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This paper presents a distributed cooperative search algorithm for multiple unmanned aerial vehicles (UAVs) with limited sensing
and communication capabilities in a nonconvex environment. The objective is to control multiple UAVs to find several unknown
targets deployed in a given region, while minimizing the expected search time and avoiding obstacles. First, an asynchronous
distributed cooperative search framework is proposed by integrating the information update into the coverage control scheme. And
an adaptive density function is designed based on the real-time updated probability map and uncertainty map, which can balance
target detection and environment exploration. Second, in order to handle nonconvex environment with arbitrary obstacles, a new
transformationmethod is proposed to transform the cooperative search problem in the nonconvex region into an equivalent one in
the convex region. Furthermore, a control strategy for cooperative search is proposed to plan feasible trajectories for UAVs under
the kinematic constraints, and the convergence is proved by LaSalle’s invariance principle. Finally, by simulation results, it can be
seen that our proposed algorithm is effective to handle the search problem in the nonconvex environment and efficient to find
targets in shorter time compared with other algorithms.

1. Introduction

Over the past decade, unmanned air vehicles (UAVs) with
functional diversity and low cost have been extensively
employed in many civil and military applications, such as
environment surveillance, battle reconnaissance, and search
and rescue in the hazardous environment [1–3]. With the
development of advanced sensing and information process-
ing technology, cooperative search has been one of the most
popular utilizations of UAVs equipped with sensors (such as
camera, Lidar, and sonar) [4]. The goal of cooperative search
is to control multiple UAVs to find several unknown targets
deployed in a given region, while maximizing the detection
probability and minimizing the expected search time.

The problem of cooperative search with multiple UAVs
has been studied extensively due to its critical importance for
a myriad of applications [3, 5, 6]. Existing methods can be
classified into two categories: predefined flight paths based
search and dynamic path planning based search. The former
is to generate the flight paths (e.g., parallel lines or outward

spirals) in advance and follow these paths during search
execution. The typical method of this category is sweep-line
based search [7], in which the agents sweep all the points in
the given area to find the targets. This method is effective
so that no search areas are missed but not efficient due
to the predefined paths and cannot be used for searching
the dynamic targets. The latter method is to convert the
cooperative search problem into a multiagent path planning
issue. Typically, the path planning problem is formulated
as the optimization of a team objective function subject to
a set of constraints [8]. Therefore, dynamic programming
[9], artificial intelligence [5, 6], and model predictive control
(MPC) [10] can be used for solving these problems. In this
paper, inspired by the coverage control, a distributed cooper-
ative search method is proposed by integrating information
update into the coverage control scheme, which also belongs
to path planning based search methods. In recent years,
with the development of related theory in Mobile Wireless
Sensor Network (MWSN), coverage control methods [11]
have beenwidely used inmultiple robots system.Thepurpose

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 196730, 19 pages
http://dx.doi.org/10.1155/2015/196730



2 Mathematical Problems in Engineering

of coverage control is to optimally deploy the mobile sensors
to maximize the coverage of environment. Due to the limited
Field of View (FoV), the cooperative search problem with
multiple UAVs can be treated as an optimal coverage problem
with a bounded sensing size of sensors [12]. And the dis-
tributed control strategy can be easily obtained by optimizing
the objective function through the Lloyd algorithm [11].
Besides, by using the coverage control scheme in the search
problem, it will not only promote the detection perfor-
mance of target search but also take account of coverage
performance. However, few of the existing coverage control
methods have considered the information update about
target existence probability, which is crucial to the search
problem in practice and essentially affects the movements of
UAVs.

Therefore, the first issue that should be addressed is
how to integrate the information update into the coverage
control scheme in order to solve the search problem. To
our knowledge, there are only a few works that utilize the
coverage control method with consideration of information
update. Zhong and Cassandras [13] use coverage control and
data collection to maximize the joint detection probability
of random events in a given mission space. However, their
goal is to find the optimal deployments for detection, which
is essentially different from the search problem. And the
density function (importance level of each cell in the region)
in their objective formulation depends on the distance to the
critical points (i.e., the detected sources). Mirzaei et al. [14]
use two different types of vehicles for search and coverage
tasks. Search vehicles use a limited look-ahead dynamic pro-
gramming algorithm tomaximize the amount of information
gathered by the whole team, while service vehicles use the
coverage control method to spread out over the environment
to optimally cover the terrain. However, the search and
coverage control are executed on different platforms by
different schemes, and only the probability distribution of
critical points is utilized in the objective function. Besides,
the information fusion update is not considered. Hu et al. [15]
formulate the path planning as a coverage control problem
to find an optimal configuration of all agents that minimizes
a given coverage performance cost function. They use the
uncertainty information as the density function to cover the
region uniformly, which cannot directly facilitate agents to
search the region with high target existence. In this paper,
we integrate the information update into the coverage control
scheme by introducing the probabilitymap of target existence
together with the uncertainty map into the density function
of coverage optimization. Inmost coverage control problems,
the density function is fixed [16, 17] or only depends on
the distance to some critical points [18, 19]. However, our
new density function can be adaptively changed, depending
on the real-time updated target existence probability and
uncertainty map. The higher the probability map is, the
larger the probability of target existence is. So utilizing
the probability map as the density function can help UAV
converge to the regions with high target existence and find
targets in a short time. If all the regions with high target
existence probability have been searched, or the UAV gets
stuck in the local optimum, the uncertainty map can help

the UAV escape from the local optimum and explore more
regions.

Due to practical requirements, realistic search areas may
be arbitrarily shaped with arbitrary obstacles.Thus, the other
issue in our search problem is how to handle the nonconvex
environment during search execution. Pimenta et al. [12] use
the geodesic distance based algorithm to solve the coverage
problem with a network of heterogeneous robots in the
nonconvex environment. However, it may cause the robot
to get stuck in a saddle point, or even worse, to drive
into an obstacle, as the projections of the gradients into
target direction of the geodesic distance do not add up to
zero when reaching the boundary. Teraoka et al. [19] and
Adibi et al. [20] present the potential field-based approaches
representing control under the influence of virtual force
generated by goals (attraction) and obstacles (repulsion),
which have advantages in less computation anddisadvantages
in being easily trapped into a local minimum of the potential
field. Breitenmoser et al. [18] present an algorithm which
combines classical Voronoi coverage with Lloyd algorithm
and the local planning algorithm TangentBug to compute
the motion of the robots around obstacles and corners. It
assumes that the range of sensor is infinite, meaning that
the sensors can “see” through obstacles, which is unrealistic
in practice. Caicedo et al. [16, 17] map a class of connected
regions with holes to an almost convex region through
a diffeomorphism, such that Voronoi partition and Lloyd
algorithm [11] can be used to solve the coverage problem.
However, the obstacles in their work must be simple convex
ones, and the kinematic model of agents is not considered.
As mentioned above, cooperative search in the nonconvex
environment with arbitrary obstacles is still an open problem,
especially when taking more realistic detection and the
kinematic model into consideration. Motivated by this, we
propose a generalized method to construct a transformation
that can transform the nonconvex region with arbitrary
obstacles into an almost convex region. Combining with
the asynchronous distributed cooperative search framework,
the cooperative search problem in the complex nonconvex
environment can be solved.

The main contributions of this work are as follows. First,
an asynchronous distributed cooperative search framework
is developed that integrates information update into cov-
erage control scheme. And an adaptive density function
is formulated depending on real-time updated probability
map and uncertainty map, which can balance target search
and environment exploration. Second, by extending the
diffeomorphism [16], we propose a new transformation
method to handle the nonconvex environment with arbi-
trary obstacles, not limited to convex ones. Based on the
transformation, the cooperative search algorithm is provided
that can address search problem in the nonconvex envi-
ronment with arbitrary obstacles. Finally, a control strategy
is designed considering the kinematic constraints of UAV,
and the convergence is proved using LaSalle’s invariance
principle.

The remainder of this paper is organized as follows.
In Section 2, some useful preliminaries are provided. The
cooperative search framework and the objective formulation,
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Figure 1: FoV of the UAV.

as well as the explicit information update procedure, are
presented in Section 3. In Section 4, the generalized method
for constructing a transformation is presented to handle
the nonconvex environment with arbitrary obstacles. Then
the cooperative search algorithm in the nonconvex envi-
ronment is proposed, and the stability and convergence
are proved. Simulation results with analysis are shown in
Section 5, and the conclusions are drawn in Section 6.

2. Preliminaries

2.1. Basic Notions and Definitions. Let R be the set of real
numbers and let R𝑛 denote the 𝑛-dimensional Euclidean
space. For a given set𝑄 ⊆ R𝑛,𝑄int and 𝜕𝑄 denote the interior
and the boundary of 𝑄, respectively. One has 𝑄int

= 𝑄/𝜕𝑄.
𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ represents the Euclidean distance between
points 𝑥, 𝑦 ∈ R2, and 𝐵(𝑞, 𝜀) is a closed ball centered at 𝑞
with radius 𝜀. In the following, some definitions about the
environment are presented.

