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Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an
improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm,
a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg’s
1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover
operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search
ability and contributes to superior performance. To verify the ability of theDACS-COalgorithm to estimate atmospheric refractivity
parameters, the simulation data and real radar clutter data are both implemented.The numerical experiments demonstrate that the
DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from
radar clutter.

1. Introduction

Atmospheric duct can change the electromagnetic wave
propagation path and effective coverage areas, as it is formed
in an anomalous atmospheric refractivity structure. It can
trap the wave within a certain atmosphere layer and form
the atmospheric duct propagation [1]. In general, the low
altitude propagation loss will bemuch less than for a standard
atmosphere condition when a duct is existent [2]. Ducts
can substantially influence the capability of various radio
systems, such as radar, communication, reconnaissance, and
some other electromagnetic radiation systems [3]. Therefore,
forecasting the real-time atmospheric refractivity structure
and analysing its influence on the electric systems have a
great research value. Traditionally, atmospheric ducts can
be measured via radiosondes or rocketsondes or using
numerical weather prediction models [4]. However, these
methods are too expensive and unable to provide real-time
duct information [5]. In the previous work, it has been found
that the temporal and spatial variations of radar clutter are

related to the temporal and the spatial variations of the
refractivity profile [6], which contributes to the research of
atmospheric refractivity estimation based on RFC (Refrac-
tivity from Clutter). Using the RFC technique to estimate
refractivity hasmany advantages, such as low costs, operation
convenience, and high temporal and spatial resolutions of
refractivity profiles [2]. However, it is very difficult to get
the analytical solutions using RFC, because the relationship
between refractivity parameters and radar clutter is clearly
nonlinear and ill-posed. To deal with this problem, several
inversion algorithms have been used in RFC. Gerstoft et
al. proposed using the genetic algorithm (GA) to perform
global refractivity estimation [1]. Yardim et al. used the hybrid
algorithm GA-MCMC and the Kalman and particle filters
methods to research the RFC problem [2, 7]. Wang et al.
used the particle swarm optimization (PSO) to estimate the
evaporation duct heights [8]. Zhang et al. used the improved
hybrid algorithm, particle swarm optimization via Lévy flight
(LPSO), to estimate the five parameters of hybrid duct and
analysed its antinoise ability [9]. Sheng et al. applied a series
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of methods to research RFC [10–12]. However, in order to
obtain a more precise solution, it is still required to find a
more efficient and stable inversion algorithm.

Cuckoo search (CS) algorithm is a novel metaheuristic
algorithm. The characteristics of CS are ease of implemen-
tation, presence of a few parameters to adjust, and being
able to guarantee global convergence [13]. Cuckoo search
algorithm has shown good performance both on benchmark
unconstrained functions and on real-world problems, which
has been applied in several fields [14–16]. However, the
parameters of CS are kept constant and the algorithm lacks
the mutation mechanism, which may lead to a poor conver-
gence rate and easy trapping into local optimum in its late
period. In order to improve the ability of the CS algorithm,
a dynamic adaptive operation and a crossover operation
(CO) are merged into the standard cuckoo search (DACS-
CO). Rechenberg’s 1/5 criteria combined with learning factor
are used to control parameter dynamic adaptive adjusting
process and the crossover operation is utilized to guarantee
the population diversity. Using the RFC technique to estimate
atmospheric refractivity is a complex nonlinear and ill-posed
optimization problem. The DACS-CO algorithm has better
local search ability and contributes to superior performance.
Thus, in this paper, the new improved algorithm, DACS-CO,
was selected as the optimization algorithm being utilized in
the RFC technique to estimate the atmospheric refractivity.
In order to illustrate the performance of DACS-CO, the sim-
ulation and the real data experiment are both implemented,
and the retrieval results are compared with the CS, genetic
algorithm (GA), and particle swarm optimization (PSO)
algorithms.

The rest of this paper is organized as follows. The basic
theory and parameters model are introduced in Section 2.
The DACS-CO algorithm is described in Section 3. The
simulation experiment is in Section 4, and the layout and
simulation results are also given. In Section 5, the real
data experiment is presented. Finally, the conclusions are
summarized in Section 6.

