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A new upper bound for ‖𝐴−1‖ of a real strictly diagonally dominant𝑀-matrix 𝐴 is present, and a new lower bound of the smallest
eigenvalue 𝜆min(𝐴) of 𝐴 is given, which improved the results in the literature. Furthermore, an upper bound for ‖𝐴−1‖ of a real
strictly 𝛼-diagonally dominant𝑀-matrix is shown.

1. Introduction

The estimation for the bound for the norm ‖𝐴

−1

‖ of a real
invertible 𝑛 × 𝑛matrix 𝐴 is important in numerical analysis,
so many researchers were devoted to studying this kind of
problems. For example, Varah [1] discussed the bound for
the infinity norm ‖𝐴

−1

‖

∞

of a strictly diagonally dominant
matrix 𝐴 = (𝑎

𝑖𝑗

)

𝑛×𝑛

∈ 𝑅

𝑛×𝑛 and obtained the following
estimation:
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} , 𝑖 ∈ 𝑁. (1)

After that Varga [2] extended the result of [1] to𝐻-matrices.
Evidently, the upper bound for ‖𝐴−1‖

∞

in (1) only involves
the entries in the matrix𝐴. If the diagonal dominance of 𝐴 is
weak, that is, min{|𝑎

𝑖𝑖

|−∑

𝑗=1,𝑗 ̸= 𝑖

|𝑎

𝑖𝑗

|} is small, then the bound
given by (1) may be large. For this reason, some authors were
devoted to improving the result of (1). Recently, Cheng and
Huang [3] presented a more compacted upper bound for a
strictly diagonally dominant𝑀-matrix










𝐴

−1









∞

≤

1

𝑎

11

(1 − 𝑢
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1

)

+

𝑛

∑

𝑖=2

[

[

1

𝑎

𝑖𝑖

(1 − 𝑢

𝑖

𝑑
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)

𝑖−1

∏
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𝑢

𝑗
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𝑙
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)

]

]

,

(2)

and thenWang [4] further improved this bound and gave the
following result:
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∞
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𝑎
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(1 − 𝑢

1

𝑑

1

)

+

𝑛

∑

𝑖=2

[
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1

𝑎

𝑖𝑖

(1 − 𝑢

𝑖

𝑑

𝑖

)

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

,

(3)

where notations in (2) and (3) have the same meanings as
those used in this paper, which will be shown later.

In this paper, we present a new upper bound ‖𝐴−1‖
∞

of
a strictly diagonally dominant matrix 𝐴 = (𝑎

𝑖𝑗

)

𝑛×𝑛

∈ 𝑅

𝑛×𝑛,
which is better than that obtained by Wang, and a new lower
bound of the smallest eigenvalue 𝑞(𝐴) of 𝐴 is also obtained.
In addition, an upper bound for ‖𝐴−1‖

∞

of a strictly 𝛼-
diagonal dominant matrix is presented. To our knowledge,
little has been done for upper bound of strictly 𝛼-diagonal
dominant matrices. Further, examples are given to illustrate
the performance of our results.

Next, we introduce some notations and definitions. As
usual, let 𝐼 be an identity matrix of order 𝑛. If there exists an
𝑛 × 𝑛 nonnegative matrix 𝐵 and a real number 𝑎 such that
𝐴 = 𝑎𝐼 − 𝐵 with 𝑎 > 𝜌(𝐵), then 𝐴 is called a nonsingular𝑀-
matrix, where 𝜌(𝐵) is the spectral radius of the nonnegative
matrix 𝐵. It is well known that the inverse matrix 𝐴−1 of
a 𝑀-matrix 𝐴 is nonnegative and, therefore, 1/𝜌(𝐴−1) is
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a positive eigenvalue of 𝐴 related to the Perron eigenvalue of
the nonnegative matrix𝐴−1. If 𝑞(𝐴) denotes the minimum of
the real parts of the eigenvalues of𝐴, that is, 𝑞(𝐴) = 𝑎−𝜌(𝐵),
then 𝑞(𝐴) = 1/𝜌(𝐴

−1

). For further properties of the 𝑀-
matrix 𝐴, we refer the readers to [5–7].

