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This paper proposes an enhanced ant colony optimization with dynamic mutation and ad hoc initialization, ACODM-I, for
improving the accuracy of Takagi-Sugeno-Kang- (TSK-) type fuzzy systems design. Instead of the generic initialization usually
used in most population-based algorithms, ACODM-I proposes an ad hoc application-specific initialization for generating the
initial ant solutions to improve the accuracy of fuzzy system design. The generated initial ant solutions are iteratively improved
by a new approach incorporating the dynamic mutation into the existing continuous ACO (ACOR). The introduced dynamic
mutation balances the exploration ability and convergence rate by providing more diverse search directions in the early stage of
optimization process. Application examples of two zero-order TSK-type fuzzy systems for dynamic plant tracking control and
one first-order TSK-type fuzzy system for the prediction of the chaotic time series have been simulated to validate the proposed
algorithm. Performance comparisons with ACOR and different advanced algorithms or neural-fuzzy models verify the superiority
of the proposed algorithm. The effects on the design accuracy and convergence rate yielded by the proposed initialization and
introduced dynamic mutation have also been discussed and verified in the simulations.

1. Introduction

In contrast to the Mamdani-type fuzzy systems having good
interpretability, Takagi-Sugeno-Kang- (TSK-) type fuzzy sys-
tems usually are employed for the accuracy-oriented applica-
tions. Since each rule of a TSK-type fuzzy system has a crisp
output and the aggregated system output is computed via
weighted average, thus avoiding time-consuming and math-
ematically intractable defuzzification operation, the TSK-
type fuzzy system is a popular candidate for sample-based
fuzzymodeling [1]. However, because fuzzymodeling usually
requires high precision, the TSK-type fuzzy systems usually
are designed or refined by using the optimization techniques
to satisfy the requirement.

The optimization of the TSK-type fuzzy system design is
to find the antecedent parameters characterizing the fuzzy
sets for the inputs and the consequent parameters for the
output by minimizing or maximizing the objective function.

One of the major categories of solving such optimization
problem is the gradient-based search methods, in which
the search direction is derived based on the gradient of
the objective function with respect to the parameters. To
calculate the gradient, the gradient-based method needs the
training input-output data pair of the fuzzy system, which,
however, usually is a difficulty for fuzzy control problems
because the target fuzzy outputs responding to the inputs are
not available in advance. Another traditional difficulty for the
gradient-based method is that it is easily trapped in a local
optimum when it is applied to the optimization problems
having multiple peaks in the design space such as the design
of fuzzy system.

To avoid the issues encountered in the gradient-based
approaches, many population-based computational tech-
niques such as genetic algorithm [2] and swarm intelligence
algorithms [3] have been proposed for solving optimization
problems. These computational techniques are derivative
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free, so they can easily be applied to any optimization
problems including the fuzzy control problems and the
problems with nondifferentiable objective function. Since the
search direction in these techniques is stochastic, they are
more likely to traverse across the highly nonlinear design
space, thus avoiding to be trapped into a local optimum.
Furthermore, these approaches evaluate many candidate
solutions concurrently, so they have better chance to find the
better solution.

Genetic algorithm was inspired by the process of natural
selection and developed based on the principle of survival of
fittest. Genetic algorithms use bioinspired crossover opera-
tion between two selected parent solutions to produce child
solutions and the mutation operation for further exploiting
the generated individual child solutions for improving the
performance. Genetic fuzzy systems [4–8] are the evolu-
tionary fuzzy systems designed by genetic algorithms. For
example, GA was used to design neural-fuzzy system for
temperature control in [5] and fuzzy controller for mobile
robots in [7].

Particle swarm optimization (PSO) is one of swarm
intelligence models. PSO was inspired by the social behavior
of fish schooling and bird flocking [9]. In the PSO, each
particle represents a candidate solution to a problem and flies
in the hyperspace according to its flying velocity vector, which
is stochastically determined by its previously personal best
and swarm best experiences. In the end of PSO operation,
the experienced swarm best solution is the finally obtained
solution. To address the encountered issues and improve
over the parent PSO [9], many advanced PSO variants [10–
15] have been proposed, some of which were applied to
design the TSK-type fuzzy systems [14, 15]. These algorithms
include the PSO with time-varying acceleration coefficients
(PSO-TVAC) [10], a self-organizing hierarchical particle
swam optimizer with TVAC (HPSO-TVAC) [10], PSO with
controllable random-exploration velocity (PSO-CREV) [11],
enhanced PSO by incorporating a weighted particle [12], the
hybrid of GA and PSO (HGAPSO) [13], two-phase swarm
intelligence algorithm (TPSIA) [14], and ant and particle
swarm cooperative optimization (APSCO) [15].

Another type of swarm intelligence model is ant colony
optimization (ACO) [16–19]. The ACO technique was
inspired by foraging behavior of the real ant colony and
was proposed initially for solving discrete combinational
optimization problems such as travelling salesman problem
(TSP). The ACO algorithms have been successfully applied
to optimize the fuzzy systems for mobile robot control
[20, 21]. In those studies, in order to apply the discrete
ACO for optimization, the parameters charactering the fuzzy
controller were first discretized, thus sacrificing the precision.

To overcome the precision issue, some ant-related algo-
rithms for the optimization problems with real-value param-
eters have been proposed [22–24]. Among these algorithms,
this paper focuses the interest on ACOR [24] because it is
most related to the discrete ACO and has achieved good
performances on continuous optimization of the benchmark
functions as demonstrated in [24]. ACOR thus is advanta-
geous on the application problems requiring high precision
such as the design of fuzzy controllers for dynamic systems

because their inputs and outputs are usually continuous
cases. Since the proposal of ACOR, some variants have been
proposed and applied to design fuzzy systems for accuracy-
oriented problems [25–28]. In [25], a modified continuous
ACO algorithm (RCACO) was proposed for the design of
fuzzy-rule-based systems in order to achieve considerable
learning accuracy. The paper [26] proposed a cooperative
continuous ACO (CCACO) with multiple colonies of pop-
ulations, each colony of which is only responsible for opti-
mizing a single fuzzy rule. Although the simulation results
demonstrated that the performance of multicolony based
CCACO is better than that of the single-colony RCACO, the
computation of CCACO is much more complex than that
of RCACO. Inspired by the cognitive psychology concepts,
the study in [27] proposed an assimilation-accommodation
mixed continuous ant colony optimization (ACACO) for the
designs of feed-forward fuzzy systems. In addition, the elite-
guided continuous ACO (ECACO) was proposed to design
recurrent fuzzy systems [28], whichwas claimed to be the first
application of continuous ACO on recurrent fuzzy system
design. Although those variants indeed helped accomplish
the accurate design of fuzzy systems, there is still possible
room for further improvement, especially on the balance
between the exploration and convergence rate of solutions.
This paper introduces the dynamic mutation [29] into ACOR
to enhance such balance.