2. Theory and Model

2.1. Atmospheric Refractivity Model. Atmospheric structures
can be characterized by their vertical refractive index profile.
To perform RFC, some idealized parameters estimation
models were presented, such as one linear model, bilinear
model, and trilinear model, which can be seen in Figure 1.
The surface-based duct (Figure 1(c)) and elevated duct
(Figure 1(d)) structures can be depicted by a four-parameter
trilinear refractivity profile [7], which is represented by vector
𝑚 = (𝑐
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Figure 1:The fourmost typical duct types. (a)The evaporation duct.
(b) The surface duct. (c) The surface-based duct. (d) The surface-
based duct.

where 𝑀
0
is the modified index of refraction at the sea

surface, usually taken as 330M-units, 𝑐
1
and ℎ
1
represent the

slope and thickness of the base layers, and 𝑐
2
and ℎ
2
represent

the slope and thickness of the inversion layers. When ℎ
1

reduces to zero, the trilinear profile will end upwith a bilinear
profile, which means that the bottom of the duct touches
the ground (Figure 1(b)). The trilinear model can properly
estimate the refractivity M-profile via RFCmethod.Thus, we
select the trilinear atmospheric refractivity profile model to
research in this study.

2.2. Radar Clutter Power. Theclutter signal power𝑃
𝑐
received

by the radar can be calculated by [17]
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where 𝑃
𝑡
is the transmitted power, 𝐺

𝑡
is the transmitted

antenna gain, 𝐺
𝑟
is the receiving antenna gain, 𝜆 is the

wavelength, 𝐴
𝑐
is the illuminated area, and 𝜎0 is the nor-

malized radar cross section of sea clutter. 𝐿 loss is the one-way
propagation loss, which is given by

𝐿 loss = 20 log10 (
4𝜋𝑥

𝜆

) − 20 log
10
𝐹; (3)

here, 𝐹 is the propagation factor, which is expressed as
follows:

𝐹 = √𝑥 |𝑢 (𝑥, 𝑧)| . (4)

At low grazing angles, 𝐴
𝑐
is a linear function of range 𝑟.

Letting the symbols 𝑃
𝑐
, 𝜎0, and 𝐿 loss be all in units of dB, the

clutter signal power from the clutter can be modelled as [1]

𝑃
𝑐
= −2𝐿 loss + 10 log10 (𝑟) + 𝜎

0
+ 𝐶, (5)

where 𝜎0 is the radar cross section of the sea surface and
𝐶 is a constant that includes radar parameters, such as the
transmitted power and antenna pattern.

In order to convert the parameter estimation problem
into optimization problem, a simple least squares objective
function can be defined as

𝑓 (𝑚) = 𝑒
𝑇e, (6)
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where

𝑒 = 𝑃
obs
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(𝑚) . (7)

Here, 𝑃obs
𝑐

is the observed radar clutter power and 𝑃
𝑐
is

the modeled radar clutter power. 𝑚 = (𝑐
1
, 𝑐
2
, ℎ
1
, ℎ
2
) is the

modified index of atmospheric refraction, which is a function
of height 𝑧 given as (1).

2.3. The Terrain Parabolic Equation Model. In spherical
coordinate system, the vector wave equations could be
transformed intoHelmholtz equation. Combinedwith Earth-
Flattening transform, conformal mapping, and scale analysis,
Helmholtz equation could be converted into TPE (terrain
parabolic equation) [18]. Tropospheric radiowave propaga-
tion over the sea is presented commonly as the terrain
parabolic equation model.