An 𝑛 × 𝑛 matrix 𝐴 = (𝑎

𝑖𝑗

) is called a strictly diagonally
dominant matrix if |𝑎

𝑖𝑖

| > ∑

𝑗=1,𝑗 ̸= 𝑖

|𝑎

𝑖𝑗

| for 𝑖 ∈ 𝑁. Let
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𝑖
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𝑗=1,𝑗 ̸= 𝑖











𝑎

𝑖𝑗











, 𝑟
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𝑛

∑

𝑗=1











𝑎

𝑖𝑗











,

𝑑

𝑖

=
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, 𝐽 (𝐴) = {𝑖 ∈ 𝑁 : 𝑑

𝑖

< 1} ,
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=

1
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𝑗=𝑖+1
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,

𝑙

𝑘

= max
𝑘≤𝑖≤𝑛
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𝑗 ̸= 𝑖,𝑘≤𝑗≤𝑛
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= 𝑢
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= 0,
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− ∑
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, 𝑖 ̸= 𝑗, 𝑗 < 𝑘 ≤ 𝑛,

𝑤

𝑖

= max
𝑗 ̸= 𝑖

{𝑤

𝑖𝑗

} , 𝐶

𝑖
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, 𝑖 ̸= 𝑗, 𝑗 < 𝑘 ≤ 𝑛,

(4)

where𝑁 is the set of positive integers. For an 𝑛 × 𝑛matrix 𝐴,
the principal matrix of 𝐴 formed by rows and columns with
indices between 𝑛

1

and 𝑛
2

is denoted by 𝐴(𝑛1 ,𝑛2).

Definition 1 (see [8]). 𝐴 ∈ 𝑅𝑛×𝑛 is weakly chained diagonally
dominant if, for all 𝑖 ∈ 𝑁, 𝑑

𝑖

≤ 1 and 𝐽(𝐴) ̸= 0 and for all
𝑖 ∈ 𝑁, 𝑖 ∉ 𝐽(𝐴), there exist indices 𝑖

1

, 𝑖

2

, . . . , 𝑖

𝑘

in 𝑁 with
𝑎

𝑖

𝑟
𝑖

𝑟+1

̸= 0, 0 ≤ 𝑟 ≤ 𝑘 − 1, where 𝑖
0

= 𝑖 and 𝑖
𝑘

∈ 𝐽(𝐴).

Definition 2 (see [9]). Let 𝐴 ∈ 𝑅

𝑛×𝑛, 𝐴 is strictly diagonally
dominant if 𝐽(𝐴) = 𝑁.

Obviously, if 𝐴 ∈ 𝑅

𝑛×𝑛 is a strictly diagonally dominant
matrix, then 𝐴 be a weakly chained diagonally dominant
matrix.

Definition 3 (see [9]). 𝐴 ∈ 𝑅𝑛×𝑛 is an 𝐿-matrix if, for all 𝑖, 𝑗 ∈
𝑁 with 𝑖 ̸= 𝑗, 𝑎

𝑖𝑗

≤ 0 and 𝑎
𝑖𝑖

> 0.

Definition 4 (see [10]). Let 𝐴 ∈ 𝑅𝑛×𝑛; if there exist 𝛼 ∈ [0, 1],
such that









𝑎

𝑖𝑖









≥ 𝛼𝑅

𝑖

(𝐴) + (1 − 𝛼)𝐶

𝑖

(𝐴) , (5)

for all 𝑖 ∈ 𝑁, then 𝐴 is said to be an 𝛼-diagonal dominant
matrix, denoted by𝐷𝛼

𝑛

.

Remark 5. By Definition 4, we know that 𝐴 is just a diagonal
dominant matrix while 𝛼 = 1.