For population-based algorithms such as PSO and ACO,
another major issue is population initialization [30–34].
Startingwith a population of initial solutions, the population-
based algorithm improves the solutions iteratively in order
to find the better solution. Therefore, the population ini-
tialization affects the performance. In general, however, the
initial population solutions are generated randomly because
of no a priori information. The work in [31] suggested
use of Sobol sequence generator for generating initial PSO
particles because the generated initial solutions are uniformly
distributed into the search space. The study in [32] reported
that the initialization using the nonlinear simplex method
(NSM) helped improve the convergence rate and success
rate of PSO. By using the generators of centroidal Voronoi
tessellations (CVT) as the starting point, as suggested in [33],
the initial solutions can be more evenly distributed through-
out the high-dimensional problem space and improve PSO
performance.The study in [34] proposed a center-based sam-
pling for the initialization of population-based algorithms.
By simulations, that paper showed that the points in center
region have higher chances to be closer to an unknown
solution and thus suggested the center region is a promising
region for the initialization. However, those initialization
approaches [31–34] did not take into account application-
specific information. Based on [34] and the observations of
some accuracy-oriented fuzzy controller designs, this paper
proposes an ad hoc population initialization method for
initial ant solutions to improve the design accuracy.

This paper mainly contributes to propose an enhanced
continuous ACO algorithm incorporating dynamic muta-
tions and ad hoc initialization, ACODM-I, for the design
of TSK-type fuzzy systems. ACODM-I can be regarded
as a population-based evolutionary algorithm. Instead of
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random generation, the proposed population initialization in
ACODM-I takes the observations of well-performed fuzzy
systems into account. The introduced dynamic mutation in
ACODM-I initially provides more diverse search directions
for exploring solutions to avoid being trapped into a local
optimum in the early stage. The performance superiority of
ACODM-I to the parent ACOR and different advanced algo-
rithms or neural-fuzzy models is verified by the simulation
results of TSK-type fuzzy systems for the problems of tracking
control and chaotic time series predication. Furthermore, the
effects on the convergence rate and design accuracy yielded
by the proposed initialization and introduced dynamicmuta-
tion are verified by the simulation results.

This paper is organized as follows. The next section
describes the zero-order and first-order TSK-type fuzzy
systems. Section 3 introduces basic concepts of discrete ACO
and ACOR and proposes ACODM-I for TSK-type fuzzy sys-
tem design. Section 4 presents the simulation results of TSK-
type fuzzy systems designed by ACODM-I for the tracking
control of dynamic plant and the prediction of chaotic time
series. Section 4 also compares the ACODM-I performance
with the ones of ACOR with different values of parameter and
advanced algorithms or models. Furthermore, the effects of
the proposed initialization and dynamic mutation are also
discussed and verified in Section 4. Ultimately, conclusion
remarks are given in Section 5.

2. TSK-Type Fuzzy System

In contrast toMadami-typemodel having good interpretabil-
ity, TSK-type fuzzy systems focus on themodel accuracy.The
main difference is on the consequent part of fuzzy rules. In
a TSK-type fuzzy system, the consequence of fuzzy rule is
defined as the linear combination of the fuzzy inputs. The 𝑖th
fuzzy rule of a TSK-type fuzzy system is described as follows:

Rule 𝑖: If 𝑥1 (𝑘) is 𝐴 𝑖1, . . . , 𝑥𝑛 (𝑘) is 𝐴 𝑖𝑛,
Then 𝑦 (𝑘) is 𝑓𝑖 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , (1)

where 𝑘 is the time step, 𝑥1, 𝑥2, . . . , 𝑥𝑛 are the input variables,
and 𝑦 is the output variable of the fuzzy system. In the
antecedent part of fuzzy rule 𝑖, 𝐴 𝑖𝑗 is a fuzzy set for the input𝑥𝑗 and is characterized by a membership function. If the
function𝑓𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛) in the consequent part is a constant𝑓𝑖 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑎𝑖, (2)

the system is denoted as a zero-order TSK-type fuzzy system.
If the function 𝑓𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛) is defined by

𝑓𝑖 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑎𝑖0 + 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗, (3)

it is a first-order TSK-type fuzzy system. In this study, as
widely used in fuzzy system designs [15–17, 27–30], Gaussian
function is selected to characterize the fuzzy set 𝐴 𝑖𝑗 and is
defined by

𝑀𝑖𝑗 (𝑥𝑗) = exp{−(𝑥𝑗 − 𝑚𝑖𝑗𝑏𝑖𝑗 )2} , (4)

where 𝑚𝑖𝑗 and 𝑏𝑖𝑗 are the center and the width of fuzzy set𝐴 𝑖𝑗, respectively. For a Gaussian function, the parameters𝑚𝑖𝑗 and 𝑏𝑖𝑗 are independent variables and its function output
corresponding to any input value is never zero, which will
make the design task easier.

