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We present two inversion-free iterativemethods for computing themaximal positive definite solution of the equation𝑋+𝐴𝐻𝑋−1𝐴+
𝐵
𝐻
𝑋
−1
𝐵 = 𝐼. We prove that the sequences generated by the two iterative schemes are monotonically increasing and bounded

above. We also present some numerical results to compare our proposed methods with some previously developed inversion-free
techniques for solving the same matrix equation.

1. Introduction

In this paper, we consider the nonlinear matrix equation:

𝑋 + 𝐴
𝐻
𝑋
−1
𝐴 + 𝐵

𝐻
𝑋
−1
𝐵 = 𝐼, (1)

where 𝐴, 𝐵 ∈ C𝑛×𝑛, 𝐼 is the identity matrix, and a Hermitian
positive definite solution𝑋 is required.

Specifically, if 𝐵 = 0, the nonlinear matrix equation (1)
reduces to

𝑋 + 𝐴
𝐻
𝑋
−1
𝐴 = 𝐼. (2)

The nonlinear matrix equation (2) has many applications
in nano research, control theory, dynamic programming,
statistics, ladder networks, stochastic filtering, and so forth
(see [1–7]). The special case (2) has been widely studied by
some authors (see [8–27]). Different iterative methods for
computing the positive definite solutions of (2) have been
proposed, for example, the fixed-point iteration (see [15]),
structure-preserving doubling algorithm (see [7, 16]), and
some inversion-free iterations (see [17, 20, 23, 27]). Among
them, structure-preserving doubling algorithmhas been seen
as one of the most efficient algorithms as it has quadratic
convergence rate.

However, very little research has been done on the solu-
tions to (1) in the case 𝐵 ̸= 0. In [28], Long et al. stated the
application background of (1) and presented some conditions

for the existence of the positive definite solution of this
equation. Moreover, they proposed some iterative algorithms
to find the positive definite solution. Popchev et al. made a
complete perturbation analysis of (1) (see [29]). In [30], Liu
and Chen considered the nonlinear matrix equation 𝑋𝑠 +
𝐴
𝐻
𝑋
−𝑡
1𝐴 + 𝐵

𝐻
𝑋
−𝑡
2𝐵 = 𝑄. They studied the existence of the

positive definite solution of this equation.
Motivated and inspired by the works mentioned above,

in this paper, we propose two new inversion-free iterative
methods for obtaining the maximal positive definite solution
of (1). We prove that the sequences generated by the two
iterative schemes are monotonically increasing and bounded
above. In addition, we also provide some numerical results to
illustrate the effectiveness of the proposed algorithm.

Throughout this paper, we use the following notations: for
𝐴 ∈ C𝑛×𝑛, we write 𝐴𝐻, 𝐴−1 and ‖𝐴‖ to denote the conjugate
transpose, the inverse, and the Frobenius norm of the matrix
𝐴, respectively. For any𝐴 = (𝑎

𝑖𝑗
),𝐵 = (𝑏

𝑖𝑗
), wewrite𝐴 ≥ 𝐵 (or

𝐵 ≤ 𝐴) if 𝐴 − 𝐵 is a Hermitian positive semidefinite matrix.
And we write 𝐴 > 𝐵 (or 𝐵 < 𝐴) if 𝐴 − 𝐵 is a Hermitian
positive definite matrix. We use 0 to denote the zero matrix
of size implied by context and 𝐼 to denote the identity matrix
of size implied by context.

This paper is organized as follows. In Section 2, we
present two new iterative methods to solve the nonlinear
matrix equation (1). In Section 3, the convergence analysis of
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the proposedmethods is given. Some numerical experiments
are reported in Section 4. Finally, we conclude this paper in
Section 5.

2. New Inversion-Free Iterative Methods

In this section, we present two new inversion free iterative
algorithms for solving problem (1). Let 𝑌 = 𝑋

−1; then the
nonlinear matrix equation (1) is equivalent to

𝑌
−1
+ 𝐴
𝐻
𝑌𝐴 + 𝐵

𝐻
𝑌𝐵 = 𝐼. (3)

Obviously, if 𝑌
∗
is a Hermitian positive definite solution of

(3), we have 0 < 𝑌−1
∗
≤ 𝐼. That is, 𝑌

∗
≥ 𝐼.

Premultiplying and postmultiplying by 𝑌 on (3) simulta-
neously, we get

𝑌 − 𝑌 (𝐼 − 𝐴
𝐻
𝑌𝐴 − 𝐵

𝐻
𝑌𝐵)𝑌 = 0. (4)

Adding 𝑌 to both sides of the above equation, we have

𝑌 = 2𝑌 − 𝑌 (𝐼 − 𝐴
𝐻
𝑌𝐴 − 𝐵

𝐻
𝑌𝐵)𝑌. (5)

Obviously, 𝑌 solves (5) if 𝑌 is a solution of (3). Conversely, if
𝑌 is a nonsingular solution of (5), 𝑌 solves (3) as well.