Definition 6. If all the inequalities in (5) strictly hold, then 𝐴
is said to be strictly 𝛼-diagonal dominant matrix (𝑆𝐷𝛼

𝑛

).

2. Estimation for an Upper Bound for ‖𝐴−1‖
∞

of Strictly Diagonally Dominant 𝑀-Matrix

We state some lemmas before giving a new upper bound for
‖𝐴

−1

‖

∞

.

Lemma 7 (see [3]). Let 𝐴 = (𝑎
𝑖𝑗

) be an 𝑛 × 𝑛 weakly chained
diagonally dominant𝑀-matrix, 𝐵 = 𝐴

(2,𝑛), 𝐴−1 = (𝛼
𝑖𝑗

)

𝑛

𝑖,𝑗=1

,
and 𝐵−1 = (𝛽

𝑖𝑗

)

𝑛

𝑖,𝑗=2

. Then, for 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

𝛼

11

=

1

Δ

,

𝛼

𝑖1

=

1

Δ

𝑛

∑

𝑘=2

𝛽

𝑖𝑘

(−𝑎

𝑘1

) ,

𝛼

1𝑗

=

1

Δ

𝑛

∑

𝑘=2

𝛽

𝑘𝑗

(−𝑎

1𝑘

) ,

𝛼

𝑖𝑗

= 𝛽

𝑖𝑗

+ 𝛼

1𝑗

𝑛

∑

𝑘=2

𝛽

𝑖𝑘

(−𝑎

𝑘1

) ,

(6)

where

Δ = 𝑎

11

−

𝑛

∑

𝑘=2

𝑎

1𝑘

𝑛

∑

𝑖=2

𝛽

𝑘𝑖

𝑎

𝑖1

> 0. (7)

Furthermore, if 𝐽(𝐴) = 𝑁, thenΔ ≥ 𝑎
11

(1−𝑑

1

𝑙

1

) ≥ 𝑎

11

(1−𝑑

1

).

Lemma 8 (see [11]). A weakly chained diagonally dominant
𝐿-matrix is a nonsingular𝑀-matrix.

Lemma 9 (see [11]). Let 𝐴 = (𝑎
𝑖𝑗

) be an 𝑛 × 𝑛 weakly chained
diagonally dominant𝑀-matrix; then 𝐵 = 𝐴(2,𝑛) is an (𝑛 − 1) ×
(𝑛− 1) weakly chained diagonally dominant M-matrix; that is,
𝐵

−1

= (𝛽

𝑖𝑗

) exists and 𝛽
𝑖𝑗

≥ 0 (𝑖, 𝑗 = 2, 3, . . . , 𝑛).

Lemma 10 (see [11]). Let𝐴 = (𝑎
𝑖𝑗

) be an 𝑛× 𝑛 weakly chained
diagonally dominant𝑀-matrix, 𝐴−1 = (𝛼

𝑖𝑗

). Then, for 𝑖 ̸= 𝑗,

𝛼

𝑖𝑗

≤ 𝑑

𝑖

𝛼

𝑗𝑗

≤ 𝛼

𝑗𝑗

. (8)

Lemma 11 (see [11]). Let 𝐴 = (𝑎

𝑖𝑗

) be an 𝑛 × 𝑛 row strictly
diagonally dominant𝑀-matrix; then

Δ ≥ 𝑎

11

(1 − 𝑑

1

𝑙

1

) > 𝑎

11

(1 − 𝑑

1

) > 0. (9)

Lemma 12 (see [2]). Let 𝐴 = (𝑎

𝑖𝑗

) be an 𝑛 × 𝑛 row strictly
diagonally dominant𝑀-matrix; then, for 𝐴−1 = (𝛼

𝑖𝑗

)

