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This paper introduces the novel concept of Affine Tensor Product (TP) Model and the corresponding model transformation
algorithm. Affine TP Model is a unique representation of Linear Parameter Varying systems with advantageous properties
that makes it very effective in convex optimization-based controller synthesis. The proposed model form describes the affine
geometric structure of the parameter dependencies by a nearly minimum model size and enables a systematic way of geometric
complexity reduction. The proposed method is capable of exact analytical model reconstruction and also supports the sampling-
based numerical approach with arbitrary discretization grid and interpolation methods. The representation conforms with the
latest polytopic model generation and manipulation algorithms. Along these advances, the paper reorganizes and extends the
mathematical theory of TP Model Transformation. The practical merit of the proposed concept is demonstrated through a
numerical example.

1. Introduction

The importance of polytopic system descriptions is beyond
doubt since the development of influential polytopic model-
based analysis and synthesis methods initially introduced by
Boyd et al. in [1]. These approaches offer a simple way for
stability verification and robust or gain-scheduling controller
design via LinearMatrix Inequality (LMI) based methods for
polytopic Linear Parameter Varying (LPV) and quasi-LPV
(qLPV) models.

TPModel Transformation was introduced as a numerical
approach to constructing polytopic TP forms of LPV/qLPV
models [2] serving as an alternative to analytical procedures
such as the sector nonlinearity technique [3]. Furthermore,
the separated parameter dependencies within the TP struc-
ture can be exploited during the controller design extending
the polytopic model-based control analysis and synthesis
methods [4, 5].

In the past decade, TP Model Transformation has been
matured and became an extensive framework within poly-
topic model-based control [2, 3, 6]. Former related works
(e.g., [7–11]) obtained the polytopic TP Model through the
HOSVD-based intermediate TP form [12], although the

resulting polytopic model does not really benefit from the
properties of the HOSVD-based form such as complexity
reduction capability and uniqueness.

A recent paper of the authors [13] established the affine
geometric background of polytopic TPModel generation and
proposed a direct way to determine the polytopic structures.
First, it obtained the affine hulls of the subtensors of the
discretized tensor and then the enclosing polytopes were
established on the affine subspaces.

The paper proposes the Affine TP Model that sub-
stantially improves the polytopic TP Model generation and
manipulation methodology by combining the affine geomet-
ric interpretations [13] with the benefits of higher-order SVD
(HOSVD) based TP Model [2, 12, 14].

Consolidating the affine geometry-based approach, the
main contribution of this paper is the introduction of a new
intermediate TP Model (like the HOSVD-based form) that
provides a unique description of affine geometric properties
serving as direct input for polytopic model construction
methods (see [13, 15–17]). Furthermore, it reserves all the ben-
efits of theHOSVD-based form: similar uniqueness, compact
representation, and capability of complexity reduction. We
refer to the new intermediate form as Affine TP Model.
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The next section discusses the abbreviations and nota-
tions used in the paper. Section 3 recalls some concepts of ten-
sor algebra related to polytopic TP modeling; then Section 4
discusses the polytopic form of univariate functions showing
its relevance to affine geometrics and introduces the affine
SVD. In Section 5, affine SVD is applied to obtain the Affine
TP Model. Section 6 describes the application to generate
and manipulate polytopic TP Models; then Section 7 shows
a simple numerical example. Finally, Section 8 concludes the
paper.

2. Notations

The following abbreviations and notations are used within
this paper:

(q)LPV: (quasi)Linear Parameter Varying

LMI: Linear Matrix Inequality

SVD: Singular Value Decomposition

HOSVD: higher-order singular value decomposition

TP Model: Tensor Product Model𝑎, 𝐴, 𝑏, 𝐵, . . .: scalar values
a, b, . . .: vectors
A,B, . . .: matrices𝐻: a Hilbert space, in general

a, b, . . .: elements of𝐻, in general

0𝑎×𝑏, 1𝑎×𝑏: 𝑎 × 𝑏 size matrix of zeros/ones

E𝑎×𝑏: 𝑎 × 𝑏 size identity matrix𝛿𝑖𝑗: dirac-delta (𝛿𝑖𝑖 = 1, 𝛿𝑖𝑗 = 0 if 𝑖 ̸= 𝑗)
A,B, . . .: sets on R𝑎, 𝐻, . . .
A,B, . . .: tensors
A(𝑛): 𝑛-mode unfold matrix of tensorA

A(𝑛),B(𝑛): indexing of different matrices, tensors

A×𝑛U: 𝑛-mode tensor product

A
𝑁⊠
𝑛=1

U(𝑛): multiple tensor product as

A×1U(1) ⋅ ⋅ ⋅ ×𝑁U(𝑁)𝑥, 𝑥: lower and upper bounds for the 𝑥 scalar
Co(⋅ ⋅ ⋅ ): convex hull (set of all convex comb.).