Definition 1 (connected partition [21]). Let𝑄 ⊂ R2 be a finite
set and let 𝑃 = 𝑃1, . . . , 𝑃𝑁 be a subset of𝑄; if 𝑃

𝑖
∩ 𝑃

𝑗
= 0, ∀𝑖 ̸=

𝑗, and ⋃
𝑁

𝑖=1 𝑃𝑖 = 𝑄, 𝑃 = 𝑃1, . . . , 𝑃𝑁 is said to be a connected
partition of 𝑄.

Definition 2 (Voronoi partition). A connected partition 𝑉 =

{𝑉1, . . . , 𝑉𝑁} of 𝑄 is said to be a Voronoi partition of 𝑄,
generated by a vector of distinct points 𝑐 ∈ 𝑄

𝑁, if for each
𝑉
𝑖
there exists 𝑐

𝑖
∈ 𝑉

𝑖
that satisfies 𝑑(𝑐

𝑖
, 𝑞) ≤ 𝑑(𝑐

𝑗
, 𝑞), ∀𝑞 ∈ 𝑉

𝑖
,

∀𝑗 ̸= 𝑖.

Definition 3 (nonconvex [22]). Given any finite set 𝑄 ⊂ R2,
point 𝑞 of 𝜕𝑄 is nonconvex if, for all 𝜀 > 0, there exist 𝑞1 and
𝑞2 in 𝐵(𝑞, 𝜀) ∩ 𝜕𝑄 so that the open interval (𝑞1, 𝑞2) is outside
𝑄.

Definition 4 (nonconvex allowable environment [22]). Let
𝑄 ⊂ R2 be a finite set that is allowable if

(i) 𝑄 is compact and connected;

(ii) 𝜕𝑄 is continuously differentiable except on a finite
number of points;

(iii) 𝜕𝑄 has a finite number of nonconvex points which are
either isolated points or arcs continuously differen-
tiable everywhere except, possibly, at their end points.

In this paper, the search environment is denoted by 𝑄,
which is a polygon in R2. It is assumed that there are several
polygonal obstacles 𝐻

𝑙
⊂ 𝑄, 𝑙 = 1, . . . ,𝑀 within 𝑄. Thus,

the overall feasible region is 𝐹 = 𝑄 \ ⋃
𝑀

𝑖=1 𝐻𝑙
. Obviously, the

search region is nonconvex since it contains several obsta-
cles.

2.2. Detection and Communication Model. Considering 𝑁

UAVs in the search region, each UAV is modeled as a
nonholonomic point mass moving at a limited speed with a
minimum turning radius. The position of UAV 𝑖 is denoted
by 𝑝

𝑖
= [𝑥

𝑖
, 𝑦

𝑖
]
𝑇, and the heading angle is 𝜃

𝑖
. So the state of

UAV 𝑖 can be represented as [𝑥
𝑖
, 𝑦

𝑖
, 𝜃

𝑖
].

Each UAV is equipped with a camera to take measure-
ments within its Field of View (FoV). Supposing UAV 𝑖 is
aiming at point 𝑞 at time 𝑘 (Figure 1), the formulation of FoV
is

𝑆
𝑖,𝑘

= {(𝑥, 𝑦) | 𝑞
𝑥
−𝑑

𝑥1 ≤𝑥≤ 𝑞
𝑥
+𝑑

𝑥2, 𝑞𝑦 −𝑑
𝑦
≤𝑦

≤ 𝑞
𝑦
+𝑑

𝑦
} ,
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𝑞
𝑥
= 𝑥

𝑖
+

ℎ cos 𝜃
𝑖

tan𝛼
𝑠

,

𝑞
𝑦
= 𝑦

𝑖
+

ℎ sin 𝜃
𝑖

tan𝛼
𝑠

,

𝑑
𝑥1 = ℎ(

1
tan𝛼

𝑠

−

1
tan (𝛼

𝑠
+ 𝛽

𝑠
)

) ,

𝑑
𝑥2 = ℎ(

1
tan (𝛼

𝑠
− 𝛽

𝑠
)

−

1
tan𝛼

𝑠

) ,

𝑑
𝑦
= ℎ

tan 𝛾
𝑠

sin𝛼
𝑠

,

(1)

where ℎ ≤ ℎmax represents the flight height of UAV and 𝛼
𝑠
, 𝛽

𝑠
,

and 𝛾
𝑠
are the installed angle and view angles of the camera,

related to the physical performance.
The search region 𝑄 is then discretized into several cells,

defined as 𝑜
𝑖
. 𝑍

𝑜𝑖 ,𝑘
represents that a target exists in cell 𝑜

𝑖
at

time 𝑘 and 𝑍
𝑜𝑖 ,𝑘

represents that no target exists in cell 𝑜
𝑖
at

time 𝑘. Similarly,𝐷
𝑜𝑖,𝑘

represents that theUAVdetects a target
in cell 𝑜

𝑖
at time 𝑘 and𝐷

𝑜𝑖 ,𝑘
represents that theUAVdetects no

target in cell 𝑜
𝑖
at time 𝑘. Here, we only consider the influence

of the Euclidean distance ‖𝑝
𝑖
− 𝑜

𝑖
‖ between UAV 𝑖 and the

detected cell 𝑜
𝑖
. The detection probability for UAV 𝑖 can be

represented by a monotonically decreasing function as

𝑃 (𝐷
𝑜𝑖 ,𝑘

| 𝑍
𝑜𝑖 ,𝑘

) =

{

{

{

𝑃0𝑖𝑒
−𝜆‖𝑃𝑖−𝑜𝑖‖

2
, 𝑜

𝑖
∈ FoV

0, 𝑜
𝑖
∉ FoV,

(2)

where𝑃0𝑖 ∈ (0, 1] is a constant of the sensing performance for
UAV 𝑖 and 𝜆 is a positive constant, set to be 1. All theUAVs are
provided with the identical kind of camera sensors, so 𝑃0𝑖 =
𝑃0𝑗 = 𝑃0 (𝑖, 𝑗 = 1, . . . , 𝑁, 𝑖 ̸= 𝑗).

In this paper, the communication range is assumed to
be limited. Let CN = (𝜉, ]) be an undirected graph, where
] = {1, 2, . . . , 𝑁} and 𝜉 = {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ ]} represent the
vertex set and the edge set, respectively. The communication
network for UAV 𝑖 at time 𝑘 is modeled as CN

𝑖,𝑘
= (𝜉

𝑘
, ]).

The edge set is 𝜉
𝑘
= {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ ] | 𝑑(𝑝

𝑖
, 𝑝

𝑗
) ≤ 𝑅

𝐶
},

where 𝑅
𝐶
is the communication range. Therefore, the set of

UAV 𝑖’s neighbors can be defined as 𝜁
𝑖,𝑘

= {𝑗 ∈ ] | (𝑖, 𝑗) ∈ 𝜉
𝑘
}.

“Neighbor communication strategy” is considered; that is,
only when two UAVs reach into each other’s communication
range, information exchange may happen. DeLima and Pack
[23] have proved that this strategy is more efficient in
solving the search problem than that of maintaining a global
communication network by restricting UAVs’ mobility.

3. Cooperative Search Framework

The goal of this paper is to develop an efficient cooperative
search method for multiple UAVs to find several unknown
targets in a nonconvex environment with arbitrary obstacles.
Inspired by the coverage control, an asynchronous distributed

cooperative search framework is proposed by integrating the
information update into the coverage control scheme, as
shown in Figure 2. The proposed framework will promote
the detection performance of target search while taking
account of coverage performance when the distribution of
targets is uniform. Specifically, there are two interdependent
tasks. One is online information update containing local
update and fusion update. The other is control strategy
generation for cooperative search by optimizing the objec-
tive function. These two tasks are closely related through
the probability map TP

𝑖
and uncertainty map 𝐼

𝑖
. At first,

each UAV takes a measurement 𝑠
𝑖
and updates its local

probability map TP
𝑖
through Bayesian update rule, where

the inaccuracies and uncertainties in the measurements are
taken into consideration. Then, UAVs in the same commu-
nication network CN

𝑖
will exchange the information of the

probability map and position, as denoted by the blue lines
in Figure 2. The shared information of the probability map
is fused by individual UAV to maintain a common view of
the search region, and the position information is used to
update the Voronoi partition 𝑉

𝑖
. The uncertainty map 𝐼

𝑖
will

be obtained by using both position and probability map.
Finally, each UAV generates its control law by optimizing
the objective function 𝐻

𝑖
. Note that this framework is first

designed for the convex environment and can also be used
for the nonconvex environment, which will be described in
the next section. In the following, the explicit description
of the objective function and information update will be
presented.

