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The traffic accidents occurrence urges the intervention of researchers and society; the human losses and material damage could be
abated with scientific studies focused on supporting prevention plans. In this paper prediction strategies based on singular values
and autoregressive models are evaluated for multistep ahead traffic accidents forecasting. Three time series of injured people in
traffic accidents collected in Santiago de Chile from 2000:1 to 2014:12 were used, which were previously classified by causes related
to the behavior of drivers, passengers, or pedestrians and causes not related to the behavior as road deficiencies, mechanical failures,
and undetermined causes. A simplified form of Singular Spectrum Analysis (SSA), combined with the autoregressive linear (AR)
method, and a conventional Artificial Neural Network (ANN) are proposed. Additionally, equivalent models that combine Hankel
Singular Value Decomposition (HSVD), AR, and ANN are evaluated. The comparative analysis shows that the hybrid models
SSA-AR and SSA-ANN reach the highest accuracy with an average MAPE of 1.5% and 1.9%, respectively, from 1- to 14-step ahead
prediction. However, it was discovered that HSVD-AR shows a higher accuracy in the farthest horizons, from 12- to 14-step ahead
prediction, which reaches an average MAPE of 2.2%.

1. Introduction

Traffic accidents with fatalities and severely injured people
are a socioeconomic problem of focus. According to the
WHO [1], the traffic accidents cost between 1% and 3% of the
GDP of a country, regardless of invaluable emotional damage
for the victims and their families. Several studies have been
developed to explain the nature of the problem,most through
classification; diverse methods have been used to detect the
key factors that influence the incidents severity. Abellán et
al. (2013) used decision trees to extract some key patterns
of severe accidents in Granada; the rules were defined in
function of the variables related to atmospheric factors, driver
characteristics, road conditions, or a factor combination [2].
Chang and Chien applied a method based on nonparametric
classification and regression tree to establish the empirical
relationship between injury severity and driver/vehicle char-
acteristics in truck-involved accidents [3]. De Oña et al.
(2013) use Latent Class Clustering and Bayesian networks

to identify the variables involved in traffic accidents; the
accident type and sight distance were detected in all the traffic
accidents on rural highways in Granada [4]. Recently, Shiau
et al. (2015) presented Fuzzy Robust Principal Component
Analysis (FRPCA) combined with Backpropagation Neural
Network (BPNN) to identify the relationships between the
variables of road designs, rule-violation items, and accident
types; the results showed an 85.89% classification accuracy
[5]. Lin et al. (2015) used real time traffic accidents in a
highway in Virginia; they found that the best model was
based on Frequent Pattern and a Bayesian network; themodel
predicted 61.1% of accidents while having a false alarm rate
of 38.16% [6].The risk indicating variables of traffic accidents
have been identified taking into consideration diverse factors;
some factors are related to road design parameters [7, 8],
environment conditions [9], traffic signs, or interactions
among some factors [10].

The data provided by the Chilean Commission of Traffic
Safety (CONASET) [11] shows a high and increasing rate of
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fatalities and injuries in traffic accidents from 2000 to 2014.
Santiago is the most populated Chilean region, whose time
series of injured people is used in this analysis.The abundance
of information and research about traffic accidents, severities,
risks, and occurrence factors, among others, might appear
somewhat unapproachable in terms of the prevention plans.

In this case study, with categorical causes defined by
CONASET and the ranking method, the potential causes
of injuries in traffic accidents, which can be counteracted
through campaigns directed to the change of attitude in
drivers, passengers, and pedestrians toward road safety, have
been identified. Two groups have been created based on the
primary and secondary causes which are present in around
75% of injured people, and a third group was created with
the remaining 25%. At first, nonstationary and nonlinear
characteristics were found in the time series, turning the
forecasting into a difficult task. Some researches exploit the
potentialities of the SSA technique to extract components in
a time series; SSA commonly has been used to extract trend,
seasonality, and/or noise [12]; the extracted components are
used to explain the complex behavior of some time series in
diverse ambit, from nature [13, 14] to industrial process [15],
or economic indicators [16].

On the other hand, the combination of SSA and autore-
gressive linear and nonlinear methods is a recent alternative
which has demonstrated robustness and universal capacities
in terms of short-term forecasting [17–19]. SSA combined
with artificial intelligence techniques was used by Xiao et al.
(2014) for monthly air transport demand forecasting [20]; a
similar combination was made by Abdollahzade et al. (2015)
with a nonlinear and chaotic time series [21].

To our knowledge [22], one-step ahead forecasting based
on HSVD combined with ARIMA and neural networks
reaches high accuracy in traffic accidents prediction. HSVD
has similarities with respect to SSA in the steps of embedding,
decomposition, and grouping. The main difference is in
the last step previous to the component extraction; HSVD
avoids diagonal averaging; instead, a particular extraction
process is proposed. Although this difference exists, in terms
of computational complexity both SSA and HSVD have
equal floating point operations, which is due to the R-
bidiagonalization (RSVD) [23] implemented in both cases.
For that reason, comparisons in terms of implementation and
forecasting results are presented.

This forecasting approach is described in two stages,
preprocessing and prediction. In the first stage Singular
SpectrumAnalysis and SingularValueDecomposition (SVD)
of Hankel are implemented to obtain the components of
low and high frequency from the observed time series; an
additive component of low frequency is extracted, whereas
the component of high frequency is computed by subtraction.
The result is a pair of smoothed time series which can be
predicted robustly by computing low-order autoregressive
methods in the second stage. The direct method is applied
in the second stage to develop multistep ahead prediction,
with multi-input and single-output. The inputs are the com-
ponents lagged values, whose optimal number is identified
through the Autocorrelation Function.

