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For nonlinear differential-algebraic-equation subsystems, whose index is one and interconnection input is locally measurable,
the problem of invertibility is discussed and the results are applied to the power systems component decentralized control. The
inverse systems’ definitions for such a class of differential-algebraic-equation subsystems are put forward. A recursive algorithm is
proposed to judge whether the controlled systems are invertible. Then physically feasible 𝛼-order integral right inverse systems
are constructed, with which the composite systems are linearizaed and decoupled. Finally, decentralized excitation and valve
coordinative control for one synchronous generator within multimachine power systems are studied and the simulation results
based on MATLAB demonstrate the effectiveness of the control scheme proposed in this paper.

1. Introduction

A number of physical systems such as power systems,
economic systems, and constrained robot systems are mathe-
matically described by differential-algebraic-equation (DAE)
systems [1]. Various concepts, theories, and methods of
ordinary-differential-equation (ODE) systems are extended
and great progress has been made for DAE systems [2–6]. In
[2], for linear DAE systems with input saturation, the com-
posite nonlinear feedback control problem was considered
through introducing the generalized Lyapunov function. In
[3], the state-feedback stabilization is considered for nonlinear
discrete DAE large-scale control systems using Lyapunov
matrix equation. 𝐻

∞
Observer was designed for a class

of continuous time nonlinear DAE systems in [4], where
necessary and sufficient condition for observer existence was
established under the worst conditions. In [5], the traditional
Kalman filter was improved and a recursive state estimation
method is presented for nonlinear DAE systems. In [6], the
output feedback compensation problem was considered by

coupling the design of controller and observer instead of
separation principle.

In order to provide a measure of the difference between
DAE systems and ODE systems, the notion of differential
index is commonly used, which corresponds to theminimum
number of differentiations of the algebraic equations required
to obtain equivalentODE systems [7]. AmongnonlinearDAE
systems, the systems of index one represent an important
class of physical systems such as power systems and electric
circuits. In [8], the Lyapunov method of nonlinear ODE
systems was extended to nonlinear DAE systems of index one
and the sufficient conditions of stability are presented. In [9],
still for such a class of nonlinear DAE systems, an explicit
constructing method was given and the state space order-
reduction realization was achieved with application to power
systems control.

Inmost existing results, the controlled systems are treated
as isolated ones. However, in many practical applications,
controlled systems are subsystems within large-scale systems
and there exist mutual influence and constraint between the
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controlled systems and the rest of the large-scale systems.
Typically, a so-called “power systems component structural
model” put forward in [10, 11] for power systems component
decentralized control problem just falls into this category.
At the same time, it should be noted that DAE subsystems
control problems are commonnot only for power systems but
also for large-scale systems of others areas [12]. As far as the
authors know, the research about nonlinear DAE subsystems
is seldom found.

Among various nonlinear control methods, the invert-
ibility of systems plays an important role in linearization and
decoupling of general nonlinear systems (not restricted to
affine form) [13]. The research on invertibility of nonlinear
DAE systems can be traced to [14, 15], where the invertibility
of continuous and discrete DAE systems was discussed,
respectively.

In this paper, for nonlinear DAE systems whose index
is one and interconnection inputs are locally measurable
and bounded, the invertibility is studied and the results are
applied to power systems component decentralized control.
The structure of this paper is as follows. Firstly, the definitions
of unit right inverse systems and 𝛼-order integral right
inverse systems are given. Secondly, a recursive algorithm is
proposed with which to determine whether the controlled
nonlinear DAE subsystems are invertible. If the controlled
systems are invertible, physically realizable 𝛼-order integral
right inverse systems are constructed through state-feedback
and dynamic compensation, with which the decoupling and
linearization of the composite systems are both achieved
so that various linear control methods and theories can be
applied. At last, decentralized excitation and valve coordina-
tive controller are designed for one synchronous generator
set within multimachine power systems. The simulation is
conducted based on MATLAB and the simulation results
illustrate the effectiveness of the proposed scheme in this
paper.