Thus, we just need to solve the matrix equation (5) if we
want to get a Hermitian positive definite solution of (3). By
this point, we present the following iterative scheme.

Algorithm 1 (an inversion-free iterative algorithm for (1)).

Step 1. Input thematrix𝐴, 𝐵 ∈ C𝑛×𝑛. Take initialmatrix𝑌
0
= 𝐼

and tolerance error 𝜀 ≥ 0. Set 𝑘 := 0.

Step 2. Obtain 𝑌
𝑘+1

by the following iterative scheme:

𝑌
𝑘+1

= 2𝑌
𝑘
− 𝑌
𝑘
𝑍
𝑘
𝑌
𝑘
, (6)

where 𝑍
𝑘
= 𝐼 − 𝐴

𝐻
𝑌
𝑘
𝐴 − 𝐵

𝐻
𝑌
𝑘
𝐵.

Step 3. Stop if ‖𝑌
𝑘+1

− 𝑌
𝑘
‖
𝐹
≤ 𝜀. Otherwise, 𝑘 := 𝑘 + 1, go to

Step 2.

Remark 2. If 𝐵 = 0, Algorithm 1 reduces to Algorithm 2.1 in
[23] with 𝛼 = 1 and𝑄 = 𝐼. Moreover, as𝑌

0
= 𝐼 is a Hermitian

matrix, from (6) we know that 𝑌
𝑘
is also a Hermitian matrix,

for all 𝑘 ≥ 0.

On the other hand, premultiplying and postmultiplying
by 𝑌 on (3), respectively, we have

𝐼 + 𝑌𝐴
𝐻
𝑌𝐴 + 𝑌𝐵

𝐻
𝑌𝐵 = 𝑌,

𝐼 + 𝐴
𝐻
𝑌𝐴𝑌 + 𝐵

𝐻
𝑌𝐵𝑌 = 𝑌.

(7)

Adding the above two equations, we can get

2𝐼 + 𝑌𝐴
𝐻
𝑌𝐴 + 𝑌𝐵

𝐻
𝑌𝐵

+ 𝐴
𝐻
𝑌𝐴𝑌 + 𝐵

𝐻
𝑌𝐵𝑌 = 2𝑌.

(8)

By some simple calculating, we obtain

𝑌 = 𝐼 +
1

2

× [𝑌 (𝐴
𝐻
𝑌𝐴 + 𝐵

𝐻
𝑌𝐵) + (𝐴

𝐻
𝑌𝐴 + 𝐵

𝐻
𝑌𝐵)𝑌] .

(9)

By the above analysis, we know that if 𝑌 is a solution of (3), 𝑌
is a solution of (9). Now we prove that a Hermitian positive
definite solution of (9) is also a solution of (3).

Theorem 3. Let 𝑌 be a Hermitian positive definite solution of
the nonlinear matrix equation (9). Then 𝑌 is also a positive
definite solution of the nonlinear matrix equation (3).

Proof. By the nonlinear matrix equation (9), we have

𝑌 (𝑌
−1
+ 𝐴
𝐻
𝑌𝐴 + 𝐵

𝐻
𝑌𝐵 − 𝐼)

+ (𝑌
−1
+ 𝐴
𝐻
𝑌𝐴 + 𝐵

𝐻
𝑌𝐵 − 𝐼)𝑌 = 0.

(10)

This implies that 𝑌−1 + 𝐴𝐻𝑌𝐴 + 𝐵
𝐻
𝑌𝐵 − 𝐼 is a solution of

the matrix equation 𝑌𝐻 + 𝐻𝑌 = 0, where 𝐻 ∈ C𝑛×𝑛 is
unknown. Since 𝑌 is positive definite, 𝑌 and −𝑌 have no
common eigenvalue and the matrix equation 𝑌𝐻 + 𝐻𝑌 = 0

has a unique solution (see [31]). As 0 solves the equation
𝑌𝐻 + 𝐻𝑌 = 0, we must have 𝑌−1 + 𝐴𝐻𝑌𝐴 + 𝐵𝐻𝑌𝐵 − 𝐼 = 0.
Namely, 𝑌 is a positive definite solution of (3).

Thus, we just need to solve the matrix equation (9) if we
want to get a Hermitian positive definite solution of (3). By
this point, we present the following iterative scheme.

Algorithm 4 (another inversion free iterative algorithm).