Conventional SSA is put into practice in four steps,
embedding, decomposition, grouping, and diagonal averag-
ing over all the elementary matrices [24]. In this work, the
SSA implementation is simplified in three steps: embedding,
decomposition, and diagonal averaging; only one elementary
matrix is needed and it is computed with the first SVD
eigentriple. The time series of length 𝑝 is embedded in a
trajectory matrix of dimension 𝑟 × 𝑞, where 𝑟 is the window
length.The general rule used to delimit the windows length is
2 ≤ 𝑟 ≤ 𝑝/2; a large decomposition is given with a high value
of 𝑟, while a short decomposition is the opposite. During the
literature review, some strategies have been used to select the
window length; some instances are 𝑟 = 𝑝/4 [25], weighted
correlation [26], and extreme of autocorrelation [27]. The
method used in this work to select the optimal window
length is based on the Shannon entropy of the singular values.
The second step of SSA is Singular Value Decomposition
of the matrix obtained in the embedding; with the first
eigentriple an elementary matrix is computed. Finally, by
diagonal averaging over the elementary matrix, the elements
of low frequency component are extracted.

The contribution is an accurate multistep ahead forecast-
ing methodology based on singular values decomposition
and autoregressive models through the comparison of four
hybrid models. The prediction is focused on causes of the
traffic accidents with injured people, which is oriented to
support prevention plans of the government and police.
The paper is organized as follows. Section 2 describes the
Methodology. Section 3 shows efficiency criteria to evaluate
the prediction accuracy. Section 4 characterizes the Case
Study. Section 5 presents the Empirical Research Result.
Finally Section 6 concludes the paper.

2. Methodology

Initially, the ranking technique is applied to find the potential
causes of at least 75% of the events registered in the historical
time series of injured people in traffic accidents in Santiago
de Chile. The causes related to drivers, pedestrians, and
passengers behavior were prioritized.

The forecasting methodology applied in the analyzed
hybrid models is described in two stages, preprocessing and
prediction, as Figure 1 illustrates. In the preprocessing stage
Singular Spectrum Analysis and Singular Value Decompo-
sition of Hankel are used to extract an additive component
of low frequency from the observed time series, and by
simple subtraction between the observed time series and
the component of low frequency, the component of high
frequency is obtained. In the prediction stage, linear and
nonlinear models are implemented.

2.1. Singular Spectrum Analysis. Singular Spectrum Analy-
sis extracts the component of low frequency 𝑐

𝐿
from the

observed time series. The component of high frequency 𝑐
𝐻

is obtained by simple subtraction between the observed time
series 𝑥 and the component 𝑐

𝐿
. Consider

𝑐
𝐻
= 𝑥 − 𝑐

𝐿
. (1)
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Figure 1: Traffic accidents forecasting methodology.

Conventional SSA is implemented in four steps, embedding,
decomposition, grouping, and diagonal averaging [24]. In
this work, SSA is simplified in three steps: embedding,
decomposition, and diagonal averaging.

The embedding step maps the time series 𝑥 of length 𝑝 to
a sequence of multidimensional lagged vectors; the Hankel
matrix structure is used in the embedding:
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, (2)

where the elements 𝑌(𝑖, 𝑗) = 𝑥
𝑖+𝑗−1

. The window length 𝑟 has
an important role in the forecasting model; it has an initial
value of 𝑟 = 𝑝/2, and 𝑞 is computed as follows:

𝑞 = 𝑝 − 𝑟 + 1. (3)

The Singular Value Decomposition of the real matrix 𝑌 has
the form

𝑌 =

𝑟

∑

𝑖=1

√𝜆
𝑖
𝑈
𝑖
𝑉
⊤

𝑖
, (4)

where each 𝜆
𝑖
is the 𝑖th eigenvalue of the matrix 𝑆 = 𝑌𝑌⊤

arranged in decreasing order of magnitudes. 𝑈
1
, . . . , 𝑈

𝑟
is

the corresponding orthonormal eigenvectors system of the
matrix 𝑆.

Standard SVD terminology calls √𝜆
𝑖
the 𝑖th singular

value of the matrix 𝑌; 𝑈
𝑖
is the 𝑖th left singular vector and

𝑉
𝑖
is the 𝑖th right singular vector of 𝑌. The collection√𝜆

𝑖
𝑈
𝑖
𝑉
𝑖

is called 𝑖th eigentriple of the SVD.
The computation of the optimal window length 𝑟 is based

on the eigenvalues differential entropy.The first 𝑡 eigenvalues
obtained with 𝑟 = 𝑝/2 contain a high spread of energy;
therefore, the window length is evaluated in the range [𝑟 =
2, . . . , 𝑡] by means of the differential entropy as follows:

Δ𝐻
𝑖
= 𝐻
𝑖+1
− 𝐻
𝑖
, 𝑖 = 1, . . . , 𝑡 − 1, (5a)

𝐻
𝑖
= −

𝑟

∑

𝑗=1

𝜆
𝑗
log
2
𝜆
𝑗
, (5b)

𝜆
𝑗
=

𝜆
𝑗

∑
𝑟

𝑘=1
𝜆
𝑗

, (5c)

where Δ𝐻
𝑖
is the 𝑖th differential entropy, 𝐻

𝑖
is the 𝑖th

Shannon entropy, and𝜆
𝑗
is the 𝑗th normalized eigenvalue also

known as eigenvalue energy.The embedding step is executed
again with this decomposition that reaches a high energy
spread and lower differential entropy. With the optimal 𝑟 the
embedding and decomposition are computed again.