𝑛

𝑖,𝑗=1

, we
have

1

𝑎

𝑖𝑖

≤ 𝛼

𝑖𝑖

≤

1

𝑎

𝑖𝑖

− ∑

𝑗 ̸= 𝑖











𝑎

𝑖𝑗











𝑚

𝑗𝑖

. (10)
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Lemma 13 (see [1]). Let 𝐴 = (𝑎
𝑖𝑗

) be an 𝑛 × 𝑛 weakly chained
diagonally dominant M-matrix, 𝐴−1 = (𝛼

𝑖𝑗

), and 𝑞 = 𝑞(𝐴),
𝑁 = 1, 2, . . . , 𝑛. Then

𝑞 ≤ min
𝑖∈𝑁

{𝑎

𝑖𝑖

} , 𝑞 ≤ max
𝑖∈𝑁

{

{

{

∑

𝑗∈𝑁

𝑎

𝑖𝑗

}

}

}

, 𝑞 ≥ min
𝑖∈𝑁

{

{

{

∑

𝑗∈𝑁

𝑎

𝑖𝑗

}

}

}

,

1

𝑀

≤ 𝑞 ≤

1

𝑚

,

(11)

where

𝑀 = max
𝑖∈𝑁

{

{

{

∑

𝑗∈𝑁

𝛼

𝑖𝑗

}

}

}

=











𝐴

−1









∞

, 𝑚 = min
𝑖∈𝑁

{

{

{

∑

𝑗∈𝑁

𝛼

𝑖𝑗

}

}

}

.

(12)

Now we give an upper bound for ‖𝐴−1‖
∞

and 𝑞(𝐴) of
a strictly diagonally dominant𝑀-matrix 𝐴 by the following
theorem.

Theorem 14. Let 𝐴 = (𝑎
𝑖𝑗

) be an 𝑛 × 𝑛 row strictly diagonally
dominant M-matrix, 𝐴−1 = (𝛼

𝑖𝑗

). Then
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1

𝑎
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𝑛
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1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

.

(13)

Proof. We prove this theorem by induction.

(1) Let 𝑟
𝑖

= ∑

𝑛

𝑗=1

𝛼

𝑖𝑗

,𝐵 = 𝐴(2,𝑛),𝑀
𝐴

= ‖𝐴

−1

‖

∞

, and𝑀
𝐵

=

‖𝐵

−1

‖

∞

. Then

𝑀

𝐴

= max {𝑟
𝑖

: 𝑖 ∈ 𝑁} ,

𝑀

𝐵

= max
{

{

{

𝑛

∑

𝑗=2

𝛽

𝑖𝑗

: 2 ≤ 𝑖 ≤ 𝑛

}

}

}

.

(14)

By Lemmas 7, 11, and 12, we know that
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𝑛
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𝑘𝑗

(−𝑎
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)

=

1

Δ
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𝑛

∑

𝑘=2

(−𝑎

𝑘1

)

𝑛

∑

𝑗=2

𝛽

𝑘𝑗

)

≤

1

Δ

(1 + 𝑎

11

⋅ 𝑑

1

⋅ 𝑀

𝐵

) ≤

1

Δ

+

𝑑

1

𝑀

𝐵

1 − 𝑑

1

𝑙

1

≤

1

Δ

+

𝑀

𝐵

1 − 𝑑

1

𝑙

1

≤

1

𝑎
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𝑛

𝑘=2









𝑎

1𝑘
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𝑘1

+

𝑀

𝐵

1 − 𝑑

1

𝑙

1

.