3.1. Objective Function Formulation

3.1.1. Objective Function and Control Law. First, the coop-
erative search method in the convex region is presented,
which is fundamental to that in the nonconvex region.
At each decision, the UAV should determine the optimal
control input based on the current state and environment
information.The objective is to find several unknown targets,
while maximizing the detection probability and minimizing
the expected search time. To this end, the following objective
function is proposed to be minimized, which is associated
with the Voronoi partition:

𝐻(𝑃) = ∫

𝑄

𝑓 (




𝑝
𝑖
− 𝑟





) 𝛾 (𝑟) 𝑑𝑟

=

𝑁

∑

𝑖=1
∫

𝑉𝑖

𝑓 (




𝑝
𝑖
− 𝑟





) 𝛾 (𝑟) 𝑑𝑟,

(3)

where 𝑟 ∈ 𝑄 is the cell of environment, 𝑉
𝑖
represents

the Voronoi region generated by 𝑝
𝑖
, and 𝑓(‖𝑝

𝑖
− 𝑟‖) is a

nondecreasing function. The density function 𝛾(𝑟) : 𝑄 →

R+ represents the (relative) importance level of each cell in
the environment 𝑄. The more important the cell 𝑟 is, the
larger the value 𝛾(𝑟) would be. Generally speaking, more
attention should be paid to the region with a larger density
function.
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Figure 2: Asynchronous distributed cooperative search framework.

In order to optimize the objective function𝐻(𝑃), the par-
tial derivative of the objective function should be calculated.
Supposing 𝑓(‖𝑝

𝑖
− 𝑟‖) = ‖𝑝

𝑖
− 𝑟‖

2 in this paper, it can be
obtained that

𝜕𝐻

𝜕𝑝
𝑖

=

𝜕𝐻
𝑖
(𝑝

𝑖
, 𝑉

𝑖
)

𝜕𝑝
𝑖

= 2∫
𝑉𝑖

(𝑝
𝑖
− 𝑟) 𝛾 (𝑟) 𝑑𝑟

= 2𝑀
𝑉𝑖
(𝑝

𝑖
−𝐶

𝑉𝑖
) ,

(4)

where𝑀
𝑉𝑖
and𝐶

𝑉𝑖
are the mass and the centroid with respect

to the density function 𝛾(𝑟), defined as

𝑀
𝑉𝑖
= ∫

𝑉𝑖

𝛾 (𝑟) 𝑑𝑟,

𝐶
𝑉𝑖
=

1
𝑀

𝑉𝑖

∫

𝑉𝑖

𝑟𝛾 (𝑟) 𝑑𝑟.

(5)

For simplification, the dynamics of eachUAV is chosen as
̇𝑝
𝑖
= 𝑢

𝑖
. The gradient descent approach is used to minimize

the objective function, expressed as

𝑢
𝑖
= ̇𝑝

𝑖
= − 𝑘

𝑖
(𝑝

𝑖
−𝐶

𝑉𝑖
) , (6)

where 𝑘
𝑖
is a positive gain.

However, in the nonconvex environment, the above
control law may fail for two reasons. The centroid of Voronoi
region may lie in the unfeasible area, making it impossible
to converge to the centroid. The other is that the trajectory
generated by the control law (6) may travel through the
unfeasible area. Motivated by this, in the next section, a
generalized transform will be presented to transform the
nonconvex environment into a convex one such that the
above control law can be used.

3.1.2. Adaptive Density Function. The density function repre-
sents the importance level of each cell in the region, which
essentially affects the control strategy of UAVs in the search
process. In this paper, we propose an adaptive density func-
tion 𝛾(𝑟) that can utilize different types of the information in
different search stages. This density function depends on the
real-time updated probability map and uncertainty map.

Here, the concept of the uncertainty map 𝐼
𝑖
is introduced,

defined as the degree of uncertainty about target existence in
the environment. The uncertainty map can be derived from
the probability map and UAV’s trajectories as follows:

𝐼
𝑖,𝑘
(𝑟) =

{
{
{
{

{
{
{
{

{

−TP
𝑖,𝑘
(𝑟) ln (TP

𝑖,𝑘
(𝑟)) , if TP

𝑖,𝑘
(𝑟) ̸= 0

0, if TP
𝑖,𝑘
(𝑟) = 0 and 𝑟 has been detected

0.5, if TP
𝑖,𝑘
(𝑟) = 0 and 𝑟 has not been detected.

(7)

From the above equations, it can be seen that if the target
existence probability is close to the middle section of [0, 1], it

will be difficult to determine the existence of the target.Thus,
the uncertainty map will have high value in those regions.
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Besides, the regions that have not been detected by UAVs also
have high values, in order to facilitate covering the unvisited
regions. Hence, we define the adaptive density function as
follows:

𝛾 (𝑟) =

{

{

{

TP
𝑖,𝑘
(𝑟) , Stage 𝑇1

𝐼
𝑖,𝑘
(𝑟) , Stage 𝑇2,

(8)

where Stage 𝑇1 is from the beginning of search to the time
whenUAVconverges to the centroid of itsVoronoi region and
gets stuck. From that time on, the second Stage 𝑇2 is started.

This adaptive density function can promote the detec-
tion performance of target search while taking account of
coverage performance. The probability map is used to lead
UAV to move towards the region with high target existence
probability, in order to find the targets in a shorter time.
However, if the UAV has detected all the regions with high
target probability and the centroid of Voronoi region no
longer updates, the control law in (6) always leads UAV to
the centroid. So the UAVmay get stuck in the local optimum.
Therefore, the uncertaintymap instead of the probabilitymap
is used to help UAV escape from the local optimum and
explore the regions with large uncertainty.

3.2. Information Update Method. In the cooperative search
problem, each UAV keeps an individual probability map TP

𝑖
.

The information update is in the form of probability map
update, and the uncertainty map 𝐼

𝑖
is derived from the prob-

ability map. The source of the UAV’s information consists
of three parts: initial information, detection information,
and communication information, so the update of individual
probability map has two stages: probability map local update
and probability map fusion update.

3.2.1. Probability Map Local Update. Considering the uncer-
tainty of sensor measurements, the probability map local
update is related with whether a target is detected or not,
provided that the target existence probability 𝑃(𝑍

𝑜𝑗 ,𝑘
) is

known in advance. 𝐵FOV𝑖 represents that a target is detected
by UAV 𝑖 at time 𝑘 with respect to the sensor measurement
𝑠
𝑖,𝑘

= 1. 𝐵FOV𝑖 is the opposite of 𝐵FOV𝑖 with respect to
measurement 𝑠

𝑖,𝑘
= 0. Considering the different sensor

measurements, the update processes are different.
(1) If a target is detected by UAV 𝑖, the update of target

probability at time 𝑘 based on Bayesian theory can be
expressed as

𝑃(𝑍
𝑜𝑗 ,𝑘+1 | 𝐵FOV𝑖) =

𝑃 (𝐵FOV𝑖 | 𝑍𝑜𝑗 ,𝑘
)𝑃 (𝑍

𝑜𝑗 ,𝑘
)

𝑃 (𝐵FOV𝑖)
,

𝑜
𝑗
∈ 𝑄,

(9)

where 𝑃(𝐵FOV𝑖 | 𝑍
𝑜𝑗 ,𝑘

) is the probability of detecting the
target by UAV 𝑖, when a target exists in cell 𝑜

𝑗
, and 𝑃(𝑍

𝑜𝑗 ,0)

is the initialized probability map. Since the FoV of UAV 𝑖

contains 𝑀
𝑖
cells, 𝑃(𝐵FOV𝑖 | 𝑍

𝑜𝑗 ,𝑘
) can be described by the

probability of failing to detect the target in these𝑀
𝑖
cells as

𝑃(𝐵FOV𝑖 | 𝑍𝑜𝑗 ,𝑘
) = 1−𝑃 (𝐵FOV𝑖 | 𝑍𝑜𝑗 ,𝑘

)

= 1−
𝑀𝑖

∏

𝑖=1
𝑃(𝐷

𝑜𝑖 ,𝑘
| 𝑍

𝑜𝑗 ,𝑘
) ,

(10)

where 𝑃(𝐷
𝑜𝑖 ,𝑘

| 𝑍
𝑜𝑗 ,𝑘

) represents the probability that UAV 𝑖

fails to detect the target in cell 𝑜
𝑖
when the target is in cell

𝑜
𝑗
. Assuming 𝑝

𝑎
is false alarm probability, 𝑃(𝐷

𝑜𝑖 ,𝑘
| 𝑍

𝑜𝑗 ,𝑘
) is

described as follows:

𝑃(𝐷
𝑜𝑖 ,𝑘

| 𝑍
𝑜𝑗 ,𝑘

) =

{

{

{

𝑝
𝑎
, 𝑜

𝑖
̸= 𝑜
𝑗

𝑃0𝑖, 𝑜
𝑖
= 𝑜

𝑗
,

(11)

where 𝑃0𝑖 = 1 − 𝑃0𝑖𝑒
−𝜆𝑖‖𝑝𝑖−𝑜𝑖‖ and 𝑝

𝑎
= 1 − 𝑝

𝑎
.