Because of the temporal and spatial inhomogeneity of 𝑛,
it is very difficult to accurately figure out TPE. At present, the
Fourier split-step algorithm is prevalently accepted. For range
𝑥 and height 𝑧, if 𝑢(𝑥, 𝑧) is the electromagnetic field, then the
field in range 𝑥+Δ𝑥 and at height 𝑧, denoted by 𝑢(𝑥+Δ𝑥, 𝑧),
can be calculated by the split-step Fourier solution [19], which
is defined by
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where 𝑚 is the modified index of refraction, 𝐹 and 𝐹
−1

are, respectively, the Fourier transform and inverse Fourier
transform, 𝑃 = 𝑘 sin 𝜂 is the vertical wave number or the
spatial frequency, and 𝜂 is the propagation angle from the
horizontal direction. 𝑧 and 𝑃 are associated by 𝑧𝑃 = 𝑁𝜋, and
𝑁 is the discrete Fourier transform size.

3. DACS-CO Algorithm

DACS-CO is a new hybrid algorithm, the core thought of
which is integrating the parameter dynamic adaptive adjust-
ing process and crossover operation into the standard cuckoo
search (CS) algorithm. Rechenberg’s 1/5 criteria were used to
control parameters of the algorithm dynamic adjusted. The
crossover operation is utilized to guarantee the population
diversity.

3.1. Cuckoo Breeding Behavior and Lévy Flights. Cuckoo
search algorithm is a nature inspiredmetaheuristic algorithm
proposed by Yang and Deb [20]. They combined the cuckoo
breeding behavior with Lévy flights. Cuckoo algorithms
attract the attention of the scientists all over theworld because
of their fascinating breeding behavior such as the aggressive
reproduction strategy. Some cuckoos reproduce via laying
their eggs in nests of other host birds, removing the other
bird eggs to increase their reproductivity [21]. It is worth
mentioning that cuckoo eggs may be discovered by the host
birds. In this case, host birds will either take off the alien eggs

or simply abandon their nests and build new ones elsewhere.
In the process of evolution, some female parasitic cuckoos can
imitate the colors and patterns of the eggs of a few chosen host
species [20]. This reduces the probability of the eggs being
abandoned and thus increases their incubation.

In order to simplify describing the cuckoo search, Yang
and Deb [20] used the following three idealized rules:

(i) Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest.

(ii) The best nests with high quality of eggs (solutions)
will carry over to the next generations.

(iii) The number of available host nests is fixed, and a host
can discover an alien egg with a probability. In this
case, the host bird can either throw the egg away or
abandon the nest so as to build a completely new nest
in a new location.

The term “Lévy flight” was coined by Mandelbrot [22];
many studies have shown that the flight behavior of real
birds, insects, grazing animals, and fish has demonstrated
the typical feature of Lévy flights [23]. Reynolds and Frye
[24] showed that fruit flies or Drosophila melanogaster
explore their landscape using a series of straight flight paths
punctuated by a sudden 90-degree shift, leading to a Lévy-
flight-style intermittent scale free search pattern. The large
steps occasionally taken make the algorithm suitable for
global search. Such behavior has been applied to cuckoo
search algorithm; the large steps occasionally taken make the
algorithm suitable for global search [9].

Each cuckoo egg can be regarded as a solution. Let
𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
)
𝑇
∈ 𝑅
𝑘 denote a solution. In the initial

searching process, each solution is generated randomly. A
solution 𝑥

𝑖
is updated to a new value with the use of Lévy

flight, which is performed as per Yang and Deb [20]:
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where

Lévy (𝜆) = 𝜆Γ (𝜆) sin (𝜋𝜆/2)
𝜋𝑠
1+𝜆

; (10)

here, 𝛼 > 0 is the step size. The product ⊕ means entrywise
multiplications, and Lévy(𝜆) is a Lévy flight in which the step
lengths are distributed according to the following probability
distribution:

Lévy (𝜆) ∼ 𝑢 = 𝑡−𝜆, (1 < 𝜆 ≤ 3) . (11)

3.2. Parameters Adjustment by Rechenberg’s 1/5 Criteria. The
performance of CS algorithm greatly depends on the param-
eters 𝑝

𝛼
and 𝛼, where 𝑝

𝛼
is the probability of abandoning the

worse nests and 𝛼 is the step size. The standard CS algorithm
uses fixed values for both 𝑝

𝛼
and 𝛼. The parameter values are

determined before operation and cannot be changed during
new generations. However, it is found that if the value of 𝑝

𝛼

is large and the value of 𝛼 is small, the speed of convergence
is high but the quality of solution is decreased; if the value of
𝑝
𝛼
is small and the value of 𝛼 is large, the quality of solution
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is high but the performance will be poor and the number of
iterations will increase a lot [25]. So it is difficult to determine
a proper set of parameter values in the initialization step.