For a TSK-type fuzzy system consisting of 𝑅 rules, the
output of the fuzzy system through the inference engine is
calculated by

𝑦 = ∑𝑅𝑖=1 𝜙𝑖 (󳨀→𝑥) ⋅ 𝑓𝑖 (󳨀→𝑥)∑𝑅𝑖=1 𝜙𝑖 (󳨀→𝑥) ,
𝜙𝑖 (󳨀→𝑥) = 𝑛∏

𝑗=1

exp{−(𝑥𝑗 − 𝑚𝑖𝑗𝑏𝑖𝑗 )2} , (5)

where 𝜙𝑖(󳨀→𝑥) is the firing strength of rule 𝑖 excited by a
given input dataset 󳨀→𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛). Thus, to construct
an 𝑅-rule TSK-type fuzzy system with 𝑛 input variables, all
decision variables represented by󳨀→𝑠 = [𝑚11, 𝑏11, . . . , 𝑚1𝑛, 𝑏1𝑛, 𝑎1, 𝑚21, 𝑏21, . . . , 𝑚2𝑛, 𝑏2𝑛, 𝑎2, . . . ,𝑚𝑅1, 𝑏𝑅1, . . . , 𝑚𝑅𝑛, 𝑏𝑅𝑛, 𝑎𝑅] ≡ [𝑠1, 𝑠2, . . . , 𝑠𝐷] , (6)

for a zero-order TSK-type fuzzy system, or󳨀→𝑠 = [𝑚11, 𝑏11, . . . , 𝑚1𝑛, 𝑏1𝑛, 𝑎10, 𝑎11, . . . , 𝑎1𝑛, 𝑚21, 𝑏21, . . . , 𝑚2𝑛,𝑏2𝑛, 𝑎20, 𝑎21, . . . , 𝑎2𝑛, 𝑚𝑅1, 𝑏𝑅1, . . . , 𝑚𝑅𝑛, 𝑏𝑅𝑛, 𝑎𝑅0, 𝑎𝑅1, . . . ,𝑎𝑅𝑛] ≡ [𝑠1, 𝑠2, . . . , 𝑠𝐷] ,
(7)

for a first-order TSK-type fuzzy system, are to be determined.
However, such design task of a TSK-type fuzzy system can
be treated as an optimization problem that finds the free
parameters represented in (6) or (7) such that the task-
dependent objective function is optimized. Following this
transformation, the optimization algorithms can be used
to solve such optimization problem for accomplishing the
design of TSK-type fuzzy system.

3. Proposed ACODM-I for
Fuzzy System Design

This section presents the proposed enhanced continuous
ACO with dynamic mutation and ad hoc initialization
(ACODM-I) for the design of TSK-type fuzzy systems. Since
the proposed ACODM-I is inspired and related to the ACO
framework, this section first reviewed the basic concept of the
discrete ACO and ACOR. The simulation results optimized
by the ACOR will also be presented as the benchmark for
comparison in Section 4.

3.1. Basic Concept of Discrete Ant Colony Optimization. The
discrete ACO algorithms [16–19] were inspired and devel-
oped by the behavior of real ant colonies and now are largely
employed to find the solution of discrete combinational
optimization problems (COP). When ants foraged for food,
they deposited the pheromone on the trail to guide other ants.
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Figure 1: The solutions archive in ACOR, where the weights 𝑤1 ≥𝑤2 ≥ ⋅ ⋅ ⋅ ≥ 𝑤𝑁 and the objective values 𝐸(󳨀→𝑠 1) ≤ 𝐸(󳨀→𝑠 2) ≤ ⋅ ⋅ ⋅ ≤𝐸(󳨀→𝑠 𝑁) [24].
Since the pheromone will evaporate with time, the path with
a higher pheromone level is the most possibly a shorter one
to the food source. Ant System (AS) [16] is the first discrete
ACOalgorithm and proposed to solve the travelling salesman
problem (TSP). In Ant System for TSP, 𝑃𝑘𝑖𝑗(𝑡) represents the
probability that ant k situated at city i at the time t chooses to
visit city j and is defined by

𝑃𝑘𝑖𝑗 (𝑡) = {{{{{{{
(𝜏𝑖𝑗 (𝑡))𝛼 (𝜂𝑖𝑗)𝛽∑𝑚∈𝑉𝑘
𝑖

(𝜏𝑖𝑙 (𝑡))𝛼 (𝜂𝑖𝑙)𝛽 if 𝑗 ∈ 𝑉𝑘𝑖 ,
0 otherwise, (8)

where 𝜏𝑖𝑗(𝑡) is the pheromone trail on the link between cities𝑖 and 𝑗, 𝜂𝑖𝑗 is the corresponding a priori heuristic information
of the link, and 𝑉𝑘𝑖 is the set of allowed neighborhood cities
ant 𝑘 can move from city 𝑖. The relative significance of the
pheromone trail and heuristic information is determined by
the values of 𝛼 and 𝛽. Each ant is assumed to visit each city
only once, and it will construct a feasible solution to TSP after
it visited all cities. After all ants accomplished their visits, all
feasible solutions are gathered to update the pheromone levels
for the next ant cycle. The discrete ACO algorithm repeats
such procedure to find the shorter path. Since that proposal,
some variants of discrete ACO algorithms were proposed
[17, 18]. In addition, by discretizing the parameters in fuzzy
systems, the applications of the discrete ACO to optimize the
fuzzy controllers for mobile robots have been demonstrated
[20, 21].

3.2. Basic Concept of ACO𝑅. Among many proposed con-
tinuous ACO algorithms, the ACOR in [24] is one of the
most promising algorithms and is most related to the orig-
inal discrete ACO. In [24], ACOR has demonstrated good
performances for continuous optimization of the benchmark
functions.Thebasic concept ofACOR is to extend the discrete
probability distributions (8) utilized in discrete ACO to
continuousGaussian probability density functions (PDFs). In
ACOR, these Gaussian PDFs are derived from a maintained
solution archive as shown in Figure 1, and the sampled
values from the chosen PDFs are gathered to construct new
solutions.

In Figure 1, a feasible solution (ant path) to the opti-
mization problem is represented by a row vector 󳨀→𝑠 𝑖 in the
archive, and its quality 𝐸(󳨀→𝑠 𝑖) is measured by the value of

the predefined objective function. All feasible solutions are
sorted, ranked from the best to the worst, and maintained in
the fixed-size archive table. By doing this, the solution󳨀→𝑠 𝑙 thus
has rank 𝑙. Then the rank of each ant solution in the archive
determines its probability of being chosen to follow in the
next ant cycle. The operation of ACOR operation is detailed
as follows.