Step 1. Input thematrix𝐴, 𝐵 ∈ C𝑛×𝑛. Take initialmatrix𝑌
0
= 𝐼

and tolerance error 𝜀 ≥ 0. Set 𝑘 := 0.

Step 2. Obtain 𝑌
𝑘+1

by the following iterative scheme:

𝑍
𝑘
=
1

2
𝑌
𝑘
(𝐴
𝐻
𝑌
𝑘
𝐴 + 𝐵

𝐻
𝑌
𝑘
𝐵) ,

𝑌
𝑘+1

= 𝐼 + 𝑍
𝐻

𝑘
+ 𝑍
𝑘
.

(11)

Step 3. Stop if ‖𝑌
𝑘+1

− 𝑌
𝑘
‖
𝐹
≤ 𝜀. Otherwise, 𝑘 := 𝑘 + 1 go to

Step 2.

Obviously, for all 𝑘 ≥ 0, sequence {𝑌
𝑘
} generated by

Algorithm 4 with the initial matrix 𝑌
0
= 𝐼 are all Hermitian

matrices.

3. Convergence Analysis

In this section, we will prove that the sequences {𝑌
𝑘
} gener-

ated by Algorithms 1 and 4 with the initial matrix 𝑌
0
= 𝐼

converge to the minimal positive definite solution of (3). In
the first place, we introduce the following lemmas.

Lemma 5 (see [28]). If (1) has a positive definite solution 𝑋,
then 𝐴𝐻𝐴 + 𝐵𝐻𝐵 < 𝐼.
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Lemma 6 (see [23]). If 𝐶 and 𝑃 are Hermitian matrices of the
same order with 𝑃 > 0, then 2𝐶 − 𝐶𝑃𝐶 ≤ 𝑃−1.

Lemma 7. If 𝑀,𝑃 ∈ C𝑛×𝑛 are both Hermitian positive
semidefinite, then𝑀𝑃 + 𝑃𝑀 is a Hermitian positive semidefi-
nite matrix as well.

Proof. Obviously,𝑀𝑃+𝑃𝑀 is aHermitianmatrix. If one of𝑀
and 𝑃 is positive definite, without loss of generality, suppose
that𝑀 > 0. Then by the assumption of the lemma, we know
that𝑀1/2, 𝑃1/2 are well defined and𝑀1/2 > 0, 𝑃1/2 ≥ 0. Then
we get

𝑀𝑃 + 𝑃𝑀 = 𝑀
1/2
𝑀
1/2
𝑃 + 𝑃𝑀

1/2
𝑀
1/2

= 𝑀
1/2
(𝑀
1/2
𝑃𝑀
−(1/2)

+𝑀
−(1/2)

𝑃𝑀
1/2
)𝑀
1/2

≥ 0.

(12)

Assume that neither of𝑀 and 𝑃 is positive definite. Then for
𝛽 > 0, we have 𝑀 + 𝛽𝐼 > 0. Thus by the above analysis,
we have (𝑀 + 𝛽𝐼)𝑃 + 𝑃(𝑀 + 𝛽𝐼) ≥ 0. Let 𝛽 → 0

+; we get
𝑀𝑃 + 𝑃𝑀 ≥ 0. This completes the proof.

Now we are in a position to prove that {𝑌
𝑘
} generated by

Algorithm 1 with the initial matrix 𝑌
0
= 𝐼 converges to the

minimal positive definite solution of (3).

Theorem 8. The nonlinear matrix equation (3) has a posi-
tive definite solution and the sequence {𝑌

𝑘
} is generated by

Algorithm 1with the initialmatrix𝑌
0
= 𝐼. Let �̃� be theminimal

positive definite solution of (3). Then the sequence {𝑌
𝑘
} is well

defined, 𝑌
0
≤ 𝑌
1
≤ 𝑌
2
≤ ⋅ ⋅ ⋅ < 𝑌

𝑘
≤ ⋅ ⋅ ⋅ ≤ �̃�, and

lim
𝑘→∞

𝑌
𝑘
= �̃�. (13)

Proof. Let 𝑌
∗
be any positive definite solution of (3). Firstly,

we will prove 0 < 𝑌
𝑘
≤ 𝑌
𝑘+1

≤ 𝑌
∗
for all 𝑘 ≥ 0 by

mathematical induction.
For 𝑘 = 0, we have 𝑌

0
= 𝐼 > 0. By (6) we have

𝑌
1
= 2𝐼 − 𝐼 + 𝐴

𝐻
𝐴 + 𝐵

𝐻
𝐵

= 𝐼 + 𝐴
𝐻
𝐴 + 𝐵

𝐻
𝐵 ≥ 𝐼 = 𝑌

0
.

