers between 1 and 100; the release times were from a
uniform distribution over the integers (0, 50.5n1), where n
was the job size and A was a control variable; the due dates
were from a uniform distribution over the range of integers
T(1-t-y/2)toT(1-7+y/2), where T, 7,and y are the sum of
the processing times of all the jobs T = Y| p;, the tardiness
factor, and the due date range, respectively. Furthermore, the
bound Q was fixed at 0 and each agent has half of the total
number of jobs.

5.1. The Accuracy of SAs for Small Job Size. First, to assess
the accuracy of SA algorithms, the error percentage was
calculated as

(SA; - OP)

x 100%, )
oP

where SA; (i = 1,2,3,4,5) was the solution obtained from
the SA algorithm and OP was the optimal solution of the
objective function obtained from the branch-and-bound
algorithm. In the first simulation experiment, the job size (1),
tardiness factor (7), the due date range (y), and learning effect
(le) were fixed at (1,7, y,le) =(12,0.25,0.25, 80). The values
of A were taken as 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0,
and 3.0. For each situation, 100 replications were randomly
generated. The mean and maximum of the error percentages
were recorded in Table 1. The results showed that SA;, SA,,
SA;, and SA, are not affected by the variation of A. It was
observed that the mean error percentage of the SA algorithm
was less than 0.1352%. In order to diminish some peculiar
worst case of SAs, we combined the four SAs to obtain
SA; which was the smallest value of the objective function
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FIGURE 2: The performance of SA algorithm with respect to A.

obtained from the SAs. The mean error percentage of the SA;
was less than 0.0429%.

In another simulation experiment, variables were fixed at
(n,A,le) = (12,0.4,80). The values of (7,y) were taken as
(0.25,0.25), (0.25,0.5), (0.25,0.75), (0.5,0.25), (0.5,0.5), and
(0.5,0.75). For each situation, 100 replications were randomly
generated. The mean and maximum of the percentage errors
were also recorded in Table 2. The results were similar to the
former experiment. The mean error percentage of the SA;
was less than 0.0151%. By the two experiment results, it was
recommended to combine SAs into SA;.

5.2. Performance of the Branch-and-Bound Algorithm for
Small Job Size. To evaluate the performance of the branch-
and-bound algorithm, the mean and maximum numbers of
nodes were recorded as well as the computation times (in
seconds) to calculate the mean and maximum computation
times. In this simulation experiment, the parameters were set
as the job size (n = 12 and 14), release times control value
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TaBLE 1: The performance of the simulated-annealing algorithms at (1, 7,7y, le) = (12, 0.25,0.25, 80).
\ SA, SA, SA, SA, SA,
Mean Max Mean Max Mean Max Mean Max Mean Max
0.20 0.0252 0.6711 0.0326 1.2731 0.0294 1.2731 0.0239 1.2731 0.0020 0.2014
0.40 0.0539 1.9013 0.0724 1.9013 0.0911 1.9013 0.1352 5.8067 0.0151 1.4364
0.60 0.0433 0.9016 0.0954 5.5725 0.0803 4.4405 0.0919 4.6113 0.0103 0.3001
0.80 0.0595 1.8690 0.0412 0.4131 0.0465 1.6664 0.0543 1.7206 0.0062 0.1241
1.00 0.0710 3.7936 0.1013 3.7936 0.0994 3.7936 0.0907 3.7936 0.0429 3.7936
1.25 0.0423 0.2853 0.1068 5.7572 0.0433 0.4495 0.0371 0.6049 0.0045 0.0665
1.50 0.0359 0.4688 0.0414 0.2745 0.0331 0.3646 0.0331 0.2364 0.0048 0.0651
1.75 0.0671 3.3128 0.0414 0.3602 0.0671 3.3128 0.0413 0.3486 0.0057 0.1112
2.00 0.0358 0.3843 0.0329 0.3610 0.0504 0.3250 0.0314 0.3368 0.0091 0.2887
3.00 0.0355 0.2558 0.0420 0.2762 0.0321 0.2738 0.0316 0.3117 0.0066 0.1416
TaBLE 2: The performance of the simulated-annealing algorithms at (n, A, le) = (12, 0.4, 80).
. , SA, SA, SA, SA, SA,
Mean Max Mean Max Mean Max Mean Max Mean Max
0.25 0.0252 0.6711 0.0326 1.2731 0.0294 1.2731 0.0239 1.2731 0.0020 0.2014
0.25 0.50 0.0539 1.9013 0.0724 1.9013 0.0011 1.9013 0.1352 5.8067 0.0151 1.4364
0.75 0.0433 0.9016 0.0954 5.5725 0.0803 4.4405 0.0919 4.6113 0.0103 0.3001
0.25 0.0671 3.3128 0.0414 0.3602 0.0671 3.3128 0.0413 0.3486 0.0057 0.1112
0.50 0.50 0.0358 0.3843 0.0329 0.3610 0.0504 0.3250 0.0314 0.3368 0.0091 0.2887
0.75 0.0355 0.2558 0.0420 0.2762 0.0321 0.2738 0.0316 0.3117 0.0066 0.1416
(A=0.2,04, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, and 3.0), tar- 0.5 -
diness factor (r = 0.25 and 0.5), the due date range (y = 0.45 |
0.25 and 0.75), and the learning effect (le=70% and 90%). 04 |
For each situation, 100 replications were randomly generated £ 035 -
to yield a total of 16000 instances. Table 3 summarized the 8 03]
performance of the branch-and-bound and SA algorithms. It g
indicated as follows. g 0251
First, the mean and maximum numbers of nodes £ 021
increased as the job size became larger, as A became smaller, ;3 0.15 +
as T became smaller, as y became smaller, or as learning effect 0.1 4
became strong. The CPU times were observed to increase 0.05 -
exponentially as the job size increased. Some of instances 0 : :
could not be solved in the reasonable time. We recorded the 0.25 0.5
number of solvable instances (NSI) if the numbers of nodes T
were less than 10%. There were 15,848 solvable instances for —sA, SA,
all instances. When (1, A, 7,9, le) = (14, 0.2,0.25, 0.25, 70), the —__ SA, ——= SA,