ACOR usually initializes all N solutions in the archive,
each of which is a D-dimensional row vector 󳨀→𝑠 =[𝑠1, 𝑠2, . . . , 𝑠𝐷], by generating random numbers within the
range of search space. All initialized solutions then are
evaluated, sorted according to the evaluation values, and
ranked in the solution archive. Each solution 󳨀→𝑠 𝑙 of the rank l
in the sorted archive is assigned with a weight 𝑤𝑙:

𝑤𝑙 = 1𝑞𝑁√2𝜋 exp{−(𝑙 − 1)22𝑞2𝑁2 } , (9)

where 𝑞 is a parameter of the ACOR. To generate a new
candidate solution, the ACOR firstly chooses one leading
solution 󳨀→𝑠 𝑙 among 𝑁 solutions in the archive according to
the probability distribution

𝑝𝑙 = 𝑤𝑙∑𝑁𝑚=1 𝑤𝑚 , 𝑚 = 1, 2, . . . , 𝑁. (10)

It indicates clearly from (10) that the better-ranked solution
has higher probability being chosen as the leading solution
and the value of q in (9) controls the tendency for exploring
the archive solutions. Once a leading solution 󳨀→𝑠 𝑙 is chosen,
a new candidate solution is constructed by sampling the
derived Gaussian PDF 𝑔𝑗

𝑙
(𝑠; 𝜇𝑗
𝑙
, 𝜎𝑗
𝑙
) in a sequence of 𝑗 =1, 2, . . . , 𝐷 with the mean 𝜇𝑗

𝑙
= 𝑠𝑗
𝑙
and the standard deviation𝜎𝑗

𝑙

𝑔𝑗
𝑙
(𝑠; 𝜇𝑗
𝑙
, 𝜎𝑗
𝑙
) = 1𝜎𝑗
𝑙
√2𝜋 exp

{{{−
(𝑠 − 𝜇𝑗

𝑙
)22 (𝜎𝑗
𝑙
)2 }}} ,

𝜎𝑗
𝑙
= 𝜀 𝑁∑
𝑚=1

󵄨󵄨󵄨󵄨󵄨𝑠𝑗𝑚 − 𝑠𝑗𝑙 󵄨󵄨󵄨󵄨󵄨𝑁 − 1 ,
(11)

where the pheromone evaporation rate 𝜀 is a positive param-
eter. A higher value of 𝜀 provides more exploration in search
thus converging slower while a lower value of 𝜀 providesmore
exploitation in search, thus converging faster. By repeating
such process 𝐿 times, 𝐿 new candidate solutions are gener-
ated. Then these 𝐿 new candidate solutions are evaluated.
Together with the original 𝑁 solutions in the previous ant
cycle, the total (𝑁 + 𝐿) solutions are sorted again. The ACOR
only reserved the 𝑁-top-performed solutions for next ant
cycle. The ACOR repeats such ant cycle until the termination
condition is satisfied.
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3.3. ACO𝑅 Using Dynamic Mutation and
Ad Hoc Initialization (ACODM-I)

3.3.1. ACO𝑅 with Dynamic Mutation (ACODM). In ACOR,
the value of 𝑞 in (9) controls the exploration ability thus
affecting convergence rate of the algorithm. When the value
of 𝑞 is small, ACOR strongly prefers the best-ranked solutions
as the leading solution, which focuses on exploiting the best-
ranked solutions locally. This will increase the convergence
rate, but the chance of convergence result being trapped
into the local optimum is also increased. When 𝑞 value is
large, the probability for each solution being chosen as the
leading solution becomes nearly uniform. This can enhance
the exploration ability for possibly obtaining globally better
solution, but the convergence rate will be decreased.

In order to avoid or lessen this issue, this paper introduces
mutation technique into the original ACOR to balance the
exploration ability and the convergence rate. In addition to
the Gaussian sampling technique, the introduced mutation
provides another option for changing (generating) a newly
constructed solution component by “jumping” to the neigh-
boring of the other archive solutions. Since the probability
for the mutation is not fixed, which will be clearly seen,
this modified algorithm is named as ACOR with dynamic
mutation, ACODM, and its operation is detailed as follows.

In ACODM, without loss of generation, the range of each
decision variable to be identified is assumed in the interval[0, 1]. If a leading solution 󳨀→𝑠 𝑙 is chosen, the value of the dth
component of a new candidate solution 󳨀→𝑠 𝑖 is generated.

If rand𝑑𝑖 > 𝑝𝑑(𝑡),
𝑠𝑑𝑖 (𝑡 + 1) = Sampl (𝑔𝑑𝑙 (𝑠; 𝑠𝑑𝑙 (𝑡) , 𝜎𝑑𝑙 (𝑡))) , (12)

else

𝑠𝑑𝑖 (𝑡 + 1) = 𝑠𝑑𝑟 (𝑡) + 𝑠𝑑𝑟 (𝑡) ⋅ 𝑈 [−0.1, 0.1] ,
if 𝑠𝑑𝑟 (𝑡) ≤ 0.5𝑠𝑑𝑖 (𝑡 + 1) = 𝑠𝑑𝑟 (𝑡) + (1 − 𝑠𝑑𝑟 (𝑡)) ⋅ 𝑈 [−0.1, 0.1]
if 𝑠𝑑𝑟 (𝑡) > 0.5.