If the target is in the FoV of UAV, the detection fault of
missing the target occurs in one cell with the probability 𝑃0𝑖.
If not, the detection result is correct, and only false alarm
probability is eliminated. Therefore, the probability for UAV
𝑖 of failing to detect the target is

𝑀𝑖

∏

𝑖=1
𝑃(𝐷

𝑜𝑖 ,𝑘
| 𝑍

𝑜𝑗 ,𝑘
) =

{

{

{

𝑃0𝑖 × 𝑝
𝑀𝑖−1
𝑎

, 𝑜
𝑗
∈ 𝑆

𝑖,𝑘

1 − 𝑝
𝑀𝑖

𝑎
, 𝑜

𝑗
∉ 𝑆

𝑖,𝑘
.

(12)

Combining (10) with (12), it can be obtained that

𝑃(𝐵FOV𝑖 | 𝑍𝑜𝑗 ,𝑘
) =

{

{

{

1 − 𝑃0𝑖 × 𝑝
𝑀𝑖−1
𝑎

, 𝑜
𝑗
∈ 𝑆

𝑖,𝑘

1 − 𝑝
𝑀𝑖

𝑎
, 𝑜

𝑗
∉ 𝑆

𝑖,𝑘
.

(13)

Based on the Bayesian complete probability formula,
𝑃(𝐵FOV𝑖) can be expressed as

𝑃 (𝐵FOV𝑖) = ∑

𝑜𝑗∈𝑆𝑖,𝑘

𝑃(𝐵FOV𝑖 | 𝑍𝑜𝑗 ,𝑘
)𝑃 (𝑍

𝑜𝑗 ,𝑘
)

+ ∑

𝑜𝑗∉𝑆𝑖,𝑘

𝑃(𝐵FOV𝑖 | 𝑍𝑜𝑗 ,𝑘
)𝑃 (𝑍

𝑜𝑗 ,𝑘
)

= ∑

𝑜𝑗∈𝑆𝑖,𝑘

(1−𝑃0𝑖 ×𝑝
𝑀𝑖−1
𝑎

) 𝑃 (𝑍
𝑜𝑗 ,𝑘

)

+ ∑

𝑜𝑗∉𝑆𝑖,𝑘

(1−𝑝
𝑀𝑖

𝑎
) 𝑃 (𝑍

𝑜𝑗 ,𝑘
) .

(14)

Therefore, when the target is detected by UAV 𝑖 in its FoV,
the update expression of the target existence probability can
be obtained as follows:

𝑃(𝑍
𝑜𝑗 ,𝑘

| 𝐵FOV𝑖)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

(1 − 𝑃0𝑖 × 𝑝
𝑀𝑖−1
𝑎

) 𝑃 (𝑍
𝑜𝑗 ,𝑘

)

𝑃 (𝐵FOV𝑖)
, 𝑜

𝑗
∈ 𝑆

𝑖,𝑘

(1 − 𝑝
𝑀𝑖

𝑎
) 𝑃 (𝑍

𝑜𝑗 ,𝑘
)

𝑃 (𝐵FOV𝑖)
, 𝑜

𝑗
∉ 𝑆

𝑖,𝑘
.

(15)
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(2) If the target is not detected by UAV 𝑖 in its FoV, the
update expression of the target existence probability can be
obtained as follows:

𝑃(𝑍
𝑜𝑗 ,𝑘+1 | 𝐵FOV𝑖) =

𝑃 (𝐵FOV𝑖 | 𝑍𝑜𝑗 ,𝑘
)𝑃 (𝑍

𝑜𝑗 ,𝑘
)

𝑃 (𝐵FOV𝑖)
,

𝑜
𝑗
∈ 𝑄.

(16)

With the same evolving process as mentioned above, it
can be obtained that

𝑃(𝑍
𝑜𝑗 ,𝑘+1 | 𝐵FOV𝑖)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑃0𝑖 × 𝑝
𝑀𝑖−1
𝑎

𝑃(𝑍
𝑜𝑗 ,𝑘

)

𝑃 (𝐵FOV𝑖)
, 𝑜

𝑗
∈ 𝑆

𝑖,𝑘

𝑝
𝑀𝑖

𝑎
𝑃(𝑍

𝑜𝑗 ,𝑘
)

𝑃 (𝐵FOV𝑖)
, 𝑜

𝑗
∉ 𝑆

𝑖,𝑘
,

(17)

where 𝑃(𝐵FOV𝑖) = ∑
𝑜𝑗∈𝑆𝑖,𝑘

𝑃0𝑖 × 𝑝
𝑎

𝑀𝑖−1
𝑃(𝑍

𝑜𝑗 ,𝑘
) +

∑
𝑜𝑗∉𝑆𝑖,𝑘

𝑝
𝑀𝑖

𝑎
𝑃(𝑍

𝑜𝑗 ,𝑘
).

As described in (15) and (17), the update of target
probability with different sensor measurements at time 𝑘 for
UAV 𝑖 can be summarized as
TP

𝑖,𝑘+1

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

(1 − 𝑃0𝑖 × 𝑝
𝑀𝑖−1
𝑎

) 𝑃 (𝑍
𝑜𝑗 ,𝑘

)

𝑃 (𝐵FOV𝑖)
, 𝑜

𝑗
∈ 𝑆

𝑖,𝑘
and 𝑠

𝑖,𝑘
= 1

(1 − 𝑝
𝑀𝑖

𝑎
) 𝑃 (𝑍

𝑜𝑗 ,𝑘
)

𝑃 (𝐵FOV𝑖)
, 𝑜

𝑗
∉ 𝑆

𝑖,𝑘
and 𝑠

𝑖,𝑘
= 1

𝑃0𝑖 × 𝑝
𝑀𝑖−1
𝑎

𝑃(𝑍
𝑜𝑗 ,𝑘

)

𝑃 (𝐵FOV𝑖)
, 𝑜

𝑗
∈ 𝑆

𝑖,𝑘
and 𝑠

𝑖,𝑘
= 0

𝑝
𝑀𝑖

𝑎
𝑃(𝑍

𝑜𝑗 ,𝑘
)

𝑃 (𝐵FOV𝑖)
, 𝑜

𝑗
∉ 𝑆

𝑖,𝑘
and 𝑠

𝑖,𝑘
= 0.

(18)

3.2.2. Probability Map Fusion Update. Due to the “neighbor
communication strategy,” only when UAV 𝑖 and UAV 𝑗

fly into each other’s communication range, the information
exchange occurs. Each UAV updates its own probability map
by fusing information from its neighbors, using the consensus
protocol [15]

TP
𝑖,𝑘

=

𝑁

∑

𝑗=1
𝜔
𝑖,𝑗,𝑘

TP
𝑖,𝑘
, (19)

where 𝜔
𝑖,𝑗,𝑘

represents the weight of the target probability
map for each UAV, which can be expressed as

𝜔
𝑖,𝑗,𝑘

=

{
{
{
{
{

{
{
{
{
{

{

1 −




𝜁
𝑖,𝑘






𝑁

, if 𝑖 = 𝑗

1
𝑁

, if 𝑖 ̸= 𝑗, 𝑗 ∈ 𝜁
𝑖
, 𝑘

0, if 𝑖 ̸= 𝑗, 𝑗 ∉ 𝜁
𝑖
, 𝑘,

(20)

where |𝜁
𝑖,𝑘
| is the number of UAV 𝑖’s neighbors at time 𝑘.

4. Nonconvex Environment with
Arbitrary Obstacles

Considering the search environment 𝑄 ⊆ R2 is nonconvex
with arbitrary obstacles 𝐻, we will propose a cooperative
search method to address the search problem in the noncon-
vex environment in this section. Generally, there are twoways
to address this problem. One is to find a different objective
function that works for nonconvex environments by taking
path planning into account, such as the potential field-based
method [19, 20]. The second is to find a transformation for
the environment [16, 17]. Here, we will choose the second
one in order to use the cooperative search framework and
formulations in the above section.

Our transformation is inspired by the diffeomorphism
idea [16]. However, the diffeomorphism in [16] can only
be applied to the nonconvex environment with the convex
obstacles. Consideringmore realistic application, we propose
a generalized transformation method that can transform the
nonconvex region with arbitrary obstacles (including convex
and concave obstacles) into an almost convex region. First,
the definition of diffeomorphism is given, as well as the
lemma in [16].

Definition 5 (diffeomorphsim [24]). Given two manifolds𝑀
and 𝑁, a differentiable map 𝑓 : 𝑀 → 𝑁 is called a
diffeomorphism, if it is a bijection and its inverse 𝑓−1 : 𝑁 →

𝑀 is differentiable as well.

Lemma 6. For a given set 𝑄 ⊆ R2, let �̃� ⊂ R2 be a compact,
convex, and simply connected partition of 𝑄 and let 𝐻 ⊆ �̃�

be a convex open set. Let 𝜕𝐻 ∩ 𝜕�̃� = 0 and 𝑅 = �̃�/𝐻. Given
𝑝


∈ 𝐻
int, there is a.e. 𝐶1 diffeomorphism 𝜑 between 𝑅

int and
�̃�

int
\ {𝑝



}.

The above lemma follows that 𝐻 is convex or star-
shaped. However, the real obstacle 𝐻 may be arbitrary;
the diffeomorphism method in Lemma 6 cannot be used
in this case. Therefore, we propose a generalized method
to construct the transformation based on a global convex
decomposition and some extensions of diffeomorphism in
the following.