To improve the diversification and intensification of
the population, a dynamic adaptive operation of algorithm
parameters is integrated into CS. Rechenberg’s 1/5 criteria
combined with learning factor are used to evaluate evolution
process [26]. Rechenberg proposed the principle of 1/5 on
the study of the evolutionary computation, the principle that
“the success of its variation ratio should be kept in the 1/5.”
That is to say, the control parameters of the algorithm should
be dynamically adjusted with the proportion of new solution
success, and the ration should be maintained at 1/5. However,
in the actual search, it is not often seen that the improved ratio
is just as 0.2. In order to keep the parameters adjusting stably,
the parameter range extends from just 0.2 to [0.2, 0.3] based
on the original 1/5 principle.The detailed procedures for step
size factor 𝛼 are described as
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where 𝑙
𝛼
is the learning factor of the step size. 𝑅 is the

improved ratio. Similarly, the abandoning probability factor
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3.3. Crossover Operation. Cuckoo search algorithm is easily
trapped into local optimum in its late period due to lack
of population diversity. The crossover operation (CO) is
integrated into the CS algorithm to add the information
exchange between individuals. Generally, the crossover oper-
ation is used in genetic algorithm (GA) [27]. The procedure
can be described as the following steps. (1) The individuals
in the population are sorted by the fitness value, and the
individuals are given the crossover probability at the same
time. (2) According to the above crossover probability of
individuals, two individuals are chosen randomly, and the
two individuals can participate in crossover operation when
the crossover conditions aremeeting. (3)Thebinary sequence
is generated randomly as intersection and the length of the
binary sequence is the same as the number of parameters
for individuals. (4) Crossover operation is performed on
intersection for the two individuals. For more details on the
crossover operation of GA, please refer to Goldberg [27].

The whole scheme of the DACS-CO algorithm is shown
in Figure 2.

4. Simulation Experiment

4.1. Experiment Layout. The numerical simulation experiments
are designed as follows: (1) Select radar system parameters:
radar frequency of 8.0GHz, beamwidth of 1.5, antenna height
of 16.0m, and so forth. Set an M-profile with true parameter
vector𝑚 = (0.33, −1.5, 40, 30). Lower and upper search limits
of (0, −2, 25, 0) and (0.5, −0.5, 50, 50) are set. (2) Calculate
radar electromagnetic wave propagation loss, which is simu-
lated as the observation value. (3) Take DACS-CO algorithm
to estimate atmospheric refractivity parameters. Figure 3(a)
shows the modified refractivity profile of the M-profile
with true parameter. Figure 3(b) shows the corresponding
propagation loss coverage diagram calculated by the terrain
parabolic equation.

4.2. Experiment Result. To perform RFC simulation exper-
iments, the parameters of DACS-CO algorithm are set as
follows: population size, 𝑛 = 20; probability of abandoning
the worse nests 𝑝

𝛼
, 𝑝
𝛼min = 0, 𝑝𝛼max = 1, and 𝑝𝛼 initial = 0.25,

𝑙
𝑝
𝛼

= 1.05; step size 𝛼, 𝛼min = (𝑥
𝑢
− 𝑥
𝑙
)/5000, 𝛼max =

(𝑥
𝑢
−𝑥
𝑙
)/100, and𝛼initial = (𝑥𝑢−𝑥𝑙)/1000, 𝑙𝛼 = 2, where𝑥𝑢 and

𝑥
𝑙
are the up and low boundary of the solution; the crossover

rate, 𝑃
𝑐
= 0.5. In order to illustrate the superiority of DACS-

CO, the retrieval results are compared with the CS, GA, and
PSO algorithm.The parameters of those algorithms are set as
follows: the maximum generation number, 𝑁max = 100, CS
(𝛼 = 0.01, 𝑝