The first eigentriple is used to obtain the elementary
matrix 𝐴, which will be used in the extraction of the low
frequency component:

𝐴 = √𝜆
1
𝑈
1
𝑉
⊤

1
. (6)

The step of diagonal averaging is applied over𝐴 to extract the
elements of the component 𝑐

𝐿
; the process is shown below:

𝑐
𝐿
(𝑖, 𝑗)

=

{{{{{{{{{

{{{{{{{{{

{

1

𝑘 − 1

𝑘

∑

𝑚=1

𝐴 (𝑚, 𝑘 − 𝑚) , 2 ≤ 𝑘 ≤ 𝑟,

1

𝑟

𝑟

∑

𝑚=1

𝐴 (𝑚, 𝑘 − 𝑚) , 𝑟 < 𝑘 ≤ 𝑞 + 1,

1

𝑞 + 𝑟 − 𝑘 + 1

𝑟

∑

𝑚=𝑘−𝑞

𝐴 (𝑚, 𝑘 − 𝑚) , 𝑞 + 2 ≤ 𝑘 ≤ 𝑞 + 𝑟.

(7)

Once 𝑐
𝐿
is obtained, the component 𝑐

𝐻
is computed with (1).

2.2. Hankel Singular Value Decomposition. The preprocess-
ing based on Singular Value Decomposition of Hankel is
implemented in three steps: embedding, decomposition, and
extraction. HSVD implements the steps of embedding and
decomposition as SSA (presented in Section 2.1). The ele-
mentary matrix 𝐴 is also computed with the first eigentriple
obtained in the decomposition step (as (6)).

In the extraction step, the elements of the low frequency
component 𝑐

𝐿
are obtained from the first row and the last

column of the matrix 𝐴, which has the same structure as
matrix 𝑌 (trajectory matrix); therefore, the elements of 𝑐

𝐿
are

𝑐
𝐿
= [𝐴 (1, 1) 𝐴 (1, 2) ⋅ ⋅ ⋅ 𝐴 (1, 𝑞) 𝐴 (2, 𝑞) 𝐴 (3, 𝑞) ⋅ ⋅ ⋅ 𝐴 (𝑟, 𝑞)] , (8)

where 𝐴 is a 𝑟 × 𝑞matrix.
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2.3. Prediction with the Autoregressive Method. The predic-
tion is the second stage of the traffic accidents forecasting
methodology (illustrated in Figure 1). In order to obtain the
traffic accidents prediction 𝑥̂, during the preprocessing stage
the low frequency component 𝑐

𝐿
and the high frequency

component 𝑐
𝐻
were obtained.The components are estimated

through the autoregressive method and the addition of the
components is computed to obtain the prediction as follows:

𝑥̂
𝑛+ℎ
= 𝑐
𝐿

𝑛+ℎ
+ 𝑐
𝐻

𝑛+ℎ
, (9)

where 𝑛 represents the time instant and ℎ represents the
horizon, with values ℎ = 1, . . . , 𝜏. The component 𝑐

𝐿
is used

as exogenous variable in the computation of the 𝑐
𝐻
, due to a

high influence of 𝑐
𝐿
over 𝑐

𝐻
.

The predicted components via ARmodel are definedwith

𝑐
𝐿

𝑛+ℎ
=

𝑚−1

∑

𝑖=0

𝛼
𝑖
𝑐
𝑛−𝑖

𝐿
, (10a)

𝑐
𝐻

𝑛+ℎ
=

𝑚−1

∑

𝑖=0

𝛽
𝑖
𝑐
𝑛−𝑖

𝐻
+

𝑚−1

∑

𝑖=0

𝛽
𝑚+𝑖
𝑐
𝑛−𝑖

𝐿
, (10b)

where𝑚 is the number of lagged values and 𝛼
𝑖
and 𝛽

𝑖
are the

coefficients of 𝑐
𝐿
and 𝑐
𝐻
, respectively.

The coefficients estimation is based on linear Least Square
Method (LSM); the components 𝑐

𝐿
and 𝑐
𝐻
are defined with

the linear relationship expressed in matrix form:

𝑐
𝐿
= 𝛼𝑅, (11a)

𝑐
𝐻
= 𝜃𝑍, (11b)

where 𝑅 and 𝑍 are the regressor matrices of 𝑐
𝐿
and 𝑐

𝐻
,

respectively; 𝛼 and 𝜃 are the coefficients vectors of 𝑅 and 𝑍,
respectively. The coefficients are computed with the Moore-
Penrose pseudoinverse matrices, 𝑅† and 𝑍†, as follows:

𝛼 = 𝑅
†
𝑐
𝐿
, (12a)

𝜃 = 𝑍
†
𝑐
𝐻
. (12b)

2.4. Prediction with the Autoregressive Neural Network. In
this case study, a single hidden layer Autoregressive Neural
Network is used to approach each component; the ANN has
a standard multilayer perceptron (MLP) structure of three
layers [28].The training subset is iteratively used to adjust the
connections weights via learning algorithm; the ANN with
the lowest error is selected to implement the solution with
the testing subset.