(13)

In (12), the Sampl(𝑔𝑑𝑙 (𝑠; 𝑠𝑑𝑙 (𝑡), 𝜎𝑑𝑙 (𝑡))) denotes the sampled
value from a Gaussian PDF 𝑔𝑑𝑙 (𝑠; 𝑠𝑑𝑙 (𝑡), 𝜎𝑑𝑙 (𝑡)) with the mean𝑠𝑑𝑙 (𝑡) and the standard deviation 𝜎𝑑𝑙 (𝑡). The ranges of the
uniform randomnumbers rand𝑑𝑖 and𝑈[−0.1, 0.1] are in [0, 1]
and [−0.1, 0.1], respectively. The index 𝑟 in (13) is a uniform
random integer number in [1,𝑁]. Finally, the mutation
probability 𝑝𝑑(𝑡) for the 𝑑th component is set to be linearly
proportional to the biased standard deviation 𝜎𝑑(𝑡) among all
ants and is calculated by

𝑝𝑑 (𝑡) = ℎ ⋅ 𝜎𝑑 (𝑡) = ℎ ⋅ ( 𝑁∑
𝑖=1

(𝑠𝑑𝑖 (𝑡) − 𝑠𝑑 (𝑡))2𝑁 )
1/2

, (14)

where ℎ is an adjustable parameter determining the mutation
probability and 𝑠𝑑(𝑡) is the average value among all the dth
components in the ant population.

In ACODM, in addition to the exploitation using Gaus-
sian sampling in (12), the dynamic mutation in (13) can
explore more diverse search solutions to avoid being trapped
into a local optima in the early stage of the optimization
process. Moreover, themutation probability for each solution
component inACODMdepends on the convergence status of
the ant population, so its value is not fixed but dynamic and
is not the same for each solution component. In (14), a higher
value of h suggests a possibly larger probability for dynamic
mutation by directly jumping to the neighboring of the other
archive solutions. Therefore, the higher the value of h is, the
lower the convergence rate is. Finally, the change of value for
the mutation of ACODM, as presented in (13), is dynamic in
contrary to the fixed change used in themutation operation of
general genetic algorithms. Equation (13) indicates the points
around the center region have larger possible deviation than
those points close to the boundary when they are chosen
as the neighbors for learning. The initial motivation for
this thought is to hope the central points can wander and
explore in more diverse search directions in the early stage
of optimization process.

The ACODM algorithm repeats the selection of leading
solution using (10) followed by the Gaussian sampling in
(12) or dynamic mutation (13) to generate L new candidate
solutions. These L new candidate solutions are evaluated and
sorted together with theN solutions in the previous ant cycle.
Similarly, only the N-top-best solutions are reserved for next
ant cycle. ACODM repeats such ant cycle to find the better
solution until the termination condition is met.

3.3.2. Ad Hoc Population Initialization for Fuzzy System
Design. The initialization of the ant solutions in ACOR is
another issue, which is also a major problem for all other
population-based algorithms [30–35]. Starting with a popu-
lation of initial ant solutions, ACOR improves the solutions
iteratively to find the better solution. Therefore, the initial-
ization of ant solutions in ACOR affects the performance. In
general, good initialization can help achieve better optimum
while bad initialization usually ends on a poor local optimum.
However, because no a priori information is available, in
general the initial ant solutions are generated randomly. As
mentioned in Section 1, some advanced random initialization
approaches over the multiple-dimensional search space were
proposed [31–34]. However, those initialization approaches
did not take into account application-specific information,
and thus they are regarded as generic initialization.

The study in [34] proposed a center-based sampling
for the initialization of population-based algorithms. By
simulations, that paper showed that the points in [0.2, 0.8]
in the search space [0, 1] have higher chances to be closer
to an unknown solution, and thus the center region is a
promising region for the initialization. In addition, in our
observation of fuzzy systems, especially accuracy-oriented
fuzzy controllers, one of the membership functions for each
input in its antecedent part is usually designed at the location
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Initialize the evaporation rate 𝜀, and the archive size𝑁.
Generate𝑁 solutions in (6) or (7) with𝑚𝑖𝑗 and 𝑏𝑖𝑗 with random values in [0.45, 0.55], and 𝑎𝑖𝑗 in [0, 1].
Evaluate and sort the initial𝑁 solutions.
while the number of ant cycles is less than prescribed value do

Calculate the mutation probability 𝑝𝑑(𝑡) in (14)
for 𝑘 = 1 : 𝐿 (generate candidate solutions 󳨀→𝑠 𝑁+𝑘)
Choose a leading solution 󳨀→𝑠 𝑙 according to the probability distribution (10)
for 𝑑 = 1 : 𝐷 (generate solution components 𝑠𝑑𝑁+𝑘)

if rand𝑑𝑘 > 𝑝𝑑(𝑡), Gaussian sampling using (12)
else dynamic mutation using (13)

end
end
Evaluate 𝐿 new candidate solutions and sort (𝑁 + 𝐿) solutions.
Update population to keep𝑁 solutions in the archive.

end while

Algorithm 1: ACODM-I algorithm for TSK-type fuzzy system design.

around the input value arising more frequently or most
concerned, which is usually at the center of the search range.
Therefore, this paper proposes an ad hoc central initialization
range [0.45, 0.55] for initializing the parameters𝑚𝑖𝑗 and 𝑏𝑖𝑗 in
the antecedent part of fuzzy rule for the fuzzy system designs.
The rest of free parameters 𝑎𝑖𝑗 in the consequent part of a
TSK-type fuzzy system are initially generated uniformly in
the search space because of no a priori information.

If ACODM generates the initial ant solutions using the
proposed initialization method, the resultant algorithm is
denoted by ACODM-I. For clarity, the pseudocode of the
ACODM-I algorithm is shown in Algorithm 1.

4. Simulations

Three application examples of the designs of TSK-type fuzzy
systems are demonstrated in this section to validate the
proposed algorithm. Two zero-order TSK-type fuzzy systems
are designed for nonlinear dynamic plant control, and one
first-order TSK-type fuzzy system is optimized for the pre-
diction of the chaotic time series. In the simulations, the
population size N is 20 and the number of newly generated
temporary solutions L is 20. The value of 𝜀 is 0.85 as used
in [24, 25]. The value of ℎ = √12 is set to have the
mutation probability of 1.0 when the decision variable in
each dimension is uniformly distributed among all ants.
The performances of fuzzy controllers and fuzzy predictor
optimized by ACODM-I are validated and compared with
those by ACOR with different values of q. In the simulations
for ACOR, each initial parameter value in the fuzzy systems
was generated randomly and uniformly within its search
space. In addition, the resulting ACODM-I performance is
also compared with the reported results of some advanced
population-based algorithms or neural-fuzzy models on the
same problem. The advantage on the optimization accuracy
yielded by the proposed initialization and dynamic mutation
are also discussed through simulation results. The personal
computer for conducting all simulations possesses an Intel
Core i5 2.8GHz dual-core-processor and runs onWindows 7.