3. Basic Concepts

The section briefly discusses the related concepts of tensor
algebra, polytopic LPV/qLPV modeling, and the goals of
TP Model Transformation introducing the notations that are
used in the followings.

3.1. Tensor Algebra. First, the key definitions and properties
of tensor algebra of De Lathauwer et al. [18] are recalled and
extended to Hilbert spaces by considering multidimensional
arrays on a Hilbert space denoted by𝐻 in general.

They can be multiplied with real matrices along the 𝑛th
index that is called 𝑛-mode tensor product.

Definition 1 (𝑛-mode tensor product). The 𝑛-mode product
of a tensorA ∈ 𝐻𝐼1×⋅⋅⋅×𝐼𝑁 and the matrix U ∈ R𝐿×𝐼𝑛 , denoted
byA×𝑛U, is a tensor with size 𝐼1×⋅ ⋅ ⋅×𝐼𝑛−1×𝐿×𝐼𝑛+1×⋅ ⋅ ⋅×𝐼𝑁
that is given by(A×𝑛U)𝑖1,...,𝑖𝑛−1,𝑙,𝑖𝑛+1,...,𝑖𝑁 = ∑

𝑖𝑛

a𝑖1 ,...,𝑖𝑁𝑢𝑙,𝑖𝑛 . (1)

The definition implies the following properties.

Lemma 2 (commutativity of 𝑛 ̸= 𝑙-mode tensor products).
Given the tensor A ∈ 𝐻𝐼1×⋅⋅⋅×𝐼𝑁 and the matrices U ∈ R𝐽×𝐼𝑛 ,
V ∈ R𝐾×𝐼𝑙 (𝑛 ̸= 𝑙), one has(A×𝑛U) ×𝑙 V = (A×𝑙 V) ×𝑛U. (2)

Lemma 3 (multiple 𝑛-mode tensor products). Given the
tensorA ∈ 𝐻𝐼1×⋅⋅⋅×𝐼𝑁 and the matrices U ∈ R𝐽×𝐼𝑛 , V ∈ R𝑀×𝐽,
one has (A×𝑛U) ×𝑛 V = A×𝑛 (VU) . (3)

The inner product and norm are defined.

Definition 4 (inner product and norm of tensors). The inner
product ⟨A,B⟩ of tensorsA,B ∈ 𝐻𝐼1×⋅⋅⋅×𝐼𝑁 is defined as⟨A,B⟩ = ∑

𝑖1

⋅ ⋅ ⋅∑
𝑖𝑁

⟨a𝑖1 ,...,𝑖𝑁 , b𝑖1 ,...,𝑖𝑁⟩ . (4)

Then the Frobenius norm of a tensor A is defined as ‖A‖ =√⟨A,A⟩.
To perform other matrix operations (e.g., SVD) along the𝑛th index, the tensor can be unfolded to amatrix and restored

back to tensor.

Definition 5 (𝑛-mode unfold tensor). Assume an 𝑁th-order
tensor A ∈ 𝐻𝐼1×⋅⋅⋅×𝐼𝑁 , where the elements can be described
on an orthonormal basis with finite 𝑅 elements; then its 𝑛-
mode matrix unfolding is denoted by A(𝑛) with a size of 𝐼𝑛 ×(𝐼𝑛+1 ⋅ ⋅ ⋅ 𝐼𝑁𝑅 𝐼1 ⋅ ⋅ ⋅ 𝐼𝑛−1) and it contains the 𝑟th coordinate of
a𝑖1 ,...,𝑖𝑁 element at the position (𝑖𝑛, 𝑗𝑛), where