𝛼
= 0.25), GA (𝑃

𝑐
= 0.7, 𝑃

𝑚
= 0.01), where

𝑃
𝑐
is the crossover rate and 𝑃

𝑚
is the mutation rate, and PSO

(𝜔 = 0.8, 𝑐
1
= 𝑐
2
= 2), where 𝜔 is the inertia weight and

𝑐
1
and 𝑐
2
are the learning factors. The statistical results for

atmospheric duct parameters using synthetic data are shown
in Table 1.

The smaller the relative error (RE), the better the retrieval
result. Thus, it can be seen from Table 1 that the retrieval
values obtained from DACS-CO algorithm are obviously
more accurate than those obtained from CS, GA, and PSO
algorithm. The retrieval values of DACS-CO algorithm are
very close to the true values. Especially for mixed layer slope
𝑐
1
, the relative error (RE) is just 2.1%, which is important

for precision improvement. Figure 4 shows the M-profile
inversions and the corresponding propagation loss coverage
diagram based on the results in Table 1. From Figure 4, it can
be seen that the M-profile and clutter plots of DACS-CO are
more close to the trueM-profile andpropagation loss than the
other three algorithms, which shows the obvious superiority
of DACS-CO algorithm.

Figure 5 illustrates the convergence process of the best
fitness values during the iterations. The lower the best fitness
value, the better the inversion result. It can be seen obviously
from Figure 5 that the best fitness values obtained from
DACS-CO algorithm are quite better than those from the
GA, PSO, andCS algorithms.The calculating speed of DACS-
CO converged to the optimal solution is much quicker
than the other algorithms. It can be concluded that the
DACS-CO algorithm contributes to superior performance
compared with the comparison algorithms. The DACS-CO
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Figure 2: Flowchart of the DACS-CO algorithm.
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Figure 3: Trilinear M-profile and its corresponding propagation loss coverage diagram.
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Table 1: Synthetic data: the statistical results for atmospheric duct parameters estimation of DACS-CO, CS, GA, and PSO algorithm.

Parameter True value Retrieval value Relative error (RE)
GA PSO CS DACS-CO GA PSO CS DACS-CO

𝑐
1
(M-units/m) 0.33 0.21 0.446 0.359 0.323 36.40% 35.15% 8.91% 2.10%

𝑐
2
(M-units/m) −1.5 −1.729 −1.418 −1.417 −1.573 15.30% 5.47% 5.57% 4.87%

ℎ
1
(m) 40 46.569 37.244 36.788 40.98 16.40% 6.89% 8.03% 2.40%

ℎ
2
(m) 30 24.706 27.249 31.601 28.536 17.60% 9.17% 5.34% 4.88%
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Figure 4: Inversion results of DACS-CO, CS, GA, and PSO for synthetic data. (a) The modified refractivity profile. (b) The corresponding
propagation loss coverage diagram of different algorithms.
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algorithm has higher efficiency and accuracy than the other
three algorithms in the retrieval of atmospheric refractivity
parameters.

5. Real Data Experiment

In order to verify the validation of DACS-CO algorithm
with real radar clutter, the observed data obtained from the
Wallops Island on April 2, 1998, experiment is selected. The
radar clutter data were gathered by the space range radar
(SPANDAR). The refractivity profiles were obtained by an
instrumented helicopter and the data include 32 profiles in
the horizontal range of 60 km. For more detailed Wallops98
experiment, please refer to [1]. Figure 6 shows the observed
32 profilesmeasured fromhelicopter (dotted) and the average
value of the 32 profiles (solid line). It can be seen that the

error of those 32 profiles is mostly within 5M. When the
observation environment does not exhibit strong convection
weather phenomenon, the environment of measured data
can be approximately horizontal homogeneous environment
[28].Thus, according to the actual computing needs, we select
the average value of the 32 profiles as the measured profile in
this study.