(15)

Let 2 ≤ 𝑖 ≤ 𝑛. By (8) and the second equality in (6), we have
𝑛

∑

𝑘=2

𝛽

𝑖𝑘

(−𝑎

𝑘1

) = Δ𝛼

𝑖1

≤ Δ𝑑

𝑖

𝛼

11

= 𝑑

𝑖

< 1. (16)

From (8) with 2 ≤ 𝑗 ≤ 𝑛, we have

𝛼

𝑖𝑗

≤ 𝛽

𝑖𝑗

+ 𝛼

1𝑗

𝑑

𝑖

< 𝛽

𝑖𝑗

+ 𝛼

1𝑗

. (17)

Thus, for 2 ≤ 𝑖 ≤ 𝑛, we obtain

𝑟

𝑖

= 𝛼

𝑖1

+

𝑛

∑

𝑗=2

𝛼

𝑖𝑗

≤ 𝑑

𝑖

𝛼

11

+

𝑛

∑

𝑗=2

(𝛽

𝑖𝑗

+ 𝛼

1𝑗

𝑑

𝑖

)

= 𝑑

𝑖

𝛼

11

+

𝑛

∑

𝑗=2

𝛽

𝑖𝑗

+

𝑛

∑

𝑗=2

𝛼

1𝑗

𝑑

𝑖

≤ 𝑟

1

𝑑

𝑖

+

𝑛

∑

𝑗=2

𝛽

𝑖𝑗

≤ 𝑟

1

𝑙

1

+𝑀

𝐵

≤ {

1

Δ

+

𝑑

1

𝑀

𝐵

1 − 𝑑

1

𝑙

1

} 𝑙

1

+𝑀

𝐵

≤

𝑙

1

Δ

+

𝑑

1

𝑙

1

𝑀

𝐵

1 − 𝑑

1

𝑙

1

+𝑀

𝐵

≤

1

Δ

+

𝑀

𝐵

1 − 𝑑

1

𝑙

1

≤

1

𝑎

11

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑀

𝐵

1 − 𝑑

1

𝑙

1

.

(18)

So by (15) and (18), we get











𝐴

−1









∞

≤

1

𝑎

11

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑀

𝐵

1 − 𝑢

1

𝑙

1

. (19)

(2) Applying induction with respect to 𝑘 of 𝐴(𝑘,𝑛) in (19)
finishes the proof.

From Theorem 14 and Lemma 13, the following theorem
can be obtained easily.

Theorem 15. Let 𝐴 = (𝑎
𝑖𝑗

) be an 𝑛 × 𝑛 row strictly diagonally
dominant𝑀-matrix. Then the smallest eigenvalue of 𝐴 is

𝑞 (𝐴) ≥

{

{

{

1

𝑎

11

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑛

∑

𝑖=2

[

[

1

𝑎

𝑖𝑖

− ∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛









𝑎

𝑖𝑘









𝑚

𝑘𝑖

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

}

}

}

−1

.

(20)
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Theorem 16. Let 𝐴 = (𝑎
𝑖𝑗

) be an 𝑛 × 𝑛 row strictly diagonally
dominant 𝑀-matrix. Then the bound in (13) is sharper than
that in (3), that is,

1

𝑎

11

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑛

∑

𝑖=2

[

[

1

𝑎

𝑖𝑖

− ∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛









𝑎

𝑖𝑘









𝑚

𝑘𝑖

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

≤

1

𝑎

11

(1 − 𝑢

1

𝑑

1

)

+

𝑛

∑

𝑖=2

[

[

1

𝑎

𝑖𝑖

(1 − 𝑢

𝑖

𝑙

𝑖

)

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

.

(21)

Proof. Since 𝐴 is a strictly diagonally dominant matrix, 0 ≤
𝑑

𝑘

< 1,𝑚
𝑘𝑖

≤ 𝑑

𝑖

< 1, and 1 ≤ 𝑗 ≤ 𝑛 − 1, then we have

1

𝑎

𝑖𝑖

− ∑

𝑛

𝑘=2









𝑎

𝑖𝑘









𝑚

𝑘𝑖

≤

1

𝑎

𝑖𝑖

(1 − 𝑢

𝑖

𝑑

𝑖

)

. (22)

The results follow Lemma 12. Inequality (21) shows that the
bound in (13) is better than that in (3).