4.1. Diffeomorphism Based Transformation

4.1.1. Global Convex Decomposition. As the main prepro-
cessing procedure for constructing the transformation, the
global convex decomposition method decomposes the orig-
inal nonconvex region and the concave obstacles, making it
possible to find the diffeomorphism based transformation in
the nonconvex environment with concave obstacles.

First, the convex decomposition of concave obstacles
is given. Some works have been conducted on the convex
decomposition of concave polygons. Schachter [25] utilizes
the Delaunay method to decompose polygons into convex
sets. Chazelle and Dobkin [26] construct the concave point
sets of the 𝑥𝑘 type to realize the convex decomposition.
Keil [27] uses improved dynamic programming algorithms
to achieve decomposing a simple polygon. In this paper,
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Figure 3: Visible points from 𝑃1.

our purpose for convex decomposition of concave polygons
is to find the diffeomorphism, which is related to the visibility.
So a point visibility based convex decomposition method
is presented, which can improve the shape quality of the
decomposed polygons.

(1) Find the Concave Points. Since convex decomposition
of concave polygon is to eliminate the concave points, the
decomposing line is always drawn from concave points. So
the concave points of the concave polygon should be found.
The concave point is defined as in Definition 3. The most
commonmethod for determining whether a point is concave
is to use the vector cross product. Choose the successive
points 𝑝

𝑖−1, 𝑝𝑖, and 𝑝𝑖+1 from the point sequence of a polygon
in counterclockwise direction. Obtain the vectors →𝑝

𝑖−1𝑝𝑖 and
→
𝑝
𝑖
𝑝
𝑖+1, and then compute the cross product

𝑀 = (𝑥
𝑖
−𝑥

𝑖−1) × (𝑦
𝑖+1 −𝑦

𝑖
) − (𝑥

𝑖+1 −𝑥
𝑖
)

× (𝑦
𝑖
−𝑦

𝑖−1) ,
(21)

where 𝑥
𝑖
and 𝑦

𝑖
are the coordinates of point 𝑝

𝑖
. If 𝑀 is

negative, then 𝑝
𝑖
is a concave point; otherwise, 𝑝

𝑖
is a convex

point.

(2) Find the Visible Point Set. Point 𝑞 ∈ 𝑄 is visible from𝑝 ∈ 𝑄

if [𝑝, 𝑞] ⊂ 𝑄, where [𝑝, 𝑞] represents the closed path segment
[𝑝, 𝑞] = {𝑝 + 𝜆(𝑞 − 𝑝) | 𝜆 ∈ [0, 1]}. The visibility set is the
set of points in 𝑄 visible from 𝑝. We connect 𝑃

𝑖
with other

vertices of the polygon in counterclockwise direction. For a
given vertex 𝑃

𝑗
, if all the rest vertices behind 𝑃

𝑗
are on the left

side of line 𝑃
𝑖
𝑃
𝑗
, then 𝑃

𝑗
is visible from point 𝑃

𝑖
, as shown in

Figure 3.

(3) Find the Decomposing Line Based on the Weighting
Function.The decomposing line is obtained from the concave
point to the visible point which is carefully searched from
the visible point set of this concave point by using a weight
function. In [28], a weight function is defined as 𝑓(𝛼, 𝛽) =

|𝛼 − 𝛽|, where 𝛼 and 𝛽 are the angles between the candidate
decomposing line and the neighbor lines. Since 𝛼, 𝛽 lie within
the interval [0, 𝜋] and the cosine function is monotonous

in this interval, we use the following weight function for
computational convenience:

𝑓 (𝛼, 𝛽) =




cos (𝛼) − cos (𝛽)


. (22)

The visible point, from which the decomposing line has
the minimum weight value, is chosen. For each polygon,
repeat the above steps until all the points of the decomposed
polygons are convex.

Further, according to the decomposing lines and the
edges of the decomposed obstacles, the whole search region
is divided into a connected partition �̃� = �̃�1, . . . , �̃�𝐾 of
𝑄. Each partition contains no more than one decomposed
convex obstacle. The global decomposition method of the
whole region is as follows.

First, extend the decomposing lines from two endpoints
to intersect with region boundaries, defined as the dividing
lines (for the whole region decomposition), while giving up
extending those endpoints that will lead to intersecting with
obstacles or other extending lines. Then, from each of those
abandoned endpoints, draw a radial line along the two edges
of the original concave obstacle to intersect with the region
boundary or the obstacle boundary, and obtain the dividing
lines. By these dividing lines, the whole region is divided
into several subregions, each of which containing no more
than one decomposed obstacle. Note that the feasible region
of a new subregion may be separated into two parts by the
decomposed obstacle. In this case, the subregion is divided
again to generate a new small subregionwithout obstacles and
the larger one with the obstacle.

4.1.2. Extension of Diffeomorphism. Through convex decom-
position, the whole region is divided into several subregions
with no more than one convex obstacle. The method for
constructing the diffeomorphism in Lemma 6 requires that
𝜕𝐻 ∩ 𝜕�̃� = 0. However, the new decomposed obstacles
may have the common edges with the subregions such that
𝜕𝐻

𝑖
∩ 𝜕�̃�

𝑖
̸= 0. So the method in Lemma 6 is not appropriate.

The expression of the “common edge” means that the edge
of the subregion contains the edge of the obstacle. In the
following, we will present a generalized method to construct
the diffeomorphism for the new decomposed subregions.
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Figure 4: Diffeomorphism for the new decomposed regions.

Let �̃� = �̃�1, . . . , �̃�𝐾 be a compact, convex, and simply
connected partition of 𝑄, representing the subregions. For
each �̃�

𝑖
, let 𝐻

𝑖
⊂ �̃�

𝑖
be a convex open set, representing the

decomposed obstacle.Thus, the feasible region is𝑅
𝑖
= �̃�

𝑖
\𝐻

𝑖
.

For this problem, the edges generated by the decomposing
lines must be considered. Let 𝜕𝑅int

𝑖
= 𝜕𝑅

𝑖
\ (𝜕𝑅

𝑖
∩ 𝜕𝑄) be

the boundary 𝜕𝑅
𝑖
but not belong to 𝜕𝑄. Similarly, let 𝜕�̃�

𝑖

int
=

𝜕�̃�
𝑖
\ (𝜕�̃�

𝑖
∩ 𝜕𝑄) be the boundary 𝜕�̃�

𝑖
but not belong to

𝜕𝑄.

Proposition 7. Given 𝑝
𝑖
∈ 𝐻

𝑖
, there is a.e.𝐶1 diffeomorphism

𝜑
𝑖
between 𝑅

in
𝑖

and �̃�
𝑖

in
\ {𝑝



𝑖
}, where 𝑅

in
𝑖

and �̃�
𝑖

in are the
simplified representations of 𝑅int

𝑖
∪ 𝜕𝑅

int
𝑖

and �̃�
𝑖

int
∪ 𝜕�̃�

𝑖

int,
respectively.

Proof. The situation is categorized according to the number
of the common edges of the subregion and the obstacle.

Situation 1 (no common edge). Since 𝜕𝐻
𝑖
∩ 𝜕�̃�

𝑖
= 0, the

diffeomorphism can be constructed using the method in the
proof of Lemma 1 in [16].

Situation 2 (one common edge in Figure 4(a)). Draw a radial
line 𝑙 from 𝑝



𝑖
to cross 𝐻

𝑖
and intersect with the boundaries

of �̃�
𝑖
and𝐻

𝑖
at the points 𝑝1 and 𝑝0, respectively. Note that if

the radial line lies on 𝜕�̃�
𝑖

in, 𝑝0 and 𝑝1 are the vertices of 𝐻𝑖

and �̃�
𝑖
on the corresponding boundary, that is, points 𝑎1(𝑎2)

and 𝑏1(𝑏2). Obviously, it can be obtained that 𝑝1 ̸= 𝑝0. Then
a simple diffeomorphism 𝜑

𝑖
can be constructed as

𝜑
𝑖
(𝑞)

=






𝑝1 − 𝑝



𝑖











𝑝1 − 𝑝



𝑖





−




𝑝0 − 𝑝



𝑖






(






𝑞 − 𝑝



𝑖






−






𝑝0 −𝑝



𝑖






) .

(23)

So any 𝑞 ∈ 𝑅
in
𝑖
on the radial line 𝑙 can be mapped to 𝜑

𝑖
(𝑞) ∈

�̃�
𝑖

in
\ {𝑝



𝑖
}. Due to our hypothesis on �̃�

𝑖
and 𝑅

𝑖
, it can be seen

that 𝜑
𝑖
is continuous and differentiable everywhere in 𝑅

in
𝑖
,

and it has a unique inverse 𝜑−1
𝑖
, which is also continuous and

differentiable everywhere in �̃�
𝑖

in
\ {𝑝



𝑖
}. Therefore, 𝜑

𝑖
is a 𝐶1

diffeomorphism. Note that the intersection points 𝑝1 and 𝑝0
are the functions of 𝑞. So even if 𝑞1 and 𝑞2 are equidistant to
𝑝


𝑖
, we still have 𝜑

𝑖
(𝑞1) ̸= 𝜑

𝑖
(𝑞2). Hence, the inverse exists and

𝜑
𝑖
is a diffeomorphism.