Here, the same four-parameter model and parameters
setting ofDACS-CO,CS,GA, and PSO algorithms used in the
simulation experiment case are selected.The lower and upper
search limits are set as (−1, −1, 10, 0) and (0, 1, 75, 75) [7].
The radar clutter data got from the SPANDAR are inverted
using those four algorithms and the results were compared
with the profile obtained from helicopter. Figure 7 shows
the inversion results of modified refractivity profile based on
the Wallops98 data. From Figure 7, it can be seen that the
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Figure 8: Inversion results based on the Wallops98 data. (a) Scatter plot of the retrieved modified refractivity for GA. (b) Scatter plot of the
retrieved modified refractivity for PSO. (c) Scatter plot of the retrieved modified refractivity for CS. (d) Scatter plot of the retrieved modified
refractivity for DACS-CO.

modified refractivity profile obtained fromDACS-CO is very
close to the measured refractivity profile and more accurate
than the other three algorithms. Figure 8 shows inversion
results based on theWallops98 data. Figure 8(a) is the scatter
plot of the retrieved modified refractivity and modified
refractivity obtained from helicopter for GA algorithm. It
can be seen that these points are much more dispersed and
most of these points deviate the isoline. The RMS is 2.036M.
Figures 8(b) and 8(c) are the scatter plot for PSO and CS.
These points are also relatively scattering.TheRMS is 3.537M
and 1.973M, respectively. Figure 8(d) is the retrieval result of
DACS-CO algorithm. The points are concentrated near the
isoline and the RMS is 0.881M, which is much smaller than
GA, PSO, and CS. From Figures 7 and 8, the retrieved results
demonstrate that the modified refractivity profiles obtained
from DACS-CO algorithm are obviously more accurate than
those obtained from GA, PSO, and CS algorithms.

Using the radar clutter to estimate the atmospheric
refractivity profile, the objective is not to obtain an accurate
profile, but to get one profile that can well describe the basic

information of the atmospheric refractivity environment.
Figure 9 summarizes the electromagnetic waves propagation
information based on the Wallops98 data using the DACS-
CO algorithm. Figure 9(a) shows the coverage diagram
obtained from a standard atmospheric condition. The cover-
age diagram in Figure 9(b) is obtained from the refractivity
profile measured by helicopter. Figure 9(c) displays the
coverage diagram based on the inverted profile of DACS-
CO algorithm. Figure 9(d) is the difference between Figures
9(b) and 9(c), and the value is mostly less than 10 dB. From
Figure 9, it can be seen that the atmospheric refractivity
profile inverted from DACS-CO algorithm can well describe
the basic information of electromagnetic waves propagation
characteristics in the atmospheric duct environment.

6. Conclusion

In this paper, a novel hybrid metaheuristic algorithm, DACS-
CO, is a technique used to estimate atmospheric refractivity
in the RFC method. The hybrid algorithm integrates the
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Figure 9: Inversion results based on the Wallops98 data. (a)
Coverage diagram (dB) based on the standard atmosphere (0.118M-
units/m). (b)Coverage diagram (dB) based on the refractivity profile
measured from helicopter. (c) Coverage diagram (dB) based on
the inverted profile of DACS-CO algorithm. (d) Difference (dB)
between coverage diagrams (b) and (c).

parameter dynamic adaptive adjusting process and crossover
operation into the standard cuckoo search. The dynamic
adaptive adjusting operation of DACS-CO algorithm can
improve the convergence speed and the quality of solution
of CS algorithm. In addition, the crossover operation of
DACS-CO can exchange information between individuals
to improve population diversity. The numerical simulation
experiments demonstrate that the hybrid algorithm could
retrieve atmospheric refractivity parameters with more pre-
cision and efficiency than CS, GA, and PSO algorithms.
And the real radar clutter experiments illustrate that the
refractivity profile obtained from DACS-CO algorithm can
well describe the basic information of the atmospheric
refractivity environment. Thus, it can be concluded that
the optimization algorithm, DACS-CO, can provide a more
precise and efficient method for near-real-time estimation of
atmospheric refractivity from radar clutter.
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