The nonlinear inputs are the lagged terms, which are
contained in the regressor matrix𝑅; at hidden layer is applied
the sigmoid transfer function, and at output layer is obtained
the prediction. The ANN output is

𝑥̂
𝑛+ℎ
= V
𝑗
ℎ
𝑛+ℎ
, (13a)

ℎ
𝑛+ℎ
= 𝑓[

𝑚−1

∑

𝑖=0

𝑤
𝑗𝑖
𝑅
𝑛+ℎ−𝑖

𝑖
] , (13b)

where 𝑥̂ is the predicted value, 𝑛 is the time instant, V
𝑗
and𝑤

𝑗𝑖

are the linear and nonlinear weights of the ANN connections,
respectively; the sigmoid transfer function is computed with

𝑓 (𝑥) =
1

1 + 𝑒
−𝑥
. (14)

The ANN structure for 𝑐
𝐿

prediction is denoted with
ANN(𝑚, 𝑗, 1), with 𝑚 inputs, 𝑗 hidden nodes, and 1 out-
put 𝑐
𝐿
while the ANN structure for 𝑐

𝐻
is denoted with

ANN(2𝑚, 𝑗, 1), with 2𝑚 inputs, 𝑗 hidden nodes, and 1 output
𝑐
𝐻
. Levenberg-Marquardt is the learning algorithm applied

for weight updating in both neural networks [29].

3. Efficiency Criteria

The forecasting accuracy is evaluated with conventional
metrics and an improved evaluationmetric.The conventional
metrics are Mean Absolute Percentage Error (MAPE), Root
Mean Square Error (RMSE), Determination Coefficient 𝑅2,
and Relative Error (RE). The Modified Nash-Sutcliffe Effi-
ciency (MNSE) metric is computed in order to improve the
evaluation criteria, which is sensitive to significant overfitting
or underfitting [30]. Consider

MAPE = 1
𝑝
𝑡

𝑝
𝑡

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑖
− 𝑥̂
𝑖

𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

100,

RMSE = √ 1
𝑝
𝑡

𝑝
𝑡

∑

𝑖=1

(𝑥
𝑖
− 𝑥̂
𝑖
)
2
,

𝑅
2
= [1 −

var (𝑥 − 𝑥̂)
var (𝑥)

] 100,

RE = [(𝑥 − 𝑥̂)
𝑥

] 100,

MNSE = [1 −
∑
𝑝
𝑡

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥̂𝑖
󵄨󵄨󵄨󵄨

∑
𝑝
𝑡

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥
󵄨󵄨󵄨󵄨

] 100,

(15)

where 𝑥 is the observed signal, 𝑥̂ is the predicted signal, 𝑝
𝑡
is

the testing sample size, and var is the variance.
Furthermore, two statistical tests are computed to eval-

uate the differences and superiorities of either model, the
Wilcoxon test and Pitman’s correlation test, respectively.

TheWilcoxon (𝑊) signed rank test evaluates the pairwise
differences in the squares of each multistep ahead residuals;
the differences are ranked in ascending order, with no regard
to the sign, and the ranks are assigned fromone to the number
of the forecast errors available for comparison. The sum of
the ranks of positive differences is then computed to obtain
𝑊 [31]. The probability 𝑝 of finding a test statistic as or more
extreme than the observed value under the null hypothesis is
found using the 𝑍-statistics given by

𝑍 =
𝑊 − 𝑝

𝑡
(𝑝
𝑡
+ 1) /4

√𝑝
𝑡
(𝑝
𝑡
+ 1) (2𝑝

𝑡
+ 1) /24

. (16)
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Pitman’s correlations test is applied to identify the superiority
of a model in pairwise comparisons [32]; the test is based
on the computation of the correlation 𝑅 between Υ and Ψ as
follows:

𝑅 =
cov (Υ, Ψ)

var (Υ) var (Ψ)
, (17a)

Υ = 𝐸
1 (𝑖) + 𝐸2 (𝑖) , (17b)

Ψ = 𝐸
1 (𝑖) − 𝐸2 (𝑖) , (17c)

where cov is the covariance and 𝑖 = 1, . . . , 𝑝
𝑡
.𝐸
1
is the residual

vector obtained with model 1, and 𝐸
2
is the residual vector

obtained with model 2. Model 1 would show superiority in
front of model 2 at 5% significance level if |𝑅| > 1.96/√𝑝𝑡.

4. Case Study

The Chilean police (Carabineros de Chile) collects the fea-
tures of the traffic accidents, and CONASET records the data.
The regional population is estimated in 6,061,185 inhabitants,
equivalent to 40.1% of the national population. Santiago
shows a high rate of the events with severe injuries from 2000
to 2014, with 260,074 injured people.

The entire series of 783 registers is shown in Figure 2,
which have been collected in the mentioned period from
January to December, with weekly sampling. The highest
number of injured people was observed in weeks 84, 184,
254, and 280, while the lowest number of injured people was
observed in weeks 344, 365, 426, 500, and 756.

One hundred causes of traffic accidents have been defined
by CONASET and grouped into categories. In this case
study, three analysis groups have been created. In groups 1
and 2, those causes directly related to behavior of drivers,
passengers, or pedestrians have been prioritized. Group 3
involves the rest of the causes. Figures 3(a), 4(a), and 5(a)
show the observed time series of the groups, Injured-G1,
Injured-G2, and Injured-G3, respectively; the values have
been normalized via division by the maximum value in each
time series.

The categories of groups 1 and 2 are as follows: reckless
driving, recklessness in passenger, recklessness in pedestrian,
alcohol in driver, alcohol in pedestrian, and disobedience to
signal. In Table 1 are shown 20 causes of groups 1 and 2, which
cover 75% of the events with injured people. The causes are
listed sequentially; the cause with the highest importance has
value 1 (with the highest number of injured people), and the
cause with minor importance has value 20.

From Table 1, the first three causes of injuries in traffic
accidents are as follows: unwise distance, inattention to traffic
conditions, and disrespect to red light. The cause with the
lowest importance for injuries in traffic accidents is drunk
pedestrian. The categories with the highest number of causes
are as follows: imprudent driving and disobedience to signal.