Situation 3 (two common edges in Figure 4(b)). The diffeo-
morphism is constructed as (23) in Situation 2.

Situation 4 (three common edges). There are two cases.
(i) For the first case in Figure 4(d), we first define the

critical vertex as the common vertex of the subregion and
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obstacle, while one of its adjacent vertices does not belong
to the obstacle, such as 𝑝

𝑖
and 𝑝2. Choose one of the critical

vertices as 𝑝
𝑖
, then 𝑝

 is on the same edge with the other
critical vertex, and it does not belong to the obstacle. Thus
the convex region is divided into two subregions by the blue
dividing line connecting𝑝

𝑖
with𝑝.Thefirst diffeomorphism

𝜑
𝑖𝑎
(𝑞) can be constructed by drawing a radial line from

𝑝


𝑖
using (23) as in Situation 2. For the other part, the

diffeomorphism should be modified a little by drawing a
radial line from 𝑝

, as follows:

𝜑
𝑖𝑏
(𝑞) =






𝑝1 − 𝑝












𝑝0 − 𝑝







(






𝑞 − 𝑝







) , (24)

where 𝑝1 and 𝑝0 are the two intersection points of the radial
line with the boundaries of the obstacle, and if 𝑞 lies on the
edge 𝜕�̃�

𝑖

in, 𝑝0 and 𝑝1 are the corresponding vertices of the
obstacle.

Note that, through the diffeomorphism 𝜑
𝑖𝑏
(𝑞), all the

points (except 𝑝
𝑖
and 𝑝

) on the dividing line have the same
mapping with the first diffeomorphism 𝜑

𝑖𝑎
(𝑞). And 𝑝

 has
a mapping by the diffeomorphism 𝜑

𝑖𝑎
. So we obtain 𝜑

𝑖
=

𝜑
𝑖𝑎
∪ 𝜑

𝑖𝑏
that can map 𝑅

in
𝑖
to �̃�

𝑖

in
\ {𝑝



𝑖
}.

(ii) For the second case in Figure 4(e), two edges of
𝐻
𝑖
are parallel which is a typical situation in structural

environment. First, the convex polygon is divided into two
partitions such that only one partition contains the obstacle.
For the partition without any obstacle, the diffeomorphism is
constructed as 𝜑

𝑖𝑎
(𝑞) = 𝑞. For the other partition, a parallel

line is drawn from 𝑞 and intersects with the boundaries of
�̃�
𝑖
at the left point 𝑝0 and right point 𝑝3. Given the vertices

of the polygon, 𝑝0 lying on the line 𝑏1𝑐1 can be mapped
to 𝑝1 on the line 𝑝



𝑖
𝑐1, described as 𝑝1 = 𝑝



𝑖
− (‖𝑝



𝑖
−

𝑐1‖‖𝑏1 − 𝑝0‖)/(‖𝑏1 − 𝑐1‖ ). Draw another parallel line from
𝑝1, and it intersects with the boundary of �̃�

𝑖
at point 𝑝2.

Thus the diffeomorphism can be constructed as 𝜑
𝑖𝑏
(𝑞) =

𝑝1 + (‖𝑞 − 𝑝0‖‖𝑝2 − 𝑝1‖)/(‖𝑝3 − 𝑝0‖). Combining with
the representation of 𝑝1, the diffeomorphism can be de-
scribed as

𝜑
𝑖𝑏
(𝑞) = 𝑝



𝑖
−






𝑝


𝑖
− 𝑐1











𝑏1 − 𝑝0










𝑏1 − 𝑐1






+





𝑞 − 𝑝0










𝑝2 − 𝑝1










𝑝3 − 𝑝0






.

(25)

For this case, 𝜑
𝑖
= 𝜑

𝑖𝑎
∪ 𝜑

𝑖𝑏
.

Situation 5 (more than three common edges in Figure 4(e)).
The diffeomorphism is constructed as in Situation 4.

Situation 6 (a special case). All edges of the obstacle are com-
mon edges in Figure 4(f).The diffeomorphism is constructed
as (24) by choosing the only vertex of the subregion which
does not belong to obstacle as 𝑝.

As claimed in the above six situations, it is obvious that
the diffeomorphism𝜑

𝑖
can be constructed for each subregion.

Remark 8. The subregion containing no obstacle will be
transformed by an identical transformation, which is also a
diffeomorphism.

Remark 9. Let⋃𝑀

𝑖=1 𝑝


𝑖
= 𝑝

. For each decomposed subregion,
the diffeomorphism 𝜑

𝑖
is constructed. So the transformation

𝜑 : 𝐹
int

→ 𝑄
int
/{𝑝



} is defined by 𝜑(𝑞) = 𝜑
𝑖
(𝑞), where 𝑞 ∈

𝑅
in
𝑖
.

Remark 10. Given the search region and obstacles, the dif-
feomorphism can be computed off-line and stored in a
table.Therefore, in the search procedure, the diffeomorphism
can be directly used by looking up the table, which will
significantly reduce the computation time.

4.1.3. Numerical Examples. Two examples of applying the
convex decomposition method to divide the nonconvex
region with arbitrary obstacles are shown in Figure 5. The
green lines are the decomposing lines for convex decompo-
sition of the concave obstacle, and the black lines are the
dividing lines for the whole environment. In Figure 5(a),
the concave obstacle is divided into three convex polygons.
And the whole region is divided into four subregions, three
of which containing one obstacle and one containing none.
In Figure 5(b), a more complex nonconvex region with two
obstacles is given. First, the whole region is divided into
two partitions. Then the partition with a concave obstacle
is divided into six subregions by using the decomposition
method.

Further, the diffeomorphism is constructed for each
example region by using the method in Proposition 7. We
sample some points in the original regions and then map
them to the transformed regions by the diffeomorphism, as
shown in Figure 6.

4.2. Cooperative Search Method in Nonconvex Environment
with Arbitrary Obstacles. The diffeomorphism that trans-
forms a complex nonconvex region with arbitrary obstacles
to a convex region has been constructed. Now we will
propose the cooperative search method in the nonconvex
environment based on the transformation.

4.2.1. Objective Function Transformation. Theobjective func-
tion (3) should be modified by shifting the allowable search
domain from the feasible region 𝐹

int to the whole region
𝑄

int
\ {𝑝



}. Based on the modification of Variables Theorem
[29], it claims that if Ω ⊂ R𝑛 is open, 𝑔1 : Ω → R is
integrable over Ω, and 𝑔2 : Ω̃ → Ω is a 𝐶1 diffeomorphism,
then (𝑔1 ∘ 𝑔2)| det 𝐽𝑔2 | is integrable over Ω̃, and

∫

Ω

𝑔1 (𝜔) 𝑑𝜔 = ∫

̃
Ω

(𝑔1 ∘ 𝑔2) (�̃�)





det 𝐽

𝑔2
(�̃�)






𝑑�̃�, (26)

where | det 𝐽
𝑔2
(�̃�)| is the determinant of the Jacobian of 𝑔2. In

this paper, we assume that 𝑔1 = 𝑓(‖𝑝
𝑖
− 𝑟‖)𝛾(𝑟) : 𝐹

int
→ R

and 𝑔2 = 𝜑
−1

: 𝑄
int
/(𝑝



) → 𝑅
int. Since 𝜑

−1
(𝜔) = 𝑟,
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(a) Nonconvex region𝑄1 with a typical concave obstacle
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(b) Nonconvex region 𝑄2 with a convex obstacle and a complex
concave obstacle

Figure 5: Convex decomposition.

the transformed objective function in the new convex region
can be expressed as

∫

𝐹
int
𝑓 (





𝑝
𝑖
− 𝑟





) 𝛾 (𝑟) 𝑑𝑟

= ∫

𝑄
int
\{𝑝

}

𝑓 (






𝜑
−1
(𝑞

𝑖
) − 𝜑

−1
(𝜔)






) 𝛾 (𝜑

−1
(𝜔))

⋅






det 𝐽

𝜑
−1 (𝜔)






𝑑𝜔.

(27)

It can be seen that the allowable search domain is
transformed from the feasible region 𝐹

int to the whole region
𝑄

int
\ {𝑝



}, while keeping the function value unchanged.
However, the control law for the above objective function (the
right side of (27)) is quite hard to be obtained. In order to use
the Lloyd algorithm, the new objective function is defined as

𝐻


(𝑃) = ∫

𝐹
int
𝑓 (





𝜑 (𝑝

𝑖
) − 𝜑 (𝑟)





) 𝛾 (𝑟) 𝑑𝑟. (28)

Since 𝜑 is the diffeomorphism, 𝐹
int and 𝜑(𝐹

int
) are

topologically equivalent, and the problem remains essentially
unchanged. Further, the corresponding function in the trans-
formed domain is obtained:

𝐻(𝑊, �̃�)

= ∫

𝑄
int
\{𝑝

}

𝑓 (




𝑞
𝑖
−𝜔





) 𝛾 (𝜑

−1
(𝜔))






det 𝐽

𝜑
−1 (𝜔)






𝑑𝜔.