2. System Description and
Problem Formulation

We consider general nonlinear DAE subsystems as follows:
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Throughout this paper, the following basic hypotheses are
made for (1).

(H1) The Jacobian matrix of 𝑔(𝑥, 𝑧, 𝑢, V) with respect to 𝑧
has constant full rank on 𝑈

0
:

rank(
𝜕𝑔

𝜕𝑧

) = 𝑙, ∀ (𝑥, 𝑧, 𝑢, 𝑦, V) ∈ 𝑈
0
, (2)

that is, (1) is of index one.
(H2) The interconnection input V and its sufficient order

derivatives are locally measurable and bounded.

Remark 1. Above basic hypotheses hold for power systems
components under normal operating conditions.

In sequel we will give inverse systems definition of
nonlinear DAE subsystems (1), including unit right inverse
systems and 𝛼-order integral right inverse systems.

The controlled output 𝑦(𝑡) of nonlinear DAE subsystems
(1) is determined together by the interconnection input V,
manipulated input 𝑢(𝑡) and initial conditions. From the
functional point of view, nonlinear DAE subsystems (1) can
be regarded as an operator (marked by 𝜃) which maps the
manipulated input 𝑢(𝑡), and interconnection input V(𝑡) to
control output 𝑦(𝑡), that is,

𝑦 = 𝜃 (𝑢, V) . (3)

Definition 2. Suppose there exist systemsΣwhich bear input-
output mapping relationship: 𝑦 = 𝜃(𝑟, V), where the input
𝑟(𝑡) = (𝑟

1
, . . . , 𝑟

𝑚
)
𝑇 is a smooth vector. For nonlinear DAE

subsystems (1), if 𝑢(𝑡) = 𝑦(𝑡), we have 𝑦(𝑡) = 𝑟(𝑡), and then
the systems Σ are the unit right inverse systems of nonlinear
DAE subsystems (1). We call systems (1) are invertible.

Definition 3. Suppose there exist systems Σ
𝛼
which bear

input-output mapping relationship: 𝑦 = 𝜃
𝛼
(𝜑, V) where the
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𝑇 is

a continuous vector. For nonlinear DAE subsystems (1), if
𝑢(𝑡) = 𝑦(𝑡), we have 𝑦(𝛼) = 𝜑 where 𝑦(𝛼) = (𝑦(𝛼1)

1
, . . . , 𝑦

(𝛼𝑚)

𝑚
)
𝑇

(i.e., 𝑦
𝑖
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= 𝜑
𝑖
, 𝑖 = 1, . . . , 𝑚), and then the systems Σ are the

unit right inverse systems of nonlinear DAE subsystems (1).
We call systems (1) are invertible.

The aim of this paper is to study the invertibility of
nonlinear DAE subsystems (1) satisfying (H1) and (H2). The
linearization and decoupling of the composite systems can
be achieved if the controlled systems (1) are invertible. As a
result, various linear control theorems and methods can be
applied.

3. Recursive Algorithm and Invertibility of
Nonlinear DAE Subsystems

We will give a recursive algorithm, with which to determine
the invertibility of nonlinear DAE subsystems (1).
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From (2) we know that (𝜕𝑔/𝜕𝑧)−1 exist on𝑈
0
. We use the

following operator 𝐸
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to denote the Jacobian matrix of vector function
𝐹(𝑥, 𝑧, 𝑢, 𝑦, . . . , 𝑦

(𝑘)

, V, . . . , V(𝑘)) with respect to some variable
𝜉 ∈ (𝑥, 𝑢, V) under the algebraic constraint 0 = 𝑔(𝑥, 𝑧, 𝑢, V).
For the limit of space, only the procedure of step 𝑘 is
presented.

Step 𝑘 (𝑘 = 1, 2, . . .). Suppose that, until to step 𝑘, we can
get a sequence of nonnegative integers 𝛾
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Definition 5. The relative order 𝜌 for the nonlinear DAE
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The main results of this paper can be concluded into the
following theorems.