(14)

On the other hand, by Lemma 5, we have 𝐼−𝐴𝐻𝐴−𝐵𝐻𝐵 > 0.
This together with Lemma 6 and (3) yields

𝑌
1
= 2𝐼 − 𝐼 (𝐼 − 𝐴

𝐻
𝐴 − 𝐵

𝐻
𝐵) 𝐼

≤ (𝐼 − 𝐴
𝐻
𝐴 − 𝐵

𝐻
𝐵)
−1

≤ (𝐼 − 𝐴
𝐻
𝑌
∗
𝐴 − 𝐵

𝐻
𝑌
∗
𝐵)
−1

= 𝑌
∗
,

(15)

where the second inequality follows from the fact that𝑌
∗
≥ 𝐼.

Hence 0 < 𝑌
𝑘
≤ 𝑌
𝑘+1

≤ 𝑌
∗
holds for 𝑘 = 0.

Assume that 0 < 𝑌
𝑘
≤ 𝑌
𝑘+1

≤ 𝑌
∗
holds for 𝑘 = 𝑖 ≥ 0.

Since

𝑍
𝑖+1
= 𝐼 − 𝐴

𝐻
𝑌
𝑖+1
𝐴 − 𝐵

𝐻
𝑌
𝑖+1
𝐵

≥ 𝐼 − 𝐴
𝐻
𝑌
∗
𝐴 − 𝐵

𝐻
𝑌
∗
𝐵

= 𝑌
−1

∗
> 0,

(16)

by (6), Lemma 6, and the fact that 𝑌
𝑖+1
> 0, we get

𝑌
𝑖+2
= 2𝑌
𝑖+1
− 𝑌
𝑖+1
𝑍
𝑖+1
𝑌
𝑖+1
≤ 𝑍
−1

𝑖+1
≤ 𝑌
∗
. (17)

Moreover, it follows from (6) that

𝑌
𝑖+2
− 𝑌
𝑖+1
= 𝑌
𝑖+1
− 𝑌
𝑖+1
𝑍
𝑖+1
𝑌
𝑖+1

= 𝑌
𝑖+1
(𝑌
−1

𝑖+1
− 𝑍
𝑖+1
) 𝑌
𝑖+1
.

(18)

As 𝑍
𝑖
= 𝐼 − 𝐴

𝐻
𝑌
𝑖
𝐴 − 𝐵

𝐻
𝑌
𝑖
𝐵 ≥ 𝐼 − 𝐴

𝐻
𝑌
𝑖+1
𝐴 − 𝐵

𝐻
𝑌
𝑖+1
𝐵 =

𝑍
𝑖+1
> 0, this together with (6) and Lemma 6 follows that

𝑌
𝑖+1
= 2𝑌
𝑖
− 𝑌
𝑖
𝑍
𝑖
𝑌
𝑖
≤ 𝑍
−1

𝑖
≤ 𝑍
−1

𝑖+1
. (19)

This implies that 𝑌−1
𝑖+1

≥ 𝑍
𝑖+1

. Thus, by (18) and the fact that
𝑌
𝑖+1
> 0, we obtain𝑌

𝑖+2
≥ 𝑌
𝑖+1

.Therefore, 0 < 𝑌
𝑘
≤ 𝑌
𝑘+1

≤ 𝑌
∗

holds for 𝑘 = 𝑖 + 1.
By the principle of mathematical induction, 0 < 𝑌

𝑘
≤

𝑌
𝑘+1

≤ 𝑌
∗
is true for all 𝑘 ≥ 0. The sequence {𝑌

𝑘
} is now

well defined, monotonically increasing, and bounded above.
Let lim

𝑘→∞
𝑌
𝑘
= �̃�. Then �̃� is a positive definite solution of

the nonlinearmatrix equation (3) by (6). Since �̃� ≤ 𝑌
∗
for any

positive definite solution 𝑌
∗
of (3), �̃� is the minimal positive

definite solution of (3). This completes the proof.

Remark 9. Let 𝑋 be the maximal positive definite solution
of the nonlinear matrix equation (1). By the relationship
between (1) and (3), we get that 𝑋−1 is the minimal positive
definite solution of (3). So from Theorem 8, we know that
the sequence {𝑌

𝑘
} generated by Algorithm 1 with the initial

matrix𝑌
0
= 𝐼 converges to the inverse of themaximal positive

definite solution of (1).

Now we consider the convergence theorem of
Algorithm 4.