For all 𝑖, max
𝑖≤𝑘≤𝑛

{1/(𝑎

𝑖𝑖

− ∑

𝑛

𝑘=2

|𝑎

𝑖𝑘

|𝑚

𝑘𝑖

)} < max
𝑖≤𝑘≤𝑛

{1/

𝑎

𝑖𝑖

(1 − 𝑢

𝑖

𝑑

𝑖

)}, we have

1

𝑎

11

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑛

∑

𝑖=2

[

[

1

𝑎

𝑖𝑖

− ∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛









𝑎

𝑖𝑘









𝑚

𝑘𝑖

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

<

1

𝑎

11

(1 − 𝑢

1

𝑑

1

)

+

𝑛

∑

𝑖=2

[

[

1

𝑎

𝑖𝑖

(1 − 𝑢

𝑖

𝑙

𝑖

)

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

.

(23)

With the help of the above discussions, we give the upper
bound for ‖𝐴−1‖

∞

of a real strictly𝛼-diagonally dominant𝑀-
matrix.

3. Estimation for an Upper Bound
for ‖𝐴−1‖

∞

of a Strictly 𝛼-Diagonally
Dominant 𝑀-Matrix

We show some notations and lemmas which are necessary to
our conclusions.

Lemma 17 (see [12]). Let𝐴, 𝐵 ∈ 𝑅𝑛×𝑛,𝐴,𝐴−𝐵 be nonsingular,
then

(𝐴 − 𝐵)

−1

= 𝐴

−1

+ 𝐴

−1

𝐵(𝐼 − 𝐴

−1

𝐵)

−1

𝐴

−1

.

(24)

Lemma 18. Let 𝐴 = (𝑎

𝑖𝑗

) ∈ 𝑅

𝑛×𝑛 is a strictly diagonal
dominant𝑀-matrix. If 𝐵 = (𝑏𝑖𝑗) ∈ 𝑅𝑛×𝑛, with











𝐴

−1

𝐵









∞

≤ max
1≤𝑖≤𝑛

𝜅

0

⋅ ‖𝐵‖

∞

, (25)

and if

𝜅

0

<

1

‖𝐵‖

∞

, (26)

then ‖𝐴−1𝐵‖
∞

< 1, where

𝜅

0

=

1

𝑎

11

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑛

∑

𝑖=2

[

[

1

𝑎

𝑖𝑖

− ∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛









𝑎

𝑖𝑘









𝑚

𝑘𝑖

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

.

(27)

Proof. ByTheorem 14, we get











𝐴

−1

𝐵









∞

≤











𝐴

−1









∞

⋅ ‖𝐵‖

∞

≤ max
1≤𝑖≤𝑛

𝜅

0

⋅ ‖𝐵‖

∞

. (28)

It is easy to see that ‖𝐴−1𝐵‖
∞

< 1, if

𝜅

0

<

1

‖𝐵‖

∞

, (29)

where

𝜅

0

=

1

𝑎

11

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑛

∑

𝑖=2

[

[

1

𝑎

𝑖𝑖

− ∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛









𝑎

𝑖𝑘









𝑚

𝑘𝑖

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

.

(30)

Lemma 19 (see [12]). If ‖𝐴−1‖
∞

< 1, then 𝐼−𝐴 is nonsingular
and











(𝐼 − 𝐴)

−1









∞

≤

1

1 − ‖𝐴‖

∞

. (31)

Theorem 20. Let 𝐴 = (𝑎

𝑖𝑗

) ∈ 𝑅

𝑛×𝑛 be a strictly 𝛼-diagonal
dominant matrix, 𝛼 ∈ (0, 1], and 𝐴 be an 𝑀-matrix. If,
for those 𝑖 ∈ 𝑁

1

⊂ 𝑁, 𝑅
𝑖

(𝐴) > 𝐶

𝑖

(𝐴), and 𝜅
1

< 1/

max
1≤𝑖≤𝑛

𝛼(𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴)), then











𝐴

−1









∞

≤

𝜅

1

1 − 𝜅

1

max
1≤𝑖≤𝑛

𝛼 (𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴))

, (32)

where

𝜅

1

=

1

𝛽

1

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑛

∑

𝑖=2

[

[

1

𝛽

𝑖

− ∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛









𝑎

𝑖𝑘









𝑚

𝑘𝑖

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

,

𝛽

𝑖

= max {𝑎
𝑖𝑖

, 𝑎

𝑖𝑖

+ 𝛼 (𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴))} , 𝑖 = 1, 2, . . . , 𝑛.