Theorem 6. Consider the nonlinear DAE subsystems (1) with
relative order 𝜃. If 𝜃 < ∞, then there exist unit right inverse
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(13)

From (11) we have ̇
�̂� = 𝑓(𝑥, �̂�, 𝑦, V), 0 = 𝑔(𝑥, �̂�, 𝑦, V) as well

as (𝑥(𝑡
0
), �̂�(𝑡

0
)) = (𝑥(𝑡

0
), 𝑧(𝑡

0
)); thus, we have (𝑥, �̂�) = (𝑥, 𝑧).

Define 𝑦
0

= Π̂
0,1
𝑦, 𝑦

0
= Π̂

0,2
𝑦 and let 𝑦

𝑘
=

Π̂
𝑘,1
𝑦
𝑘−1
, 𝑦

𝑘
= Π̂

𝑘,2
𝑦
𝑘−1
, 𝑘 = 1, . . . , 𝜃 − 1. It can be proved

that if the manipulated input 𝑟(𝑡) ∈ 𝐶
𝑛

(𝑅) of systems (11)
satisfies ℎ

𝛼
(𝑥, �̂�, 𝑦, 𝑟, . . . , 𝑟

(𝛼)

, V
𝜃
) = 0 and

𝐻
𝑘
(𝑥, 𝑧, 𝑢, 𝑟, . . . , 𝑟

(𝑘)

, V
𝑘
)

= 𝐻
𝑘
(𝑥, 𝑧, 𝑢, 𝑦, . . . , 𝑦

(𝑘)

, V
𝑘
) , 𝑘 = 1, . . . , 𝜃 − 1

(14)

as well as initial conditions satisfying

̂
ℎ
𝑘,2
(𝑥 (𝑡

0
) , 𝑧 (𝑡

0
) , 𝑢 (𝑡

0
) , 𝑟 (𝑡

0
) , . . . , 𝑟

(𝑘)

(𝑡
0
) , V

𝑘
(𝑡
0
))

=
̂
ℎ
𝑘,2
(𝑥 (𝑡

0
) , 𝑧 (𝑡

0
) , 𝑢 (𝑡

0
) , 𝑦 (𝑡

0
) , . . . ,

𝑦
(𝑘)

(𝑡
0
) , V

𝑘
(𝑡
0
)) ,

(15)

then we have 𝑦(𝑡) = 𝑟(𝑡) where 𝑦(𝑡) is the controlled
output of nonlinear DAE subsystems (1). From Definition 2,
systems (11) are unit right inverse systems of nonlinear DAE
subsystems (1). This completes the proof.

Since (𝑥, �̂�) = (𝑥, 𝑧), unit right inverse systems (11) can
be realized by directly feedbacking states (𝑥, 𝑧) of nonlinear
DAE subsystems (1).The composite systemswill be linearized
and decoupled when (11) is series connected before (1).

It should be noted that there exist differential operator
in above realization (11), which is difficult to be realized in
physics. For this we have the following theorem.

Theorem 7. Consider the nonlinear DAE subsystems (1) with
relative order 𝜃. If 𝜃 < ∞, then there exist 𝛼-order integral right
inverse systems of nonlinear DAE subsystems (1).

Proof. Replace 𝑦 of (10) with 𝑟:

𝑢 = ℎ
−1

𝜃
(𝑥, 𝑧, 𝑟, . . . , 𝑟

(𝜃)

, V, . . . , V
(𝜃)

) . (16)

Let the highest and lowest order derivative of 𝑟
𝑖
(𝑖 = 1, . . . , 𝑚)

are 𝑟(𝛽𝑖)
𝑖

and 𝑟(𝛼𝑖)
𝑖

, respectively. Define

𝜑 = (𝜑
1
, . . . , 𝜑

𝑚
)
𝑇

= (𝑟
(𝛼1)

1
, . . . , 𝑟

(𝛼𝑚)

𝑚
)

𝑇

,

𝜉
𝑖
= (𝑟

(𝛽𝑖)

𝑖
, 𝑟
(𝛽𝑖+1)