least NSI was 73 which implied that the aforesaid parameters
affected the nodes. Second, the accuracy of SA algorithms was
assessed, and the results presented in Table 3 indicated that
the mean error percentage of SA; was less than 0.7376%. The
performance of error percentage of SA; trend was not subject
to the parameter influenced.

5.3. The Performance of the SA Algorithms for Large Job
Size. On evaluating the accuracy of SA algorithms for large
job size, we carried out the jobs size (n = 40 and 80)
simulation experiments. The other parameters were taken as
(A = 0.2, 0.4, and 0.6), (r = 0.25 and 0.5), (y = 0.25, 0.5,
and 0.75), and (le =70%, 80%, and 90%). For each situation,
100 replications were randomly generated. For evaluating

FIGURE 3: The performance of SA algorithm with respect to 7.

the accuracy of SA algorithms, the mean relative deviance
percentage was calculated as

SA. — SA
M x 100%,

. (10)

where SA; (i = 1,2, 3,4) was the solution obtained from SA
algorithms and SA; was the smallest value of the objective
function obtained from the ith SA algorithms. We get the
total average for each SA; algorithm experimental results as
depicted in Figures 1-5. In Figure 4, parameters could slightly
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FIGURE 4: The performance of SA algorithm with respect to y.
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FIGURE 5: The performance of SA algorithm with respect to le.

affect the performance of SAs algorithm. It was observed that
there was no significant difference among the performance of
SA algorithms. Besides, the CPU times of the SA algorithms
were not recorded since they were completed within one
second. Thus, the SA; is recommended for solving the large
job size method.

6. Conclusions

In this paper, we study the two-agent single-machine schedul-
ing problems in which jobs with arbitrary release times in
learning effect condition. The objective is minimizing the
total weighted completion time of one agent, subject to
an upper bound on the maximum lateness of the second
agent. To solve the problem, a branch-and-bound algorithm
incorporated with several dominance properties and a lower
bound is developed. In addition, simulated-annealing algo-
rithms are also developed to test the accuracy. Computational
results show that the branch-and-bound algorithm can find
the optimum up to 14 jobs in a reasonable time, and the

Mathematical Problems in Engineering

simulated-annealing algorithm is effective and efficient in
obtaining near-optimal solutions. Suggested further research
includes considering other optimization criteria or multiob-
jective optimization to further verify the proposed approach.
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