Theorem 10. The nonlinear matrix equation (3) has a pos-
itive definite solution and the sequence {𝑌

𝑘
} is generated by

Algorithm 4 with the initial matrix 𝑌
0
= 𝐼. Let �̃� be the

minimal positive definite solution of (3). Then the sequence
{𝑌
𝑘
} is well defined, 𝑌

0
≤ 𝑌
1
≤ 𝑌
2
< ⋅ ⋅ ⋅ ≤ 𝑌

𝑘
≤ ⋅ ⋅ ⋅ ≤ �̃�,

and lim
𝑘→∞

𝑌
𝑘
= �̃�.

Proof. Let 𝑌
∗
be any positive definite solution of (3). Firstly,

we will prove 0 < 𝑌
𝑘
≤ 𝑌
𝑘+1

≤ 𝑌
∗
for all 𝑘 ≥ 0 by induction.

For 𝑘 = 0, we have 𝑌
0
= 𝐼 > 0; then 𝑌

1
= 𝐼 + 𝐴

𝐻
𝐴 +

𝐵
𝐻
𝐵 ≥ 𝐼. On the other hand, by the fact that 𝑌

∗
≥ 𝐼, (3), and

Lemma 7, we get

𝑌
1
= 𝐼 + 𝐴

𝐻
𝐴 + 𝐵

𝐻
𝐵

≤ 𝐼 + 𝐴
𝐻
𝑌
∗
𝐴 + 𝐵

𝐻
𝑌
∗
𝐵
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= 𝐼 +
1

2
(𝐴
𝐻
𝑌
∗
𝐴𝐼 + 𝐼𝐴

𝐻
𝑌
∗
𝐴)

+
1

2
(𝐵
𝐻
𝑌
∗
𝐵𝐼 + 𝐼𝐵

𝐻
𝑌
∗
𝐵)

≤ 𝐼 +
1

2
(𝐴
𝐻
𝑌
∗
𝐴𝑌
∗
+ 𝑌
∗
𝐴
𝐻
𝑌
∗
𝐴)

+
1

2
(𝐵
𝐻
𝑌
∗
𝐵𝑌
∗
+ 𝑌
∗
𝐵
𝐻
𝑌
∗
𝐵)

= 𝐼 +
1

2
(𝐴
𝐻
𝑌
∗
𝐴 + 𝐵

𝐻
𝑌
∗
𝐵)𝑌
∗

+
1

2
𝑌
∗
(𝐴
𝐻
𝑌
∗
𝐴 + 𝐵

𝐻
𝑌
∗
𝐵)

= 𝐼 +
1

2
(𝐼 − 𝑌

−1

∗
) 𝑌
∗
+
1

2
𝑌
∗
(𝐼 − 𝑌

−1

∗
)

= 𝑌
∗
.

(20)

Hence 0 < 𝑌
𝑘
≤ 𝑌
𝑘+1

≤ 𝑌
∗
is true for 𝑘 = 0.

Assume that 0 < 𝑌
𝑘
≤ 𝑌
𝑘+1

≤ 𝑌
∗
holds for 𝑘 = 𝑖 ≥ 0.Then

by Lemma 7 we have

𝑌
𝑖+1
𝐴
𝐻
𝑌
𝑖+1
𝐴 + 𝐴

𝐻
𝑌
𝑖+1
𝐴𝑌
𝑖+1

≥ 𝑌
𝑖
𝐴
𝐻
𝑌
𝑖+1
𝐴 + 𝐴

𝐻
𝑌
𝑖+1
𝐴𝑌
𝑖

≥ 𝑌
𝑖
𝐴
𝐻
𝑌
𝑖
𝐴 + 𝐴

𝐻
𝑌
𝑖
𝐴𝑌
𝑖
.

(21)

Similarly, we get 𝑌
𝑖+1
𝐵
𝐻
𝑌
𝑖+1
𝐵 + 𝐵

𝐻
𝑌
𝑖+1
𝐵𝑌
𝑖+1

≥ 𝑌
𝑖
𝐵
𝐻
𝑌
𝑖
𝐵 +

𝐵
𝐻
𝑌
𝑖
𝐵𝑌
𝑖
. This together with (11) yields

𝑌
𝑖+2
= 𝐼 +

1

2
(𝑌
𝑖+1
𝐴
𝐻
𝑌
𝑖+1
𝐴 + 𝑌

𝑖+1
𝐵
𝐻
𝑌
𝑖+1
𝐵

+𝐴
𝐻
𝑌
𝑖+1
𝐴𝑌
𝑖+1
+ 𝐵
𝐻
𝑌
𝑖+1
𝐵𝑌
𝑖+1
)

= 𝐼 +
1

2
(𝑌
𝑖+1
𝐴
𝐻
𝑌
𝑖+1
𝐴 + 𝐴

𝐻
𝑌
𝑖+1
𝐴𝑌
𝑖+1
)