𝑖
, . . . , 𝑟

(𝛼𝑖−1)

𝑖
)

𝑇

, 𝑖 = 1, . . . , 𝑚

(17)

and construct the following systems Σ
𝛼
:

̇
𝜉
𝑖
= 𝐴

𝑖
𝜉
𝑖
+ 𝐵

𝑖
𝜑
𝑖
, 𝑖 = 1, . . . , 𝑚

𝑦 = ℎ
−1

𝛼
(𝑥, 𝑧, 𝜉, 𝜑, V

𝛼
) ,

(18)

where

𝐴
𝑖
= (

0 1

d d
d 1

0

)

(𝛼𝑖−𝛽𝑖)×(𝛼𝑖−𝛽𝑖)

𝐵
𝑖
= (

0

...
0

1

)

(𝛼𝑖−𝛽𝑖)×1

,

𝜉 = (𝜉
𝑇

1
, . . . , 𝜉

𝑇

𝑚
)

𝑇

, V
𝜃
= (V

𝑇

, . . . , (V
(𝜃)

)
𝑇

)

𝑇

.

(19)

If 𝑟(𝑡) ∈ 𝐶𝜃(𝑅) of (18) satisfies

ℎ
𝜃
(𝑥, 𝑧, 𝑢, 𝑟, . . . , 𝑟

(𝜃)

, V
𝜃
) = 0,

𝐻
𝑘
(𝑥, 𝑧, 𝑢, 𝑟, . . . , 𝑟

(𝑘)

, V
𝑘
)

= 𝐻
𝑘
(𝑥, 𝑧, 𝑢, 𝑦, . . . , 𝑦

(𝑘)

, V
𝑘
) , 𝑘 = 1, . . . , 𝜃 − 1.

(20)

Meanwhile initial conditions satisfy

̂
ℎ
𝑘,2
(𝑥 (𝑡

0
) , 𝑧 (𝑡

0
) , 𝑢 (𝑡

0
) , 𝑟 (𝑡

0
) , . . . , 𝑟

(𝑘)

(𝑡
0
) , V

𝑘
(𝑡
0
))

=
̂
ℎ
𝑘,2
(𝑥 (𝑡

0
) , 𝑧 (𝑡

0
) , 𝑢 (𝑡

0
) , 𝑦 (𝑡

0
) , . . . ,

𝑦
(𝑘)

(𝑡
0
) , V

𝑘
(𝑡
0
))

(21)

when 𝜑 = (𝑟
(𝛼1)

1
, . . . , 𝑟

(𝛼𝑚)

𝑚
)
𝑇, 𝜉

𝑖
(𝑡
0
) =

(𝑟
(𝛽𝑖)

𝑖
(𝑡
0
), . . . , 𝑟

(𝛼𝑖−1)

𝑖
(𝑡
0
))
𝑇

(𝑖 = 1, . . . , 𝑚), we have output
of nonlinear DAE subsystems satisfies 𝑦(𝛼𝑖)

𝑖
(𝑡) = 𝜑

𝑖
(𝑡), 𝑖 =

1, . . . , 𝑚 (where 𝜑 is new control input to be designed).
By Definition 3, systems (18) are 𝛼-order integral right
inverse systems realized by state-feedback and dynamic
compensation. This completes the proof.

There are two possible difficulties existing in realization of
inverse systems:Theone hand, the proposedmethod depends
on the exact model of the controlled systems and sensitive
to the perturbation of parameters or variation of structure.
On the other hand, analysis solution of manipulated control
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may be difficult to be obtained. Inspired by [16], we may
use the excellent approximation ability of Neural Networks
to overcome the imprecise model and unknown analysis
solution of manipulated control. This will be the next work
we will undertake.

4. Decentralized Excitation and Valve
Coordinative Control of Synchronous
Generator

Excitation and valve coordinative control is studied for one
synchronous generator based on the scheme proposed in this
paper. For the sake of simplicity, the subscript 𝑖 is still omitted.