Two groups of analysis were formed from the information
presented in Table 1; the first group labeled with Injured-
G1 corresponds to the first ten primary causes, and the
second group labeled with Injured-G2 corresponds to the ten
secondary causes. The first group overspreads around 60%
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Figure 2: Injured people in traffic accidents.

of injured people in traffic accidents, whereas the second
group overspreads around 15%.The third group, labeled with
Injured-G3, corresponds to the categories road deficiencies,
mechanical failures, and undetermined/noncategorized causes;
this group overspreads around 25% of injured people.

Complementary information was observed about traffic
accidents conditions with high rate of injured people. With
regard to vehicles, automobiles are involved in 54% of events,
followed by vans and trucks with 19%, bus and trolley with
16%, motorcycles and bicycles with 8%, and others with 3%.
With regard to environmental conditions, 85% of events was
observed with cloudless conditions. Additionally, 97% of the
traffic accidentswith injured people have taken place in urban
areas, whereas 3% correspond to rural area. With regard to
relative position, 46% of the events have been produced in
intersections controlled by traffic signals or police officers
with 46%, followed by accidents that happened in straight
sections with 37%, and other relative positions with 17%.

5. Empirical Research Result

The results of the methodology implementation with linear
and nonlinear models are described by stages: components
extraction and prediction.

5.1. Components Extraction. The methodology presented in
Section 2 describes the preprocessing stage and the prediction
stage. The preprocessing stage is based on two types of
methods, Singular Spectrum Analysis and Singular Value
Decomposition of Hankel.

Both preprocessing techniques SSA and HSVD embed
the time series in a structure of two dimensions; the initial
window length used is 𝑟 = 𝑝/2. Once matrix 𝑌 is obtained,
the decomposition is computed.The differential energy of the
eigenvalues is obtained with (5a). A high energy content was
observed in the first 𝑡 = 20 eigenvalues; the lowest differential
energywas observed in decompositions based on values of 15,
17, and 16 of window length, for Injured-G1, Injured-G2, and
Injured-G3, respectively, and these values were set as window
length.

The embedding process is implemented again with the
optimal window 𝑟, and the decomposition is recomputed.
The first elementary matrix 𝐴 is used by SSA and HSVD to
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Figure 3: (a) Injured-G1. (b) Low frequency component. (c) High frequency component.
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Figure 4: (a) Injured-G2. (b) Low frequency component. (c) High frequency component.

obtain the low frequency 𝑐
𝐿
component. In SSA, to extract

the elements of𝐴, diagonal averaging is applied, while HSVD
uses direct extraction from the first row and last column of
𝐴. Finally with (1) the component of high frequency 𝑐

𝐻
was

computed.
Each data set of low and high frequency has been divided

into two subsets, training and testing; the training subset

involves 70% of the samples, and consequently the testing
subset involves the remaining 30%.

The decomposition results by means of SSA and HSVD.
Figures 3(b), 4(b), and 5(b) show the low frequency com-
ponents, whereas Figures 3(c), 4(c), and 5(c) show the
high frequency components of Injured-G1, Injured-G2, and
Injured-G3, respectively.
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Table 1: Causes of injuries in traffic accidents (group 1 and group 2).

Category Number Cause Importance

Imprudent driving

1 Unwise distance 1
2 Inattention to traffic conditions 2
3 Disrespect to pedestrian passing 8
4 Disrespect for giving the right of way 9
5 Unexpected change of track 10
6 Improper turns 11
7 Overtaking without enough time or space 14
8 Opposite direction 18
9 Backward driving 19

Disobedience to signal

10 Disrespect to red light 3
11 Disrespect to stop sign 4
12 Disrespect to give way sign 6
13 Improper speed 13

Alcohol in driver 14 Drunk driver 7
15 Driving under the influence of alcohol 15

Recklessness in pedestrian
16 Pedestrian crossing the road suddenly 5
17 Reckless pedestrian 12
18 Pedestrian outside the allowed crossing 17

Recklessness in passenger 19 Get in or get out of a moving vehicle 16
Alcohol in pedestrian 20 Drunk pedestrian 20
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Figure 5: (a) Injured-G3. (b) Low frequency component. (c) High frequency component.

The nonstationary trend in the signals was verified for
Injured-G1, Injured-G2, and Injured-G3 through Kwiatkow-
ski, Phillips, Schmidt, and Shin test (KPSS) [33]. The test
assesses the null hypothesis that the signals are trend sta-
tionary; it was rejected at 5% significance level; consequently,
nonstationary unit-root processes are present in the signals.

The time series Injured-G1 is observed in Figure 3(a);
similar dynamic is observed with respect to full series, taking
into consideration that this group contains the predominant
causes. The 𝑐

𝐿
components extracted by SSA and HSVD

are shown in Figure 3(b); long-memory periodicity features
were observed.The 𝑐

𝐻
resultant components are presented in
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Figure 3(c); short-term periodic fluctuations were identified.
The components obtained with SSA and HSVD are similar;
however, a slight difference is observed in the components
of low frequency; SSA extracts smoother components than
HSVD.

Both techniques SSA and HSVD show that the principal
ten causes (in Table 1 with importance 1 to 10) present the
highest incidence between years 2002 and 2005 (weeks 106 to
312); it descends from 2006 until half 2012 (around week 710);
an increment is observed between weeks 711 and 732 (second
semester of 2013 and first semester of 2014).