+
1

2
(𝑌
𝑖+1
𝐵
𝐻
𝑌
𝑖+1
𝐵 + 𝐵
𝐻
𝑌
𝑖+1
𝐵𝑌
𝑖+1
)

≥ 𝐼 +
1

2
(𝑌
𝑖
𝐴
𝐻
𝑌
𝑖
𝐴 + 𝐴

𝐻
𝑌
𝑖
𝐴𝑌
𝑖
)

+
1

2
(𝑌
𝑖
𝐵
𝐻
𝑌
𝑖
𝐵 + 𝐵
𝐻
𝑌
𝑖
𝐵𝑌
𝑖
)

= 𝐼 +
1

2
(𝑌
𝑖
𝐴
𝐻
𝑌
𝑖
𝐴 + 𝑌

𝑖
𝐵
𝐻
𝑌
𝑖
𝐵

+𝐴
𝐻
𝑌
𝑖
𝐴𝑌
𝑖
+ 𝐵
𝐻
𝑌
𝑖
𝐵𝑌
𝑖
)

= 𝐼 +
1

2
(𝑍
𝑖
+ 𝑍
𝐻

𝑖
) = 𝑌
𝑖+1
.

(22)

Table 1: Numerical results of Example 11.

Scheme Iter. CPU Res. MM
A1 14 0.0006 3.5756𝑒 − 012 84
A2 20 0.0008 2.3117𝑒 − 011 100
B1 26 0.0011 4.7298𝑒 − 011 156
B2 15 0.0007 6.7304𝑒 − 013 90

Table 2: Numerical results of Example 12.

Scheme Iter. CPU Res. MM
A1 48 0.0027 2.2801𝑒 − 011 288
A2 83 0.0040 4.4924𝑒 − 011 415
B1 92 0.0049 6.4280𝑒 − 011 552
B2 49 0.0028 1.4600𝑒 − 011 294

On the other hand, by Lemma 7 we obtain

𝑌
𝑖+1
𝐴
𝐻
𝑌
𝑖+1
𝐴 + 𝐴

𝐻
𝑌
𝑖+1
𝐴𝑌
𝑖+1

≤ 𝑌
∗
𝐴
𝐻
𝑌
𝑖+1
𝐴 + 𝐴

𝐻
𝑌
𝑖+1
𝐴𝑌
∗

≤ 𝑌
∗
𝐴
𝐻
𝑌
∗
𝐴 + 𝐴

𝐻
𝑌
∗
𝐴𝑌
∗
.

(23)

Similarly, we get

𝑌
𝑖+1
𝐵
𝐻
𝑌
𝑖+1
𝐵 + 𝐵
𝐻
𝑌
𝑖+1
𝐵𝑌
𝑖+1
≤ 𝑌
∗
𝐵
𝐻
𝑌
∗
𝐵 + 𝐵
𝐻
𝑌
∗
𝐵𝑌
∗
. (24)

Using the above inequalities, we can deduce that

𝑌
𝑖+2
= 𝐼 +

1

2
(𝑌
𝑖+1
𝐴
𝐻
𝑌
𝑖+1
𝐴 + 𝐴

𝐻
𝑌
𝑖+1
𝐴𝑌
𝑖+1
)

+
1

2
(𝑌
𝑖+1
𝐵
𝐻
𝑌
𝑖+1
𝐵 + 𝐵
𝐻
𝑌
𝑖+1
𝐵𝑌
𝑖+1
)

≤ 𝐼 +
1

2
(𝑌
∗
𝐴
𝐻
𝑌
∗
𝐴 + 𝐴

𝐻
𝑌
∗
𝐴𝑌
∗
)

+
1

2
(𝑌
∗
𝐵
𝐻
𝑌
∗
𝐵 + 𝐵
𝐻
𝑌
∗
𝐵𝑌
∗
)

= 𝐼 +
1

2
𝑌
∗
(𝐴
𝐻
𝑌
∗
𝐴 + 𝐵

𝐻
𝑌
∗
𝐵)

+
1

2
(𝐴
𝐻
𝑌
∗
𝐴 + 𝐵

𝐻
𝑌
∗
𝐵)𝑌
∗

= 𝐼 +
1

2
𝑌
∗
(𝐼 − 𝑌

−1

∗
) +

1

2
(𝐼 − 𝑌

−1

∗
) 𝑌
∗

= 𝑌
∗
, (25)

where the first equality follows from (11) and the third
equality follows from (3). Hence, 0 < 𝑌

𝑘
≤ 𝑌
𝑘+1

≤ 𝑌
∗
holds

for 𝑘 = 𝑖 + 2.
Thus, by the principle of induction, 0 < 𝑌

𝑘
≤ 𝑌
𝑘+1

≤

𝑌
∗
is true for all 𝑘 ≥ 0. The sequence {𝑌

𝑘
} is now well

defined, monotonically increasing, and bounded above. Let
lim
𝑘→∞

𝑌
𝑘
= �̃�. Then �̃� is a positive definite solution of the

nonlinear matrix equation (3) by (11) and Theorem 3. Since
�̃� ≤ 𝑌

𝐻 for any positive definite solution 𝑌𝐻 of (3), �̃� is the
minimal positive definite solution of (3). This completes the
proof.
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Table 3: Numerical results of Example 13.