The mathematical model of synchronous generator exci-
tation and valve coordinative control is described by the
following two-input two-output nonlinear DAE subsystems
[10]:

̇
𝛿 = 𝑓

1
(⋅) = 𝜔 − 𝜔

0

�̇� = 𝑓
2
(⋅) =

𝜔
0

𝐻

{𝑃
𝐻
+ 𝐶

𝑀𝐿
𝑃
𝑚0
−

𝐷

𝜔
0

(𝜔 − 𝜔
0
)

− [𝐸


𝑞
+ (𝑥

𝑞
− 𝑥



𝑑
) 𝐼

𝑑
] 𝐼

𝑞
}

�̇�


𝑞
= 𝑓

3
(⋅) =

1

𝑇


𝑑0

[𝐸
𝑓
− 𝐸



𝑞
− (𝑥

𝑞
− 𝑥



𝑑
) 𝐼

𝑑
]

�̇�
𝐻
= 𝑓

4
(⋅) =

1

𝑇
𝐻Σ

(−𝑃
𝐻
+ 𝐶

𝐻
𝑃
𝑚0
+ 𝐶

𝐻
𝑈
𝑐
)

𝑔 (𝑥, 𝑧, 𝑢, V) = 0,

(22)

where

𝑔 (𝑥, 𝑧, 𝑢, V)

=

(

(

(

(

(

(

(

(

𝑃
𝑡
− [𝐸



𝑞
+ (𝑥

𝑞
− 𝑥



𝑑
) 𝐼

𝑑
] 𝐼

𝑞
+ 𝑟

𝑎
(𝐼

2

𝑑
+ 𝐼

2

𝑞
)

𝜃
𝑈
− 𝛿 + arc 𝑐𝑡𝑔

𝑥
𝑞
𝐼
𝑞
− 𝑟

𝑎
𝐼
𝑑

𝐸


𝑞
− 𝑥



𝑑
𝐼
𝑑
− 𝑟

𝑎
𝐼
𝑞

𝐼
𝑡
− √𝐼

2

𝑑
+ 𝐼

2

𝑞

𝑄
𝑡
− 𝐸



𝑞
𝐼
𝑑
+ 𝑥

𝑞
𝐼
2

𝑞
+ 𝑥



𝑑
𝐼
2

𝑑

)

)

)

)

)

)

)

)

,

(23)

where the differential variables 𝑥 = (𝛿, 𝜔, 𝐸
𝑞
, 𝑃

𝐻
)
𝑇 are relative

power angle betweenG1 andG4, rotate speed deviation of G1,
𝑞-axis transient potential, and the high pressure mechanical
power, respectively, the algebraic variables 𝑧 = (𝑃

𝑡
, 𝜃

𝑈
, 𝐼
𝑑
, 𝐼
𝑞
)
𝑇

are active power, the angle of voltage, the 𝑑-axis current, and
the 𝑞-axis current, respectively, and the interconnection input
V = (𝐼

𝑡
, 𝑄

𝑡
)
𝑇 are the generator stator current and the reactive

power, respectively. The manipulated input 𝑢 = (𝐸
𝑓
, 𝑈

𝑐
)
𝑇

are induction electromotive force and the governor position,
respectively. The controlled output 𝑦 is chosen as voltage and
rotate speed deviation, respectively:

𝑦 = ℎ (⋅) = (

𝑉
𝑡

𝜔
) = (

√𝑃
2

𝑡
+ 𝑄

2

𝑡

𝐼
𝑡

𝜔

) . (24)

The others are the systems parameters.
The Jacobian matrix of 𝑔(𝑥, 𝑧, 𝑢, V) with respect to 𝑧 is