Figure 4 shows the time series Injured-G2, the low
frequency component, and the high frequency component.
As previous series, the components of low frequency show
similar dynamic of slow fluctuations with decreasing trend
(𝑐
𝐿
), while the high frequency shows fast fluctuations. In this

group is also observed 𝑐
𝐿
via SSA smoother than 𝑐

𝐿
viaHSVD.

Both techniques SSA and HSVD show that the secondary
ten causes (described in Table 1 with importance 11 to 20)
present the highest incidence of injured people in years 2000,
2003, and 2004; it descends from 2005; therefore, forward
downtrend is observed in the number of injured people in
traffic accidents due to the 10 secondary causes.

Figure 5 shows Injured-G3 and its components 𝑐
𝐿
and 𝑐
𝐻
;

as in previous analysis the components of low frequency show
long-memory periodicity features, whereas the components
of high frequency show short-term periodic fluctuations, and
𝑐
𝐿
via SSA is smoother than 𝑐

𝐿
via HSVD.

Both techniques SSA and HSVD show that the causes
are related to road deficiencies, mechanical failures, and
undetermined/noncategorized causes (with 25% of incidence).
The highest incidence is observed in year 2001, from year
2002 it presents strong decay until 2006, and forward uptrend
is observed with a temporal decrease in 2009.

Prevention plans and punitive laws have been imple-
mented in Chile during the analyzed period, via education,
drivers licensing reforms, zero tolerance law, Emilia’s law, and
transit law reforms, among others. The effect of a particular
preventive or punitive action is not analyzed in this work;
however, the proposed short-term prediction methodology
based on observed causes and intrinsic components is a con-
tribution to government and society in preventive plans for-
mulation, its implementation, and the consequent evaluation.

5.2. Prediction. The prediction is implemented by means of
the autoregressive models, linear (AR) or nonlinear (ANN).
The models use the lagged terms of the components 𝑐

𝐿
and

𝑐
𝐻
; the optimal number of the lagged terms was fixed in

𝑚 = 32 weeks, which was found through the computation of
the Autocorrelation Function over the observed time series
of injured people due to all causes.

The models based on Singular Spectrum Analysis (SSA-
AR and SSA-ANN) receive the components of SSA prepro-
cessing stage, whereas the models based on Singular Value
Decomposition of Hankel (HSVD-AR and HSVD-ANN)
receive the components of HSVD preprocessing stage.

TheANNhas single hidden layer structure (32, 1, 1), with
32 inputs, 1 hidden node, and 1 output.The LM algorithmwas
used iteratively to adjust the linear and nonlinear weights.

The direct method was used to develop multistep ahead
forecasting; in Tables 2 and 3 are presented the average
prediction results with hybrid models SSA-AR, SSA-ANN,
HSVD-AR, and HSVD-ANN with the three time series. The
arithmetic mean of the resultant metrics is presented in
Tables 2 and 3; the results shows that the accuracy decreases
as the time horizon increases; therefore, the best accuracywas
obtained for the nearest weeks, and the lowest accuracy was
obtained for the farthest weeks. The best mean accuracy was
reached by using SSA-AR model, with MNSE of 92.6%, 𝑅2 of
99.3%, MAPE of 1.5%, and RMSE of 0.7%. The lowest mean
accuracy was obtained with HSVD-ANNmodel, with MNSE
of 85.6%,𝑅2 of 98.2%,MAPE of 2.9%, andRMSE of 1.4%.The
second best average accuracy was reached by SSA-ANN, and
the third best accuracy was reached by HSVD-AR.

The highest gain in average MNSE from 1- to 14-step
ahead prediction is 7.6%, while average MAPE is 93.3%.
However, it was observed that HSVD-AR shows a higher
accuracy in farthest horizons, from 12- to 14-step ahead
prediction, which reaches these average results: MNSE of
89.4%, 𝑅2 of 98.9%, MAPE of 2.2%, and of RMSE 1.0%; the
gain in average MNSE from 12- to 14-step ahead prediction is
12.1%, and on average MAPE is 83.3%.

Prediction horizons higher than 14 weeks provide inaccu-
rate results.

From previous tables, similar accuracy was identified in
the prediction through SSA-AR, HSVD-AR, and SSA-ANN,
for 11-step ahead prediction. The predicted signals are shown
in Figures 6, 7, and 8, whereas the metrics residuals are
presented in Tables 4, 5, and 6.

The results for 11-step ahead prediction of Injured-G1
are shown in Figures 6(a), 6(c), 6(e), and Table 4. From
these figures and metrics, a good fit is observed; the highest
accuracy was reached via SSA-AR withMNSE of 87.6%, 𝑅2 of
98.6%, MAPE of 2.0%, and RMSE of 1.1%.

In Figures 6(b), 6(d), and 6(f), the Relative Error of
Injured-G2 prediction is shown. The model SSA-AR shows
94.7% of the predicted points with Relative Error lower
than ±5%, HSVD-AR 86.7%, and SSA-ANN 83.1%. The gain
was computed by means of residual metrics and the two
best models (SSA-AR and HSVD-AR); the highest gain was
observed in MAPE with 25%.

The results for 11-step ahead prediction of Injured-G2
are shown in Figures 7(a), 7(c), and 7(e) and Table 5; all
models achieve a good fit; SSA-AR and HSVD-AR reach
the highest and similar accuracy. In Figures 7(b), 7(d), and
7(f), the Relative Error is shown; SSA-AR presents 85.8%
of the predicted points with a Relative Error lower than
±5%, HSVD-AR 85.3%, and SSA-ANN 80%. The gain was
computed based on residual metrics and the two best models;
the highest gain was observed in MAPE with 10.7%.