𝑗𝑛 = 𝑟 + 𝑁∑
𝑙=1,𝑙 ̸=𝑛

(𝑖𝑙 − 1) 𝑅 𝑙−1∏
𝑚=1,𝑚 ̸=𝑛

𝐼𝑚. (5)

3.2. Hilbert-Space Valued Multivariate Functions. Consider
the c: 𝑋 → 𝐻 function, where 𝑋 is a hyperrectangle on the
real numbers 𝑋 = [𝑥1, 𝑥1] × ⋅ ⋅ ⋅ × [𝑥𝐿, 𝑥𝐿] ⊂ R𝐿 and 𝐻 is a
Hilbert space in general. The measure of 𝐴 ⊆ 𝑋 set will be
denoted as 𝑉(𝐴) = ∫

𝐴
𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝐿.
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Definition 6 (inner product and norm). The inner product of
b, c:𝑋 → 𝐻 functions: we will use the following quantity:⟨b, c⟩ = 1𝑉 (𝑋) ∫x∈𝑋 ⟨b (x) , c (x)⟩ 𝑉 (𝑑x) ; (6)

then their norms are as follows: ‖c‖ = √⟨c, c⟩.
Along the paper, we will assume that for the considered

functions this norm exists and it is finite without mentioning
it.

The decomposition

c (x) = 𝐼∑
𝑖=1

c𝑖𝑓𝑖 (x) ; (7)

will be called
(i) orthonormal, if theweighting functions are orthonor-

mal as ⟨𝑓𝑖, 𝑓𝑗⟩ = 𝛿𝑖𝑗 ∀𝑖, 𝑗 = 1 ⋅ ⋅ ⋅ 𝐼,
(ii) homogeneous, if 𝑓𝐼(x) = 1 ∀x ∈ X,
(iii) polytopic, if the 𝑓𝑖 functions denote convex combina-

tions as
𝐼∑
𝑖=1

𝑓𝑖 (x) = 1, 𝑓𝑖 (x) ≥ 0 ∀𝑖 ∀x ∈ 𝑋. (8)

Then, in geometric sense, the {c1, . . . , c𝐼} vertices con-
struct an enclosing polytope for the image of c(x). Its elements
are inside the polytope because they can be described as a
convex combination of the vertices. In these cases, letter 𝑤
will denote the weighting functions through the paper.

3.3. Polytopic LPV/qLPV Modeling. Consider the following
form of LPV/qLPV models:

[[[
ẋ (𝑡)
y (𝑡)
z (𝑡)]]]
= [[[

A (p (𝑡)) B𝑢 (p (𝑡)) B𝑤 (p (𝑡))
C𝑦 (p (𝑡)) D𝑦𝑢 (p (𝑡)) D𝑦𝑤 (p (𝑡))
C𝑧 (p (𝑡)) D𝑧𝑢 (p (𝑡)) D𝑧𝑤 (p (𝑡))]]][[[

x (𝑡)
u (𝑡)
w (𝑡)]]] ,

(9)

where
(i) x(𝑡) denotes the state variables, u(𝑡) the control

inputs, w(𝑡) the disturbances, y(𝑡) the measured
outputs, and z(𝑡) the performance outputs,

(ii) it is defined on a hyperrectangular parameter domain:

p ∈ Ω = [𝑝
1
, 𝑝1] × ⋅ ⋅ ⋅ × [𝑝𝑁, 𝑝𝑁] ⊂ R𝑁, (10)

(iii) for the sake of brevity, the parameter-dependent
system matrices will be denoted as

S (p) = [[[
A (p) B𝑢 (p) B𝑤 (p)
C𝑦 (p) D𝑦𝑢 (p) D𝑦𝑤 (p)
C𝑧 (p) D𝑧𝑢 (p) D𝑧𝑤 (p)]]] (11)

so we have theΩ → S function, where S denotes the
space of real matrices with appropriate size.

That is often extended with delayed inputs, delayed states,
and so on according to the dynamics of the investigated
system; see [19].

Polytopicmodels are polytopic decomposition of the S(p)
systemmatrix.They are described as convex combinations of
so-called vertex system matrices, as

S (p) = 𝑅∑
𝑟=1

S𝑟ℎ𝑟 (p) , ∀p ∈ Ω, (12)

and this formallows for using LMI-based control analysis and
synthesis methods.