Example 1. As the first example, a zero-order TSK fuzzy
system is designed to control the nonlinear plant as taken in
[14, 25] and described by

𝑦 (𝑘 + 1) = 𝑦 (𝑘)1 + 𝑦2 (𝑘) + 𝑢3 (𝑘) . (15)

The initial state𝑦(0) of the system is assumed to zero and−1 ≤𝑢(𝑘) ≤ 1 is the control input of the plant. The objective for
the fuzzy system (controller) to be optimized is to control the
plant output to track the reference trajectory 𝑦𝑑(𝑘) as given
by

𝑦𝑑 (𝑘) = sin(𝜋𝑘50 ) cos(𝜋𝑘30 ) , 1 ≤ 𝑘 ≤ 250. (16)

In this example, the fuzzy controller is fed with two signals:
the current plant output 𝑦(𝑘) and the target output 𝑦𝑑(𝑘 + 1).
As the response to these two inputs, the produced output 𝑢(𝑘)
of the fuzzy system is used to control the nonlinear plant (15).
For a designed fuzzy controller, its performance is evaluated
by the root mean square error (RMSE) between the plant
output and the reference trajectory over the 250 time steps
and is calculated by

RMSE = (250∑
𝑘=1

(𝑦𝑑 (𝑘) − 𝑦 (𝑘))2250 )1/2 . (17)

The fuzzy controller in this example consists of five
fuzzy rules in order to compare with other algorithms later.
Then the values of the free parameters 𝑚𝑖𝑗 ∈ [−1, 1],𝑏𝑖𝑗 ∈ [0, 1], and 𝑎𝑖 ∈ [−1, 1] for constructing a fuzzy
system are searched using ACODM-I such that the error
in (17) is minimized. For each single run of optimization
process, 10000 evaluations were performed to conclude a
solution. Over 50 runs of simulations, the average best-
so-far RMSE at each performance evaluation of ACODM-
I is shown in Figure 2. The learning results of the parent
ACOR with different values of 𝑞 are also shown in Figure 2
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Figure 2: The average best-so-far RMSE at each performance
evaluation for the evolutionary fuzzy controllers optimized by
ACODM-I and ACOR in Example 1.

for comparison. The learned statistical numerical results of
RMSE errors are shown in Table 1. The results show that the
average RMSE, minimum RMSE, and maximum RMSE of
ACODM-I are smaller than the ones of ACOR algorithms
with different values of 𝑞.

The previous study [25] reported the performance results
of some advance population-based evolutionary algorithms
when they were applied to the same fuzzy control problem.
These algorithms include a hierarchical PSO-TVAC (HPSO-
TVAC) [10], a PSO with controllable random-exploration
velocity PSO (PSO-CREV) [11], a hybrid of GA and PSO
(HGAPSO) [13], a two-phase swarm intelligence algorithm
(TPSIA) using discrete ACO in the first phase and PSO in
the second phase [14], and fuzzy-rule-based continuous ant
colony optimization (RCACO) [25]. The operations of these
algorithms and their settings of parameters used on this
control problem were detailed in [14, 25]. The fuzzy system
optimized by each of these algorithms was also composed
of five rules to ensure the same number of free parameters
as that by ACODM-I. Moreover, for each single run, each
of these algorithms also performed the same number of
evaluations as that by ACODM-I. Table 2 presents the
reported performance results of these algorithms.The results
show that ACODM-I achieved the smaller average error than
all other algorithms in comparison.

The performance results of the fuzzy system optimized
by ACOR, ACODM, and ACOR-I (representing the ACOR
using the proposed initialization) are also provided in order
to discuss or validate the effectiveness of the proposed
initialization and dynamic mutation. Table 3 presents these
learned statistical numerical results when the value of 𝑞 is 0.1.
Simulation results show that ACODM achieved the smaller
average error than ACOR. The average error of ACODM-
I is also smaller than that of the ACOR-I. This indicates

ACODM
ACODM-I
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Figure 3: The average best-so-far RMSE at each performance
evaluation for the evolutionary fuzzy controllers optimized by
ACOR, ACODM, ACOR-I, and ACODM-I in Example 1.

that the dynamic mutation can improve the optimization
accuracy thus validating the effectiveness of the introduced
dynamic mutations. The main reason to this is the ability
of the dynamic mutation providing more diverse search
directions for the ant colony when the value of 𝑞 is not
large. Similarly, the effectiveness of the proposed initialization
on improving the accuracy of the fuzzy system design is
also validated by the observation that the average errors
of ACOR-I and ACODM-I are smaller than the ones of
ACOR and ACODM, respectively. Moreover, the learning
curves of ACOR, ACODM, ACOR-I, and ACODM-I are
shown in Figure 3. It is also observed that the algorithms
incorporating dynamic mutation, ACODM, and ACODM-
I converged slower than the ones without incorporating
dynamic mutation, ACOR, and ACOR-I, respectively. The
possibly best explanation is that the exploration on more
search directions by the dynamic mutation brings the accu-
racy improvement at the expense of the convergence rate.
Finally, ACODM-I achieved the smallest error. The tracking
results controlled by ACODM-I optimized fuzzy system are
presented in Figure 4. The results show that the controlled
plant output is very close to the reference trajectory.

Example 2. Thenonlinear plant for control using a zero-order
TSK-type fuzzy system as taken in [15, 25] is described by

𝑦 (𝑘 + 1) = 𝑦 (𝑘) 𝑦 (𝑘 − 1) (𝑦 (𝑘) + 2.5)1 + 𝑦2 (𝑘) + 𝑦2 (𝑘 − 1) + 𝑢 (𝑘) . (18)

The initial states 𝑦(−1) and 𝑦(0) are assumed to −6, and−1.2 ≤ 𝑢(𝑘) ≤ 1.2 is the control input of the plant. The
objective of the zero-order TSK-type fuzzy controller is to
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Table 2: Performances of fuzzy controller designed by the ACODM-I and different algorithms in Example 1.