The results for 11-step ahead prediction of Injured-G3
are presented in Figures 8(a), 8(c), and 8(e) and Table 6; all
models achieve also a goodfit and similar accuracy. In Figures
8(b), 8(d), and 8(f), the Relative Error is illustrated; SSA-AR
presents 92.4% of predicted points with a Relative Error lower
than ±5%, HSVD-AR 94.2%, and SSA-ANN 91.6%. The gain
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Table 2: Multistep ahead prediction—average results, MNSE, and 𝑅2.

ℎ (week) MNSE (%) 𝑅
2 (%)

SSA-AR SSA-ANN HSVD-AR HSVD-ANN SSA-AR SSA-ANN HSVD-AR HSVD-ANN
1 99.5 99.4 96.4 95.7 99.9 99.9 99.9 99.8
2 98.8 98.7 94.6 93.1 99.9 99.9 99.7 99.6
3 97.9 97.6 93.2 90.9 99.9 99.9 99.6 99.3
4 96.9 96.7 91.7 89.2 99.9 99.9 99.4 98.9
5 95.8 95.3 90.6 86.9 99.8 99.8 99.2 98.6
6 94.6 93.6 89.4 85.2 99.7 99.7 99.0 98.3
7 93.4 92.6 88.2 83.5 99.6 99.5 98.8 97.7
8 92.2 91.3 87.5 81.9 99.4 99.3 98.6 97.4
9 90.9 89.4 87.4 80.2 99.2 99.1 98.5 97.5
10 89.6 87.9 87.4 81.7 99.0 98.8 98.5 97.6
11 88.4 86.3 87.6 82.2 98.8 98.5 98.6 97.2
12 87.2 84.5 88.6 86.6 98.5 98.2 98.7 98.5
13 86.2 77.3 89.0 83.4 98.3 96.7 98.9 97.9
14 85.3 73.9 90.5 77.3 98.1 95.9 99.1 96.6
Min 85.3 73.9 87.4 77.4 98.1 95.9 98.5 96.6
Max 99.5 99.4 96.4 95.7 99.9 99.9 99.9 99.8
Mean 1–14 steps 92.6 90.3 90.1 85.6 99.3 98.9 99.0 98.2
Mean 12–14 steps 86.2 78.6 89.4 82.4 98.3 96.9 98.9 97.7

Table 3: Multistep ahead prediction—average results, MAPE, and RMSE.

ℎ (week) MAPE (%) RMSE (%)
SSA-AR SSA-ANN HSVD-AR HSVD-ANN SSA-AR SSA-ANN HSVD-AR HSVD-ANN

1 0.1 0.1 0.8 0.9 0.05 0.05 0.36 0.43
2 0.3 0.3 1.1 1.4 0.13 0.13 0.54 0.67
3 0.4 0.5 1.4 1.8 0.21 0.22 0.67 0.87
4 0.6 0.7 1.7 2.2 0.30 0.32 0.79 1.03
5 0.9 1.0 1.9 2.8 0.40 0.45 0.89 1.23
6 1.1 1.3 2.2 3.1 0.52 0.6 0.99 1.37
7 1.3 1.5 2.4 3.5 0.64 0.7 1.11 1.59
8 1.6 1.8 2.6 3.7 0.76 0.8 1.19 1.70
9 1.8 2.3 2.6 3.8 0.88 0.9 1.22 1.72
10 2.1 2.5 2.6 3.8 1.0 1.1 1.22 2.19
11 2.4 2.9 2.5 3.8 1.1 1.3 1.18 2.18
12 2.6 3.3 2.3 2.9 1.2 1.4 1.13 1.34
13 2.9 4.1 2.3 3.5 1.3 2.0 1.06 1.98
14 3.1 4.7 2.0 4.2 1.4 2.3 0.91 2.07
Min 0.1 0.1 0.8 0.9 0.05 0.06 0.36 0.4
Max 3.1 4.7 2.6 4.2 1.4 2.3 1.22 2.2
Mean 1–14 steps 1.5 1.9 2.0 2.9 0.7 0.9 1.0 1.4
Mean 12–14 steps 2.9 4.0 2.2 3.5 1.3 1.9 1.0 1.8

was computed based on residual metrics and the two best
models; the highest gain was observed in RMSE with 7.7%.

In the next section the differences and/or superiorities
of either linear model SSA-AR or HSVD-AR are identified
through the application of the statistical tests.

5.3. Models Statistical Tests. The performance of the linear
hybrid models SSA-AR and HSVD-AR is evaluated with

the Wilcoxon hypothesis test and with Pitman’s correlations
test ((16)–(17a), (17b), and (17c)). The Wilcoxon hypothesis
test results are shown in Table 7, and Pitman’s correlation test
results are shown in Table 8.

From Table 7, in 37 comparisons between residuals of
SSA-AR and HSVD-AR, the test rejects the null hypothesis
that there is no difference in the prediction at 5% significance
level. In the remaining 5 comparisons the null hypothesis that
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Figure 6: Injured-G1 11-step ahead prediction. (a) SSA-AR Prediction. (b) SSA-AR Relative Error. (c) HSVD-AR Prediction. (d) HSVD-AR
Relative Error. (e) SSA-ANN Prediction. (f) SSA-ANN Relative Error.

there is no difference in the prediction is accepted. In this
case, there is no difference in 12-step ahead prediction for
time series Injured-G1; the same situation was found in 10-
and 11-step ahead prediction for time series Injured-G2 and
Injured-G3.

Pitman’s correlations test is applied with the residual
values to identify the superiority of SSA-AR over HSVD-AR

or the opposite.The correlations between Υ andΨ are shown
in Table 8.