𝜕𝑔

𝜕𝑧

=

(

(

(

(

(

(

1 0 (𝑥
𝑞
−𝑥



𝑑
) 𝐼

𝑞
+2𝑟

𝑎
𝐼
𝑑
(𝑥

𝑞
−𝑥



𝑑
) 𝐼

𝑑
+2𝑟

𝑎
𝐼
𝑞

0 1

−1

1 + 𝐴
2

𝜕𝐴

𝜕𝐼
𝑑

−1

1 + 𝐴
2

𝜕𝐴

𝜕𝐼
𝑞

0 0

𝐼
𝑑

𝐼
𝑡

−

𝐼
𝑞

𝐼
𝑡

0 0 −𝐸


𝑞
+ 2𝑥



𝑑
𝐼
𝑑

2𝑥
𝑞
𝐼
𝑞

)

)

)

)

)

)

≜ (

1 0 𝑎
13

𝑎
14

0 1 𝑎
23

𝑎
24

0 0 𝑎
33

𝑎
34

0 0 𝑎
43

𝑎
44

),

(25)

where 𝐴 = (𝑥
𝑞
𝐼
𝑞
− 𝑟

𝑎
𝐼
𝑑
)/(𝐸



𝑞
− 𝑥



𝑑
𝐼
𝑑
− 𝑟

𝑎
𝐼
𝑞
). It can be verified

that under the normal operating condition, the following
equation det(𝜕𝑔/𝜕𝑧) = −(1/𝐼

𝑡
)(2𝑥

𝑞
𝐼
𝑑
𝐼
𝑞
+𝐸



𝑞
𝐼
𝑞
−2𝑥



𝑑
𝐼
𝑑
𝐼
𝑞
) ̸= 0

holds, that is, matrix 𝜕𝑔/𝜕𝑧 is of full rank and generator is of
index one.

From (22) and (23), we can get the differential equation
of 𝑧 as follows:

�̇� = −(

𝜕𝑔

𝜕𝑧

)

−1

(

𝜕𝑔

𝜕𝑥

)𝑓 − (

𝜕𝑔

𝜕𝑧

)

−1

(

𝜕𝑔

𝜕V
)

̇V, (26)

where

(

𝜕𝑔

𝜕𝑧

)

−1

= (

1 0 𝑏
1

𝑐
1

0 1 𝑏
2

𝑐
2

0 0 𝑏
3

𝑐
3

0 0 −𝑎
−1

33
𝑎
43

1

) ,

𝑏
1
= −𝑎

−1

33
𝑎
13
− 𝑎

−1

33
𝑎
43
𝑐
1
, 𝑏

2
= −𝑎

−1

33
𝑎
23
− 𝑎

−1

33
𝑎
43
𝑐
2
,

𝑏
3
= 1 − 𝑎

−1

33
𝑎
43
𝑐
3
, 𝑐

1
= −𝑐

−1

4
𝑎
14
+ 𝑎

−1

33
𝑐
−1

4
𝑎
13
𝑎
34
,

𝑐
2
= −𝑐

−1

4
𝑎
24
+ 𝑎

−1

33
𝑐
−1

4
𝑎
23
𝑎
34
,

𝑐
3
= 𝑐

−1

4
𝑎
34
, 𝑐

4
= 𝑎

44
− 𝑎

−1

33
𝑎
34
𝑎
43
.

(27)
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Figure 1: Two-area four-machine power system.

The Jacobian matrix of 𝑔 with respect to 𝑥 and interconnec-
tion input V are

𝜕𝑔

𝜕𝑥

=
(

(

0 0 −𝐼
𝑞

0

−1 0

−1

1 + 𝐴
2

𝜕𝐴

𝜕𝐸


𝑞

0

0 0 0 0

0 0 −𝐼
𝑑

0

)

)

,

𝜕𝑔

𝜕V
= (

0 0

0 0

1 0

0 1

) .