Algorithms HPSO-TVAC HGAPSO PSO-CREV TPSIA RCACO ACODM-I
Average RMSE 0.039 0.040 0.041 0.033 0.0260 0.0256
STD 0.014 0.008 0.012 0.012 0.0047 0.0032

Table 3: Performances of fuzzy controller designed by ACOR, ACODM, ACOR-I, and ACODM-I in Example 1.

Algorithms ACOR ACOR-I ACODM ACODM-I
Average RMSE 0.0350 0.0275 0.0299 0.0256
STD 0.0071 0.0053 0.0061 0.0032
Minimum 0.0220 0.0215 0.0217 0.0201
Maximum 0.0524 0.0441 0.0433 0.0372
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Figure 4: Fuzzy control results using ACODM-I in Example 1.

control the plant output 𝑦(𝑘) to track the reference trajectory0.2𝑦𝑑(𝑘), where 𝑦𝑑(𝑘) is governed by the reference model

𝑦𝑑 (𝑘 + 1) = 0.6𝑦𝑑 (𝑘) + 0.2𝑦𝑑 (𝑘 − 1) + 𝑟 (𝑘) ,0 ≤ 𝑘 < 250,
𝑟 (𝑘) = 0.2 sin(2𝑘𝜋25 ) + 0.4 sin(𝑘𝜋32 ) ,

(19)

where the initial states of the reference model 𝑦𝑑(−1) =𝑦𝑑(0) = −6 are assumed. Two previous system outputs𝑦(𝑘), 𝑦(𝑘 − 1) and the target output 0.2𝑦𝑑(𝑘 + 1) are the three
input variables of the fuzzy controller. The produced output𝑢(𝑘) of the fuzzy system is to control the nonlinear plant
(18). The performance evaluation of a designed controller is
defined as the sum of absolute error (SAE) between the plant
output and reference trajectory over 250 time steps and is
computed by

SAE = 250∑
𝑘=1

󵄨󵄨󵄨󵄨0.2𝑦𝑑 (𝑘) − 𝑦 (𝑘)󵄨󵄨󵄨󵄨 . (20)
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Figure 5: The average best-so-far SAE at each performance evalua-
tion for the evolutionary fuzzy controllers optimized by ACODM-I
and ACOR in Example 2.

The fuzzy system to be optimized consists of four fuzzy
rules. The values of the free parameters 𝑚𝑖𝑗 ∈ [−1.2, 1.2],𝑏𝑖𝑗 ∈ [0, 1.2], and 𝑎𝑖 ∈ [−1.2, 1.2] are searched to find a better-
performed fuzzy controller yielding smaller SAE. The 60000
evaluations were performed to conclude a solution in each
run of optimization process. Over 50 runs of simulations, the
average best-so-far SAE at each performance evaluation of
each algorithm for fuzzy system design is shown in Figure 5.
The learned numerical results of SAE errors are shown in
Table 4.The results show thatACODM-I achieved the smaller
error than ACOR algorithms with different values of q.

ACODM-I performance is also compared to the reported
results of HPSO-TVAC, HGAPSO, PSO-CREV, RCACO, and
ant and particle swarm cooperative optimization (APSCO)
using the parallel combination of ACO and PSO [15] when
they were applied to the same fuzzy control problem. The
comparison is shown in Table 5. The results show that
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Table 5: Performances of fuzzy controller designed by the ACODM-I and different algorithms in Example 2.

Algorithms HPSO-TVAC HGAPSO PSO-CREV APSCO RCACO ACODM-I
Average SAE 6.64 5.33 4.0 3.73 1.92 1.23
STD 5.64 2.89 1.2 1.65 1.06 0.75
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Figure 6: The average best-so-far SAE at each performance eval-
uation for the evolutionary fuzzy controllers optimized by ACOR,
ACODM, ACOR-I, and ACODM-I in Example 2.

ACODM-I achieved smaller average error than all other
algorithms in comparison.

In this example, when the value of q is 0.1, simulation
results of the zero-order TSK-type fuzzy controller optimized
by ACOR, ACODM, ACOR-I, and ACODM-I are shown in
Table 6 and Figure 6. In a similar way to Example 1, the effects
of the proposed initialization and dynamic mutation on the
design accuracy and convergence rate are easily identified
in the simulation results. The tracking results of the fuzzy
system optimized by ACODM-I are shown in Figure 7. The
simulation results show the controlled plant output is very
close to the desired reference trajectory.

Example 3. In this example, a first-order TSK-type fuzzy
system is used to predict the chaotic time series. The time
series to be predicted is generated by thewell-knownMackey-
Glass chaotic system, which is defined by the following time-
delay differential equation𝑑𝑥 (𝑡)𝑑𝑡 = 0.2𝑥 (𝑡 − 𝜏)1 + 𝑥10 (𝑡 − 𝜏) − 0.1𝑥 (𝑡) , (21)

where 𝜏 is set as 17, the initial point 𝑥(0) is assumed to be
1.2, and 𝑥(𝑡) = 0 for 𝑡 < 0 as in the previous studies
[26, 27]. Four past values of 𝑥(𝑡 − 24), 𝑥(𝑡 − 18), 𝑥(𝑡 − 12),
and 𝑥(𝑡 − 6) are the inputs of the first-order TSK-type fuzzy
system. The produced output of the fuzzy system excited by
these four past inputs is the prediction of 𝑥(𝑡). The fuzzy
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Figure 7: Fuzzy control results using ACODM-I in Example 2.

predictor is optimized by ACODM-I and evaluated in the
following experiment. First, the solution of (21) was solved
using Runge-Kutta numerical method. Secondly, the time
series data were generated by sampling the solution every
second. The sampled data patterns from 𝑡 = 124 to 623 were
used as the training set for optimizing the fuzzy system while
the remaining patterns from 𝑡 = 624 to 1123 were used as test
set for validating the designed fuzzy model.