The null hypothesis of Pitman’s correlation is true at 5%
significance level if |𝑅| > 1.96/√𝑝𝑡, where 𝑝𝑡 = 225 testing
samples. The results of the correlations are shown in Table 8.
From Table 8, the results present similarities with respect to
Wilcoxon test. In 5 predictions there is no superiority of either
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Figure 7: Injured-G2 11-step ahead prediction. (a) SSA-AR Prediction. (b) SSA-AR Relative Error. (c) HSVD-AR Prediction. (d) HSVD-AR
Relative Error. (e) SSA-ANN Prediction. (f) SSA-ANN Relative Error.

Table 4: 11-step ahead prediction results, Injured-G1.

SSA-AR HSVD-AR SSA-ANN Gain
MNSE 87.6 84.7 82.9 3.3%
𝑅
2 98.6 98.0 98.0 0.6%

MAPE 2.0 2.5 3.1 25%
RMSE 1.1 1.3 1.5 18.2%
RE ± 5% 94.7 86.7 83.1 8.4%

model (SSA-AR and HSVD-AR). SSA-AR shows superiority
with respect to HSVD-AR in 30 predictions (when |𝑅| >
0.123 for nearest horizons), whereas the opposite is observed

Table 5: 11-step ahead prediction results, Injured-G2.

SSA-AR HSVD-AR SSA-ANN Gain
MNSE 90.3 90.6 88.4 0.3%
𝑅
2 99.1 99.1 98.7 0%

MAPE 2.8 2.5 3.6 10.7%
RMSE 0.9 0.9 1.0 0%
RE ± 5% 85.8 85.3 80.0 0.6%

in 7 predictions; HSVD-AR shows superiority with respect to
SSA-AR (when |𝑅| ≤ 0.123 for farthest horizons).
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Figure 8: Injured-G3 11-step ahead prediction. (a) SSA-AR Prediction. (b) SSA-AR Relative Error. (c) HSVD-AR Prediction. (d) HSVD-AR
Relative Error. (e) SSA-ANN Prediction. (f) SSA-ANN Relative Error.

Table 6: 11-step ahead prediction results, Injured-G3.

SSA-AR HSVD-AR SSA-ANN Gain
MNSE 87.2 87.6 87.6 0.5%
𝑅
2 98.6 98.7 98.7 0.1%

MAPE 2.3 2.3 2.3 0%
RMSE 1.4 1.3 1.4 7.7%
RE ± 5% 92.4 94.2 91.6 1.9%

6. Conclusions

In this paper has been developed multistep ahead traffic
accidents forecasting approach based on singular values and
autoregressivemodels.The nonstationary and nonlinear time
series of injured people in traffic accidents of Santiago de
Chile was used.

Before the models methodology stages, ranking was
applied to detect the relevant causes of injuries in traffic
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Table 7: Wilcoxon hypothesis test—pairwise differences between SSA-AR and HSVD-AR.

Series Horizon
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
2 1 1 1 1 1 1 1 1 1 0 0 1 1 1
3 1 1 1 1 1 1 1 1 1 0 0 1 1 1

Table 8: Pitman’s correlation test 𝑅—pairwise comparisons between SSA-AR and HSVD-AR.

Series Horizon
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 −0.9 −0.9 −0.9 −0.8 −0.8 −0.7 −0.6 −0.6 −0.5 −0.4 −0.2 −0.1 0.1 0.3
2 −0.9 −0.9 −0.9 −0.8 −0.7 −0.6 −0.5 −0.5 −0.3 −0.2 0.0 0.2 0.3 0.5
3 −0.9 −0.9 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.1 0.0 0.2 0.3 0.5

accidents; causes related to behavior of drivers, pedestrians,
or passengers are predominant. Unwise distance, inattention
to traffic conditions, and disrespect to red light are the first
important causes of injuries in traffic accidents in concor-
dance with previous studies that determine disrespect towards
the road signs as a principal cause of traffic accidents. Com-
plementary information was observed about traffic accidents
conditions with high rate of injured people, automobiles
type, environmental conditions, and relative position, among
others.

This approach was described in two stages, preprocessing
and prediction; in the first stage two methods for compo-
nents extraction were developed, Singular SpectrumAnalysis
and Singular Value Decomposition of Hankel, whereas in
the second stage the linear autoregressive model and an
Autoregressive Neural Network with Levenberg-Marquardt
algorithm were used.

Four hybrid models were implemented: SSA-AR, HSVD-
AR, SSA-ANN, and HSVD-ANN.Themodels were evaluated
for 14-week ahead forecasting; comparative analysis shows
that the proposed models SSA-AR and SSA-ANN achieved
the highest accuracy with an average MNSE of 92.6% and
90.3%, respectively; the highest gain in average MNSE
achieved by SSA-AR is 7.6%. However, it was observed that
HSVD-AR shows a higher accuracy in farthest horizons from
12 to 14 steps, which reaches an average MNSE of 89.4%; in
this case the highest gain achieved by HSVD-AR in MNSE is
12%.

The statistical tests application through Wilcoxon and
Pitman has shown that SSA-AR is superior to HSVD-AR
in 30 of 42 comparisons of resultant efficiency criteria (at
nearest horizon) at 5% significance level, 5 comparisons
show equivalence, and 7 comparisons show the superiority
of HSVD-AR over SSA (at farthest horizon).

In further works, more strategies of components extrac-
tion will be explored; spectral analysis could help to explain
the nature of traffic accidents in other geographic zones.
Detailed work focused on the causes of traffic accidents will
be done to support prevention plans aimed at promoting
good habits on roads and highways.
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