(28)

According to the recursive algorithm, the relative degree
of (22) is 2 and the solution of 𝑢 can be derived as follows:

𝐸
𝑓
=

𝑇


𝑑0

−𝐼
𝑞
− 𝑐

1
𝐼
𝑑

× {

1

𝑃
𝑡

[

1

𝐼
𝑡

√𝑃
2

𝑡
+ 𝑄

2

𝑡
(𝐼

2

𝑡
̇𝑦
1
+ ̇𝐼

𝑡
√𝑃

2

𝑡
+ 𝑄

2

𝑡
) − 𝑄

𝑡
�̇�
𝑡
]

+ 𝑏
1

̇𝐼
𝑡
+ 𝑐

1
�̇�
𝑡
} + 𝐸



𝑞
+ (𝑥

𝑑
− 𝑥



𝑑
) 𝐼

𝑑
,

𝑈
𝑐
=

𝜔
0
𝐶
𝐻

𝐻𝑇
𝐻Σ

× { ̈𝑦
2
−

𝜔
0

𝐻𝑇
𝐻Σ

(−𝑃
𝐻
+ 𝐶

𝐻
𝑃
𝑚0
)

−

𝐷

𝜔
0

𝑓
2
− 𝐼

𝑞
𝑓
3
− (𝑥

𝑞
− 𝑥



𝑑
) 𝑐

3
𝐼
𝑑
𝐼
𝑞
𝑓
3

+ (𝑥
𝑞
− 𝑥



𝑑
) 𝑏

3
𝐼
𝑞

̇𝐼
𝑡
+ (𝑥

𝑞
− 𝑥



𝑑
) 𝑐

3
𝐼
𝑞
�̇�
𝑡

− 𝐸


𝑞
𝐼
𝑑
𝑓
3
+ 𝑎

−1

33
𝑎
43
𝐸


𝑞

̇𝐼
𝑡
+ 𝐸



𝑞
�̇�
𝑡

− (𝑥
𝑞
− 𝑥



𝑑
) 𝐼

2

𝑑
𝑓
3
+ 𝑎

−1

33
𝑎
43
(𝑥

𝑞
− 𝑥



𝑑
) 𝐼

𝑑

̇𝐼
𝑖

+ (𝑥
𝑞
− 𝑥



𝑑
) 𝐼

𝑑
�̇�
𝑡
} .

(29)

According to (18), the (1, 2)-order integral right inverse
systems for synchronous generator (22) can be constructed,
with which the decoupling and linearization of the composed
systems can be achieved.

The simulation is conducted based on a two-area four-
machine power systems (as shown in Figure 1).

The parameters of each generator and transformer are
the same and the other parameters can be found in [17].
Systems operating condition is as follows: at first systems
operate under double circuit stable state, then a three-phase
symmetrical earth fault happens at 𝑘 point at line 7-8 on
0.5 second and the ground reactance of the failure point is
0.0001 pu.The fault is cut on 0.65 second and the systems
return to original operating condition. Generators G1, G3
both adopted inverse excitation and valve controller and the
closed-loop 𝜑

1
, 𝜑

2
adopted 𝑃𝐼𝐷 controller where 𝜑

1
only

adopts proportion part equal to 10 and 𝜑
2
adopt proportion

part equal to 30 and differential part equal to 5. The other
generators adopt traditional linear controller. The simulation
is based-on MATLAB and the results are shown in Figure 2.

As shown in Figure 2, when generators G1 and G3 both
equipped excitation and valve coordinative inverse controller,
both interarea oscillation and area oscillation are improved
dramatically.

With noting that 𝑥
𝑑
, 𝑥

𝑞
cannot be measured online. To

overcome this difficulty, we can adopt the method proposed
in [16] to replace the 𝑥

𝑑
, 𝑥

𝑞
with local measured signals.

5. Conclusion

In this paper, the problem of invertibility for a special class
of nonlinear DAE subsystems is studied. The definitions
of inverse systems for nonlinear DAE subsystems are put
forward. Then a recursive algorithm is given, with which
to determine the invertibility of nonlinear DAE subsystems.
Physically realizable right inverse systems are constructed
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Figure 2: Simulation results of G1 and G3.
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through state-feedback and dynamic compensation, with
which the decoupling and linearization of composite systems
are achieved so that various linear control theorems and
methods can be applied. Not restricted to power systems
components decentralized control, the result of this paper
is also meaningful to decentralized control of other areas of
large-scale systems.
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