The first-order TSK-type fuzzy system consists of four
rules. The values of the free parameters 𝑚𝑖𝑗 ∈ [0, 2], 𝑏𝑖𝑗 ∈[0, 1], and 𝑎𝑖𝑗 ∈ [−2, 2] are searched to find a better-
performed fuzzy predictor. The objective function is defined
as the RMSE between the sampled output of the chaotic
system governed by (21) and the predicted output by the fuzzy
system. The 300000 evaluations were performed in a single
run of training. The learning results of the average RMSE at
each evaluation over 50 runs are shown in Figure 8. Table 7
shows the learned numerical results of training and testing
RMSE errors. The results show that ACODM-I achieved the
smaller prediction error than the ACOR algorithms with
different values of 𝑞.

Similar to the two previous examples, simulation results
of the first-order TSK-type fuzzy systems optimized by
ACOR, ACODM, ACOR-I, and ACODM-I are provided in
Table 8 and Figure 9 to verify the effects of the proposed
initialization and dynamic mutation. The results indicate
that the proposed initialization and dynamic mutation in
ACODM-I as applied to the design of first-order TSK-type
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Table 6: Performances of fuzzy controllers designed by ACOR, ACODM, ACOR-I, and ACODM-I in Example 2.

Algorithms ACOR ACOR-I ACODM ACODM-I
Average SAE 2.9983 1.8273 2.1049 1.2292
STD 2.6633 0.9141 0.879 0.7454
Minimum 0.722 0.5465 0.5174 0.4879
Maximum 13.0973 3.2088 4.179 2.8749
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Figure 8: The average best-so-far RMSE at each performance eval-
uation for the evolutionary fuzzy predictor optimized by ACODM-I
and ACOR in Example 3.

fuzzy system have the same effects as those used in the zero-
order TSK-type fuzzy systems for control problems. It is
also observed that the proposed initialization helps improve
much more on design accuracy than dynamic mutation. The
predication results of the first-order TSK-type fuzzy system
optimized by ACODM-I are shown in Figure 10. The results
show the prediction values by the fuzzy system are very close
to the desired ones.

The performance of fuzzy system designed by ACODM-
I is also compared to the reported results of different
algorithm and neural-fuzzy systems that were applied to the
same prediction problem [28]. These neural-fuzzy systems
include a Hybrid Neural-Fuzzy Inference System (HyFIS)
[35], a Dynamic Fuzzy Neural Network (D-FNN) [36], a
Subsethood-Product Fuzzy Neural Inference System (SuP-
FuNIS) [37], and a Generalized Fuzzy Neural Network (G-
FNN) [38].The algorithm in comparison is amultiple-colony
topology based Cooperative Continuous ACO- (CCACO-)
designed neural-fuzzy system [26]. The comparison results
are shown in Table 9. The results show the fuzzy predictor
optimized by ACODM-I achieved the smaller test error
than the most of reported neural-fuzzy systems. Though the
ACODM-I performance is very close to the G-FNN and
CCACO, ACODM-I optimized fuzzy system uses smaller
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number of rules thanG-FNN.As reported in [26], the average
training RMSE of the CCACO is 0.0094 which is larger
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Table 8: Performances of fuzzy predictor designed by ACOR, ACODM, ACOR-I, and ACODM-I in Example 3.

Algorithms ACOR ACOR-I ACODM ACODM-I
Test Average 0.0386 0.0084 0.0303 0.0078
Test STD 0.0350 0.0012 0.0314 0.0012
Test Minimum 0.0087 0.0057 0.0079 0.0058
Test Maximum 0.0962 0.0131 0.0962 0.0119

Table 9: Performances of ACODM-I, CCACO, and different neural-fuzzy systems in Example 3.

Models HyFIS D-FNN SuPFuNIS G-FNN CCACO ACODM-I
Rule number 16 5 4 10 4 4
Test RMSE 0.0100 0.0131 0.0075 0.0056 0.0061 0.0058

than 0.0078 of ACODM-I. Moreover, the CCACO algorithm
is a multiple-colony algorithm, whose computation is more
complex than the simple single-colony algorithm such as
ACODM-I.

5. Conclusions

This paper proposes an enhanced ant colony optimization
with dynamicmutation and ad hoc initialization, ACODM-I,
for improving the accuracy of TSK-type fuzzy systems design.
ACODM-I is developed based on ACOR and is regarded
as a new population-based evolutionary optimization algo-
rithm. Based on the observations of some accuracy-oriented
fuzzy controllers, this paper proposes an ad hoc population
initialization for initial ant solutions to improve the design
accuracy. This is an application-specific initialization rather
than generic initialization currently used inmost population-
based algorithms. ACODM-I incorporates the dynamic
mutation technique into ACOR to balance exploration ability
and convergence rate. In addition to exploiting local search
around the chosen leading solution using Gaussian sampling,
the dynamic mutation probabilistically provides more search
directions by “jumping” to the neighboring of other archive
solutions in order to avoid being trapped into a local opti-
mum.

To validate the proposed algorithm, three application
examples of the TSK-type fuzzy system designs have been
simulated: two zero-order TSK-type fuzzy systems for non-
linear dynamic plant control and one first-order TSK-type
fuzzy system for the prediction of the chaotic time series.
The simulation results have demonstrated that ACODM-I
achieves smaller error than the ones by the ACOR algorithms
with different values of q. The effects on the design accuracy
and convergence rate yielded by the proposed initialization
and introduced dynamic mutation have also been discussed
and verified in the simulations. In addition, the comparison
with some advanced population-based algorithms also shows
that the error achieved by ACODM-I is smaller than those
by those algorithms used for comparison including HPSO-
TVAC, PSO-CREV, HGAPSO, TPSIA, APSCO, and RCACO
for the design of zero-order TSK-type fuzzy controller and
CCACO for the design of first-order TSK-type fuzzy predic-
tor.

In the future, the performances of ACODM-I for the
designs of various types of feed-forward or recurrent fuzzy
systems will be studied. The adaptive mechanism or algo-
rithm of adjusting the value of ℎ in (14) determining the
mutation probability will be investigated in the future study.
The hybridization of ACODM-I with other computational
techniques may further improve optimization accuracy; thus
it is possibly worthy of being studied in the future.
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