(33)

Proof. Note that 𝑅
𝑖

(𝐴) > 𝐶

𝑖

(𝐴). Then









𝑎

𝑖𝑖









> (1 − 𝛼) 𝑅

𝑖

(𝐴) + 𝛼𝐶

𝑖

(𝐴)

= 𝑅

𝑖

(𝐴) − 𝛼 (𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴)) .

(34)
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So we can split 𝐴, such that 𝐴 = 𝐵 − 𝐶, where 𝐵 = (𝑏
𝑖𝑗

) and

𝑏

𝑖𝑗

={

𝑎

𝑖𝑖

+ 𝛼 (𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴)) 𝑖 = 𝑗, 𝑅

𝑖

(𝐴) > 𝐶

𝑖

(𝐴)

𝑎

𝑖𝑗

others,

𝑐

𝑖𝑗

={

𝛼 (𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴)) 𝑖 = 𝑗, 𝑅

𝑖

(𝐴) > 𝐶

𝑖

(𝐴)

0 others.
(35)

We know 𝑏
𝑖𝑖

= 𝑎

𝑖𝑖

+ 𝛼(𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴)) > 𝑅

𝑖

(𝐴) = 𝑅

𝑖

(𝐵) and 𝐴
is an𝑀-matrix. Thus, 𝐵 is a strictly diagonal dominant𝑀-
matrix; hence, 𝐵−1 > 0. Let 𝛽

𝑖

= max{𝑎
𝑖𝑖

, 𝑎

𝑖𝑖

+ 𝛼(𝑅

𝑖

(𝐴) −

𝐶

𝑖

(𝐴))}, 𝑖 = 1, 2, . . . , 𝑛. If 𝜅
1

< 1/max
1≤𝑖≤𝑛

𝛼(𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴)),
by Lemma 18, we get ‖𝐵−1𝐶‖

∞

≤ 1. By Lemmas 17 and 19 and
Theorem 14, we can obtain











𝐵

−1









∞

≤

1

𝑏

11

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑛

∑

𝑖=2

[

[

1

𝑏

𝑖𝑖

− ∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛









𝑎

𝑖𝑘









𝑚

𝑘𝑖

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

≤

1

𝛽

1

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑛

∑

𝑖=2

[

[

1

𝛽

𝑖

− ∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛









𝑎

𝑖𝑘









𝑚

𝑘𝑖

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

.

(36)

Let 𝜅

1

= 1/(𝛽

1

− ∑

𝑛

𝑘=2

|𝑎

1𝑘

|𝑚

𝑘1

) + ∑

𝑛

𝑖=2

[(1/(𝛽

𝑖

−

∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛

|𝑎

𝑖𝑘

|𝑚

𝑘𝑖

))∏

𝑖−1

𝑗=1

1/(1 − 𝑢

𝑗

𝑙

𝑗

)].
Then











𝐵

−1

𝐶









∞

< 𝜅

1

max
1≤𝑖≤𝑛

𝑛

∑

𝑗=1











𝑐

𝑖𝑗











< 𝜅

1

max
1≤𝑖≤𝑛

𝛼 (𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴)) .