Scheme Iter. CPU Res. MM
A1 28 0.0016 1.4769𝑒 − 011 168
A2 47 0.0025 2.8856𝑒 − 011 235
B1 54 0.0032 4.4578𝑒 − 011 324
B2 29 0.0018 6.6485𝑒 − 012 174

4. Numerical Experiments

In this section, we will give some numerical examples to
support our Algorithms 1 and 4. All experiments were run
on a PCwith Pentium(R)Dual-Core CPUE5800@2.40GHz.
All the programming is implemented in MATLAB R2011b
(7.13). We report the number of required iterations (Iter.), the
norm of the residual (Res.) when the process is stopped, the
required CPU time (CPU), and the number of matrix-matrix
(MM) products required. In our implementation, we stop all
considered algorithmswhen ‖𝑌

𝑘+1
− 𝑌
𝑘
‖
𝐹
≤ 10
−10 with 𝑘 ≥ 1.

We compare our Algorithm 1 (A1) andAlgorithm 4 (A2) with
the following inverse-free methods for solving (1).

(i) In [28], for finding positive definite solution of (1),
Long et al. proposed the following iteration:

B1 :
{{

{{

{

𝑋
0
= 𝐼, 𝑌

0
= 𝐼,

𝑋
𝑘+1

= 𝐼 − 𝐴
𝐻
𝑌
𝑘
𝐴 − 𝐵

𝐻
𝑌
𝑘
𝐵,

𝑌
𝑘+1

= 𝑌
𝑘
(2𝐼 − 𝑋

𝑘
𝑌
𝑘
) .

(26)

(ii) In [30], for solving positive definite solution of (1), Liu
and Chen proposed the following iteration:

B2 :
{{

{{

{

𝑋
0
= 𝐼, 𝑌

0
= 𝐼,

𝑌
𝑘+1

= 𝑌
𝑘
(2𝐼 − 𝑋

𝑘
𝑌
𝑘
) ,

𝑋
𝑘+1

= 𝐼 − 𝐴
𝐻
𝑌
𝑘+1
𝐴 − 𝐵

𝐻
𝑌
𝑘+1
𝐵.

(27)

Example 11. For the first experiment, we consider (1) when𝐴
and 𝐵 are given as in Example 4.1 from [28]:

𝐴 = (

0.010 −0.150 −0.259

0.015 0.212 −0.064

0.025 −0.069 0.138

) ,

𝐵 = (

0.160 −0.025 0.020

−0.025 −0.288 −0.060

0.004 −0.016 −0.120

) .

(28)

We could obtain the maximal solution 𝑋
+
(the first 4 digits)

by the iterative schemes A1-A2 and B1–B3. The maximal
solution is

𝑋
+
≈ (

0.9718 −0.0049 −0.0046

−0.0049 0.8144 −0.0388

−0.0046 −0.0388 0.8836

) . (29)

Our numerical results are reported in Table 1.

Table 4: Numerical results of Example 14.

DIM Scheme Iter. CPU Res. MM

64

A1 16 0.0050 1.4358𝑒 − 011 96
A2 24 0.0070 1.4344𝑒 − 011 120
B1 32 0.0419 3.1053𝑒 − 011 192
B2 17 0.0064 3.6219𝑒 − 012 102

128

A1 17 0.0324 4.9074𝑒 − 012 102
A2 24 0.0620 1.9656𝑒 − 011 120
B1 32 0.1036 4.0817𝑒 − 011 192
B2 18 0.0454 1.2594𝑒 − 012 108

256

A1 17 0.3721 4.4572𝑒 − 012 102
A2 24 0.4954 1.7529𝑒 − 011 120
B1 32 0.6902 3.7397𝑒 − 011 192
B2 18 0.4155 1.1373𝑒 − 012 108

512

A1 17 2.5991 5.1113𝑒 − 012 168
A2 24 2.9816 2.0378𝑒 − 011 235
B1 32 4.4817 4.2332𝑒 − 011 324
B2 18 2.7676 1.3148𝑒 − 012 174