(29)

So the gradient descent approach as (6) can be used to
minimize the objective function

�̇�
𝑖
= − 𝑘

1
𝑖
(𝑞

𝑖
− �̃�

𝑉𝑖
) , (30)

where 𝑘
2
𝑖
is a positive gain, 𝑞

𝑖
= 𝜑(𝑝

𝑖
) is the transformed

position of 𝑝
𝑖
by the diffeomorphism in the transformed

region𝑄int
/(𝑝



), and �̃�
𝑉𝑖
is the centroid of the Voronoi region

generated by 𝑞
𝑖
.

4.2.2. Control Strategy for Cooperative Search in theNonconvex
Environment. Since the diffeomorphism 𝜑 is a bijection, the
trajectory of 𝑞

𝑖
in 𝑄

int
/{𝑝



} has the unique preimage in
original region 𝐹

int, which is the trajectory of 𝑝
𝑖
. So the

control law for the new objective function (28) in the original
region can be obtained by the inverse mapping of (30):

̇𝑝
𝑖
= − 𝑘

2
𝑖
𝐽
−1
𝜑

(𝜑 (𝑝
𝑖
)) (𝑝

𝑖
−𝜑

−1
(�̃�

𝑉𝑖
)) , (31)

where 𝑘2
𝑖
is a positive gain and 𝐽

𝜑
is the Jacobian of 𝜑.

The following is an analysis of the convergence of the
control law (31) using LaSalle’s invariance principle [30],
which is basically an extension of Lyapunov’s theorem [31].

Theorem 11. In the nonconvex region, the trajectories of UAVs
governed by the control law (31), starting from any initial
condition 𝑃(0) = (𝑝1,0, . . . , 𝑝𝑁,0) ∈ 𝐹

int, will asymptotically
converge to the desired location.

Proof. Since the diffeomorphism 𝜑 is a bijection, the trajec-
tory 𝑞

𝑖
in 𝑄

int
\ {𝑝



} has the unique preimage 𝑝
𝑖
in original

region𝐹int.Therefore, to prove that the trajectory𝑝
𝑖
governed

by the control law (31), starting from any initial condition
𝑃(0), can converge to 𝜑−1(�̃�

𝑉𝑖
), we only need to prove that the

trajectory 𝑞
𝑖
governed by the control law (30), starting from

initial condition 𝑊(0) = 𝜑(𝑃(0)) = (𝜑(𝑝1,0), . . . , 𝜑(𝑝𝑁,0)),
can converge to �̃�

𝑉𝑖
.
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(b) Point images in transformed 𝜑(𝑄1)
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(d) Point images in transformed 𝜑(𝑄2)

Figure 6: Diffeomorphism of the nonconvex region. (a) and (c) are the two examples of the original nonconvex region with 10 randomly
sampled points. (b) and (d) are the transformed convex regions with the transformed image of the sampled points by diffeomorphism.

Assume 𝑉(𝑄) = 𝐻(𝑊, �̃�) = ∑
𝑁

𝑖=1 ∫�̃�𝑖
‖𝑞

𝑖
−

𝜔‖
2
𝛾(𝜑

−1
(𝜔))| det 𝐽

𝜑
−1(𝜔)|𝑑𝜔, where 𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑁)

represent the transformed positions of UAVs in 𝑄
int

\ {𝑝


}

through the diffeomorphism 𝜑. Consider

�̇� (𝑄) =

𝑑𝐻(𝑊, �̃�)

𝑑𝑡

=

𝑁

∑

𝑖=1

𝜕𝐻 (𝑊, �̃�)

𝜕𝑞
𝑖

�̇�
𝑖

=

𝑁

∑

𝑖=1
2𝜆�̃�

𝑉𝑖
(𝑞

𝑖
− �̃�

𝑉𝑖
) (−𝑘

1
𝑖
(𝑞

𝑖
− �̃�

𝑉𝑖
))

= − 2𝜆1𝑘
1
𝑖

𝑁

∑

𝑖=1
�̃�

𝑉𝑖
(𝑞

𝑖
− �̃�

𝑉𝑖
)

2
⩽ 0,

(32)

where 𝜆1 = | det 𝐽
𝜑
−1(𝜔)| and �̃�

𝑉𝑖
is the mass of the Voronoi

region generated by 𝑞
𝑖
in the convex region 𝑄

int
\ {𝑝



}.
The following can be observed:
(i) 𝑉 : 𝑄

int
\ {𝑝



} → R is continuously differentiable in
𝑄

int
\ {𝑝



}.
(ii) 𝑄int

\ {𝑝


} is a compact invariant set.
(iii) �̇� is negative semidefinite in 𝑄

int
\ {𝑝



}.
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(iv) 𝐸 = �̇�

−1
(0) = {�̃�

𝑉𝑖
}.

(v) 𝐸 itself is the largest invariant subset of 𝐸 by the
control law (30).

Thus, by LaSalle’s invariance principle, the trajectories
𝑞
𝑖
governed by (30), starting from initial configuration

𝑊(0), will asymptotically converge to the critical points of
𝐻(𝑊, �̃�); that is, the trajectories of UAVs governed by the
control law (31), starting from any initial condition 𝑃(0) =

(𝑝1,0, . . . , 𝑝𝑁,0) ∈ 𝐹
int, will asymptotically converge to the

desired location.

Therefore, the discrete-time motion model and the real
control law for UAV 𝑖 in the original nonconvex region can
be written as

𝑝
𝑖,𝑚

= 𝑝
𝑖,𝑚−1 +𝑢

𝑖,𝑚
,

𝑢
𝑖,𝑚

= − 𝑘
2
𝑖
𝐽
−1
𝜑

(𝜑 (𝑝
𝑖,𝑚−1)) (𝑝𝑖,𝑚−1 −𝜑

−1
(�̃�

𝑉𝑖
)) .

(33)

Further, considering the mobility of the UAV, the control
law must meet some constraints such that the generated
trajectories are kinematically feasible:

(1) Maximum velocity: the maximum velocity Vmax will
limit the control law by the following saturation rule:

𝑢
𝑖,𝑚

=

{
{

{
{

{

𝑢
𝑖,𝑚
,





𝑢
𝑖,𝑚





≤ Vmax

Vmax




𝑢
𝑖,𝑚






𝑢
𝑖,𝑚
, Otherwise.

(34)

(2)Maximum turning angle: themaximum turning angle
during a unit time period Δ𝑡 is derived from the turning rate
𝜔max, described as 𝜃max = 𝜔maxΔ𝑡. Thus the control law is
limited by the following equations:

𝑢
𝑖,𝑚

=

{
{
{
{

{
{
{
{

{

𝑢
𝑖,𝑚
, arccos

𝑢
𝑖,𝑚
𝑢
𝑖,𝑚−1





𝑢
𝑖,𝑚
𝑢
𝑖,𝑚−1






≤ 𝜃max





𝑢
𝑖,𝑚










𝑢
𝑖,𝑚−1






𝑢
𝑖,𝑚−1𝐴, Otherwise,

(35)

where𝐴 is the rotatingmatrix for themaximum turning angle
from the last control input as

𝐴 = (

cos𝛼 − sin𝛼
sin𝛼 cos𝛼

) ,

𝛼 =

{

{

{

𝜃max, 𝑢
𝑖,𝑚

⋅ 𝑢
𝑖,𝑚−1 ≥ 0

−𝜃max, 𝑢
𝑖,𝑚

⋅ 𝑢
𝑖,𝑚−1 < 0

(36)

represents the rotating direction.
Combining (34) with (35), the control law can be

expressed as

𝑢
𝑖,𝑚

=

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

𝑢
𝑖,𝑚
,





𝑢
𝑖,𝑚





≤ Vmax and arccos

𝑢
𝑖,𝑚
𝑢
𝑖,𝑚−1





𝑢
𝑖,𝑚
𝑢
𝑖,𝑚−1






≤ 𝜃max





𝑢
𝑖,𝑚










𝑢
𝑖,𝑚−1






𝑢
𝑖,𝑚−1𝐴,





𝑢
𝑖,𝑚





≤ Vmax and arccos

𝑢
𝑖,𝑚
𝑢
𝑖,𝑚−1





𝑢
𝑖,𝑚
𝑢
𝑖,𝑚−1






> 𝜃max

Vmax




𝑢
𝑖,𝑚






𝑢
𝑖,𝑚
,





𝑢
𝑖,𝑚





> Vmax and arccos

𝑢
𝑖,𝑚
𝑢
𝑖,𝑚−1





𝑢
𝑖,𝑚
𝑢
𝑖,𝑚−1






≤ 𝜃max

Vmax




𝑢
𝑖,𝑚−1






𝑢
𝑖,𝑚−1𝐴, Otherwise,

(37)

where 𝑢
𝑖,𝑚

= −𝑘
2
𝑖
𝐽
−1
𝜑
(𝜑(𝑝

𝑖,𝑚−1))(𝑝𝑖,𝑚−1 − 𝜑
−1
(�̃�

𝑉𝑖
)), as shown

in (33).