(37)

Further, we have










𝐴

−1









∞

=











(𝐵 − 𝐶)

−1









∞

=













𝐵

−1

+ 𝐵

−1

𝐶(𝐼 − 𝐵

−1

𝐶)

−1

𝐵

−1











∞

≤











𝐵

−1









∞

+











𝐵

−1

𝐶









∞

⋅













(𝐼 − 𝐵

−1

𝐶)

−1











∞

⋅











𝐵

−1









∞

≤











𝐵

−1









∞

+











𝐵

−1

𝐶









∞

1 −









𝐵

−1

𝐶







∞











𝐵

−1









∞

=

1

1 −









𝐵

−1

𝐶







∞











𝐵

−1









∞

≤

𝜅

1

1 − 𝜅

1

max
1≤𝑖≤𝑛

𝛼 (𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴))

,

(38)

where

𝜅

1

=

1

𝛽

1

− ∑

𝑛

𝑘=2









𝑎

1𝑘









𝑚

𝑘1

+

𝑛

∑

𝑖=2

[

[

1

𝛽

𝑖

− ∑

𝑛

𝑘 ̸= 𝑖,𝑖≤𝑘≤𝑛









𝑎

𝑖𝑘









𝑚

𝑘𝑖

𝑖−1

∏

𝑗=1

1

1 − 𝑢

𝑗

𝑙

𝑗

]

]

,

𝛽

𝑖

= max {𝑎
𝑖𝑖

, 𝑎

𝑖𝑖

+ 𝛼 (𝑅

𝑖

(𝐴) − 𝐶

𝑖

(𝐴))} ,

𝑖 = 1, 2, . . . , 𝑛.

(39)

The proof is complete.

4. Examples

We illustrate our results by the following two examples.

(1) Consider the bound for ‖𝐴−1‖
∞

of a strictly diagonal
dominant matrix 𝐴, where

𝐴 =(

10 −1 −1 −1 −1

−1 10 −1 −1 −1

−1 −1 10 −1 −1

−1 −1 −1 10 −1

−1 −1 −1 −1 10

). (40)

Direct calculation by MATLAB R2010a gives










𝐴

−1









∞

= 0.1669,











𝐴

−1









∞

≤ 214.0217 (by Theorem 3.3 in [8])











𝐴

−1









∞

≤ 175.9183 (by (2))










𝐴

−1









∞

≤ 9.2041 (by (3))










𝐴

−1









∞

≤ 6.5634 (by Theorem 14 (13)) .

(41)

It is obvious that the bound of Theorem 14 of this paper is
better than other known ones. Furthermore, we can estimate
𝑞(𝐴) byTheorem 15.

(2) Consider the bound for ‖𝐴−1‖
∞

of a strictly 𝛼-
diagonal dominant matrix 𝐴 for 𝛼 = 0.5,

𝐴 = (

2 −1 −1

−1 2 −1

−0.5 0 2

) ,

𝐴

−1

= (

0.8889 0.4444 0.6667

0.5556 0.7778 0.6667

0.2222 0.1111 0.6667

) .

(42)

Note that










𝐴

−1









∞

≈ 2. (43)

We know that 𝐴 is not a strictly diagonal dominant
matrix, and the bound of ‖𝐴−1‖

∞

cannot be obtained by (2)
or (3), but it can be estimated by (32) in Theorem 20.
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Split the matrix 𝐴 such that 𝐴 = 𝐵 − 𝐶, where 𝐵 = (𝑏
𝑖𝑗

)

and 𝑏
11

= 𝑎

11

+𝛼(𝑅

1

(𝐴) −𝐶

1

(𝐴)) = 2 + 0.5 × (2 − 1.5) = 2.25,
𝑏

22

= 𝑎

22

+ 𝛼(𝑅

2

(𝐴) − 𝐶

2

(𝐴)) = 2 + 0.5 × (2 − 1) = 2.5, Then

𝐵 = (

2.25 −1 −1

−1 2.5 −1

−0.5 0 2

) , 𝐶 = (

0.25 0 0

0 0.5 0

0 0 0

) . (44)

Thebound for ‖𝐴−1‖
∞

can be estimated by (13) inTheorem 14
and (32) inTheorem 20 as follows:











𝐴

−1









∞

≤ 11.4259. (45)
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