1024

A1 17 20.2298 4.9186𝑒 − 012 168
A2 24 26.0464 1.9494𝑒 − 011 235
B1 32 36.6167 4.0910𝑒 − 011 324
B2 18 21.8226 1.2626𝑒 − 012 174

Example 12. In this test, the matrices 𝐴 and 𝐵 are given as in
Example 4.2 from [28]:

𝐴 =
1

680
(

40 25 23 35 66

25 32 27 45 21

23 27 28 16 24

35 45 16 52 65

66 21 24 65 69

),

𝐵 =
1

400
(

11 21 23 25 32

21 31 60 42 33

23 60 34 18 26

25 42 18 44 30

32 33 26 30 50

).

(30)

We will obtain the maximal solution𝑋
+
(the first 4 digits) by

the iterative schemes A1-A2 and B1–B3.Themaximal solution
is

𝑋
+
=(

0.9437 −0.0642 −0.0530 −0.0691 −0.0772

−0.0642 0.9063 −0.0739 −0.0833 −0.0907

−0.0530 −0.0739 0.9297 −0.0717 −0.0763

−0.0691 −0.0833 −0.0717 0.9080 −0.0970

−0.0772 −0.0907 −0.0763 −0.0970 0.8889

).

(31)

Our numerical results are reported in Table 2.
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Example 13. In this experiment we solve (1) with thematrices
𝐴 and 𝐵 as follows:

𝐴 =
1

20

(

(

2 0 0 1 0 0

1 2 0 0 1 0

0 0 3 0 1 0

1 0 0 2 0 1

1 0 1 0 3 0

0 1 0 0 1 2

)

)

,

𝐵 =
1

50

(

(

2 1 6 0 5 7

3 4 7 1 3 0

0 9 2 4 7 8

8 5 3 0 0 1

2 5 0 2 1 7

4 0 0 1 4 9

)

)

. (32)

We could obtain the maximal solution 𝑋
+
(the first 4 digits)

by the iterative schemes A1-A2 and B1–B3. The unique
positive definite solution is

𝑋
+
≈(

(

0.9301 −0.0443 −0.0367 −0.0202 −0.0411 −0.0521

−0.0443 0.9104 −0.0395 −0.0271 −0.0603 −0.0781

−0.0367 −0.0395 0.9234 −0.0110 −0.0566 −0.0430

−0.0202 −0.0271 −0.0110 0.9755 −0.0224 −0.0374

−0.0411 −0.0603 −0.0566 −0.0224 0.9064 −0.0858

−0.0521 −0.0781 −0.0430 −0.0374 −0.0858 0.8486

)

)

. (33)

The numerical results are listed in Table 3.

Example 14. In this test, the matrices 𝐴 and 𝐵 are provided
with the following forms:

𝐴 =
1

10
𝐼
𝑛
+
1

2𝑛
𝑅
𝑛
, 𝐵 =

1

20
𝐼
𝑛
+
1

𝑛2
𝑆
𝑛
, (34)

where 𝐼
𝑛
is 𝑛 × 𝑛 identity matrix and 𝑅

𝑛
= (𝑟
𝑖𝑗
)
𝑛×𝑛

and 𝑆
𝑛
=

(𝑠
𝑘𝑙
)
𝑛×𝑛

are randomly generated with entries 𝑟
𝑖𝑗
∈ (0, 1) and

𝑠
𝑘𝑙
∈ (−1, 1). For different matrix dimension (DIM) 𝑛, the

numerical results are reported in Table 4.

From the above experiments, we find that Algorithm 1
has an advantage in the number of iterations and CPU time.
Although Algorithm 4 performs worse than B2, it performs
better than B1. In Example 14, we can see that the iterations of
Algorithms 1 and 4 are invariant with the dimension, which
are the same as the performance of B1 and B2. In a word, our
algorithms are promising.

5. Conclusion

In this paper, we propose two inversion-free iterative algo-
rithms for obtaining themaximal positive definite solution of
the equation𝑋 +𝐴𝐻𝑋−1𝐴 + 𝐵𝐻𝑋−1𝐵 = 𝐼. We prove that the
sequences generated by the proposed iterative schemes are
monotonically increasing and bounded above. Some numer-
ical results are also reported in the paper, which confirm the
good theoretical properties of our approach. Although we
prove that the sequence {𝑌

𝑘
} generated by Algorithms 1 and

4 with the initial matrix 𝑌
0
= 𝐼 converges to the minimal

positive definite solution of (3) (or the maximal positive
definite solution of (1)), we do not yet give the analysis on
the convergence rate of the two methods, which is our work
in the future.
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