4.2.3. Cooperative Search Algorithm in the Nonconvex Envi-
ronment with Arbitrary Obstacles. The cooperative search
algorithm for the nonconvex region with arbitrary obstacles
is presented as Algorithm 1.

Algorithm 1. Cooperative search algorithm in the nonconvex
environment with arbitrary obstacles is as follows:

(1) Initially, all the UAVs are randomly deployed in the
feasible region. The probability map and uncertainty
map of each UAV are initialized.

(2) The nonconvex region with arbitrary obstacles is
divided by the global decomposition method, and

the diffeomorphism 𝜑 is constructed as described in
Proposition 7.

(3) Through the diffeomorphism 𝜑, the original noncon-
vex region 𝐹

int is transformed into the new convex
one, 𝑄int

\ {𝑝


}. And the positions of UAVs are also
transformed into new virtual ones.

(4) The Voronoi partition of transformed region 𝑄
int

\

{𝑝


} is generated by the virtual positions of UAVs.
Compute the centroid �̃�

𝑉𝑖
of each Voronoi region

using probability map as the density.

(5) At each time step,UAV 𝑖moves towards the preimages
of its generalized Voronoi centroid 𝜑

−1
(�̃�

𝑉𝑖
) in the

original region, governed by the control law (31).
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Figure 7: Search flight trajectories of UAVs with time: (a–c) in the transformed region and (d–f) in the original region.

(6) Update the probability map TP
𝑖
of UAV 𝑖. If the target

probability of a cell is greater than 𝑃max, a target is
found.

(7) Update the Voronoi partitions based on the new
virtual positions of UAVs. Compute the generalized
Voronoi centroids �̃�

𝑉𝑖
.

(8) If UAV 𝑖 reaches the preimage of its Voronoi centroid
𝜑
−1
(�̃�

𝑉𝑖
) and does not move, then use its uncertainty

map instead of probability map to compute the new
Voronoi centroid 𝜑

−1
(�̃�

𝑉𝑖
) from this time step.

(9) If the terminal condition is satisfied, the algorithm
ends; otherwise, go to (5).

5. Simulation

In this section, some experiments are performed to verify the
effectiveness of the cooperative search algorithm in different
scenarios, and then the comparison with other algorithms is
conducted to demonstrate the advantage of our algorithm in
addressing the cooperative search problem in a nonconvex
environment.

5.1. Simulation Environment. The algorithms have been pro-
grammed in Matlab. The simulation scenario is set as that

five UAVs search for targets in two typical nonconvex regions
with differently shaped obstacles. The whole search region 𝑄

is defined as a square region of [0, 10] × [0, 10] km2. And the
distribution of each target follows the Gaussian distribution
function

𝜙 (𝑟) =

1
𝜎√2𝜋

𝑒
−(𝑟−𝜇)

2
/2𝜎2

, (38)

where the mean value 𝜇 is the expected position of the target
and𝜎 is set to be 1 km, representing the predefined probability
distribution range. The communication range 𝑅

𝐶
is 5 km.

Initially, all the UAVs are randomly deployed in the feasible
region. Some other parameters for simulation are in Table 1.

5.2. Simulation Results and Analysis

5.2.1. Scenario 1: Nonconvex Environment with Concave
Obstacles. The first obstacle area is a typical concave region,
represented as a red square. The convex decomposition and
the diffeomorphism have been implemented as shown in
Figures 5(a), 6(a), and 6(b). Then the cooperative search
algorithm is performed. The trajectories of UAVs at different
time steps in the transformed region without obstacles and
in the original region are shown in Figure 7, where the
UAVs and targets are denoted by “o” and “+”, respectively.
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Figure 8: Probability map update for Scenario 1.

Table 1: Simulation parameters.

UAV Sensor Detection model
Maximum speed (m/s) 100 𝛼

𝑠
45∘ Positive sensing probability 𝑃0𝑖 0.9

Maximum turning angle 60∘ 𝛽
𝑠

30∘ False alarm probability 𝑝
𝑎

0.1
Flight height (m) 100 𝛾

𝑠
30∘ Target existence criteria 𝑃max 0.9

The probability map with time evolving is shown in Figure 8.
From the figures, it can be seen that the probability map has
converged. UAVs in the original region, starting from any
initial positions, can find all the 6 targets at time 45 s while
avoiding the obstacle.

5.2.2. Scenario 2: Nonconvex Environment with Several Com-
plex Obstacles. The nonconvex region in Scenario 2 contains
two obstacles. The results of cooperative search are shown in
Figures 9 and 10. It can be seen that the trajectories of UAVs in
the original region governed by the control law (31), starting
from any initial positions, canmove towards the targets while
avoiding the obstacle. It also can be seen that the probability
map has converged. After finding the targets, the UAV uses
the uncertainty map instead of the probability map to escape
from the local optimum (the positions of targets with high

target existence probability) and keep searching. From the
simulation results, all the targets are found at time 54 s.

5.2.3. Comparisons with Other Algorithms. In order to verify
the performance, the proposed algorithm is compared with
a sweep-line search algorithm [7] and a random search
algorithm [32]. In the sweep-line search algorithm, the search
mood is fixed, and each UAV sweeps the region parallel to
the boundary and decides the width between two search lines
based on the detection range. In the random search algo-
rithm, each UAV randomly chooses a cell as the next desired
flight point without considering the target information. If
the choice conflicts with other UAVs or the next flight point
conflicts with the obstacle, choose another one.

We use the same simulation environment in Scenario 1.
The above three algorithms are implemented and compared
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Figure 9: Search flight trajectories of UAVs with time: (a–c) in the transformed region and (d–f) in the original region.

Table 2: Results of different search algorithms.

Sweep-line Random Our cooperative
search algorithm search algorithm search algorithm

Average time required to search out all
the targets (s) 461 N/A 56

Success rate in 500 s 64% 2% 94%
Repeated detection rate in 500 s 4.64 17.74% 6.45%

from the following aspects: average time required to find
all the 6 targets, success rate of finding all the targets in a
given time period of 500 s, and repeated detection rate. All
the data are averaged by 50 runs. The results are shown in
Table 2.

From Table 2, it can been seen that the average time
for our proposed cooperative search algorithm to find all
the targets is 56 s, which is more efficient and effective than
both the sweep-line (461 s) and the random search algorithm
(N/A, too many failures). For the second item, the success
rate in 500 s of the cooperative search algorithm is 94%,
which is much larger than that of the sweep-line and random
search algorithm. The success rate of the sweep-line search
algorithm is 64% due to the limited task time of 500 s,

while the random search algorithm has an unsatisfying suc-
cess rate of 2%. For the third item, our proposed cooperative
search algorithm performs the repeated detection rate as
6.45% when escaping from the local optimum to find new
targets. And the repeated search of the sweep-line algorithm
only occurs when turning as 4.64%. However, the random
search algorithmmay search for the same cell frequently with
a repeated detection rate of 17.74%.

Further, 20 targets are randomly deployed in the noncon-
vex region. The number of targets found with time evolving
is used as the measure of performance, as shown in Figure 11.
According to the simulation results, the proposed cooperative
search algorithm can lead UAVs to find more targets in the
same time duration than others, because the control law leads
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Figure 10: Probability map update for Scenario 2.

UAV to converge to the regions with high target existence
probability. And if time is sufficient, the sweep-line algorithm
will also find all the targets. However, the random search
performs poorly due to its random mode.

From all the results, it can be seen that our proposed
cooperative search algorithm is quite efficient, for the search
is led by the control law to optimize the information related
objective function. And it can not only leadUAVs to converge
to the regions with high target existence probability but also
improve the exploration of the uncertain regions. Besides,
the nonconvex environment is transformed into a convex one
through the diffeomorphism at the beginning, so there is no
excess step to deal with obstacle avoidance during the search
process, dramatically speeding up the convergence.

6. Conclusion and Future Work

This paper presents a distributed cooperative search method
with multiple UAVs in a complex nonconvex environ-
ment with arbitrary obstacles. The proposed method mainly
focuses on two issues: how to integrate the information
update into the coverage control scheme and how to address
the search problem in a complex nonconvex environment.

First, an asynchronous distributed cooperative search frame-
work is proposed, integrating information update into the
coverage control scheme. The information update includes
the Bayesian theory based individual update and a consen-
sus fusion protocol based fusion update, while taking the
inaccuracies and uncertainties in the sensor information into
consideration. And an adaptive density function of coverage
optimization is formulated based on the probability and
uncertainty maps. Second, a new transformation method is
proposed in order to extend the diffeomorphism to deal
with the nonconvex environment with concave obstacles.
The control strategy is presented considering the kinematic
constraints, and the convergence is proved by LaSalle’s
invariance principle. Finally, the effectiveness of the proposed
algorithm is demonstrated through simulations. In future
work, wewill extend the algorithm to a high-dimension space
and take the complex dynamics of the UAV into considera-
tion.
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