3.4. TP Model Transformation. TP Model Transformation
is aimed at transforming the parameter-dependent system
matrix S(p) into polytopic form with decoupled parameter
dependencies, resulting in a nested parameter-wise polytopic
representation that is expressed as multiple tensor products.

Definition 7 (polytopic TP Model). Polytopic TP Models are
(q)LPV models with system matrices:

S (p) = S 𝑁⊠
𝑛=1

w(𝑛) (𝑝𝑛) , (13)

in which

(i) the S ∈ S𝐽1×⋅⋅⋅×𝐽𝑁 core tensor contains the S𝑗1 ,...,𝑗𝑁
vertex system matrices of the polytopic model,

(ii) the 𝑤(𝑛)1 (𝑝𝑛), . . . , 𝑤(𝑛)𝐽𝑛
(𝑝𝑛) 𝑛-mode weighting func-

tions denote convex combinations ∀𝑝𝑛 ∈ [𝑝𝑛, 𝑝𝑛].
Let us recall its expanded form and highlight that it is

polytopic for all parameter dependencies because the short
TP notation can be extended as

S (p) = 𝐽1∑
𝑗1=1

𝑤(1)𝑗1
(𝑝1) 𝐽2∑

𝑗2=1

⋅ ⋅ ⋅ 𝐽𝑁∑
𝑗𝑁=1

𝑤(𝑁)𝑗𝑁
(𝑝𝑁) S𝑗1 ,...,𝑗𝑁

= 𝐽𝑛∑
𝑗=1

(S𝑗𝑛=𝑗

𝑁⊠
𝑙=1,𝑙 ̸=𝑛

w(𝑙) (𝑝𝑙))𝑤(𝑛)𝑗 (𝑝𝑛) (14)

for all 𝑛 = 1 ⋅ ⋅ ⋅ 𝑁.
It is easy to see that this form is a special polytopic

model. This way, the polytopic model-based control analysis
and synthesis methodology can apply to them. Furthermore,
the parameter separated structure can be exploited during
control analysis and synthesis; for more details, see [5].

4. Affine Decomposition of
Univariate Functions

Thesection shows the role of affine geometry in the derivation
of polytopic decomposition of univariate functions, and
it introduces the Affine Singular Value Decomposition to
represent the geometric structure in a unique way that will
be applied in the Affine TP Model.
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4.1. Enclosing Polytope on the Affine Hull. Consider the
univariate c : [𝑥, 𝑥](⊂ R) → 𝐻 function, where𝐻 is aHilbert
space. Denote its image to be enclosed by the polytopic form
as

C = {c (𝑥) | 𝑥 ∈ [𝑥, 𝑥]} ⊂ 𝐻. (15)

Although the considered Hilbert space can be higher
dimensional, there may exist polytopic descriptions with a
finite number of vertices. It depends on the dimension of the
so-called affine hull that is the minimum dimensional affine
subspace which contains every object. It can be expressed as
the set of affine combinations of the values of the function

A = {∫𝑥
𝑥=𝑥
𝛼 (𝑥) c (𝑥) 𝑑𝑥 | ∫𝑥

𝑥=𝑥
𝛼 (𝑥) 𝑑𝑥 = 1} ⊃ C. (16)

The dimension of the affine hull is called affine dimension
and denoted by 𝐷. Then the elements of the C image can be
given as the sum of a value on the (a1, . . . , a𝐷) basis and an(a𝐷+1) offset, by applying homogeneous coordinates k(𝑥) as

c (𝑥) = 𝐷∑
𝑑=1

𝑢𝑑 (𝑥) a𝑑 + a𝐷+1 = k (𝑥) [[[[[[
a1...
a𝐷+1

]]]]]] , (17)

where k(𝑥) = [u(𝑥) 1] = [𝑢1(𝑥) ⋅ ⋅ ⋅ 𝑢𝐷(𝑥) 1]. With this
description, the objects are characterized by coordinates
u(𝑥) = [𝑢1(𝑥), . . . , 𝑢𝐷(𝑥)] on the affine hull.

Obtaining an enclosing polytope for the u(𝑥) coordi-
nates in the 𝐷-dimensional Euclidean space with vertices{r1, . . . , r𝐽} as{u (𝑥) | 𝑥 ∈ [𝑥, 𝑥]} ⊆ Co (r1, . . . , r𝐽) ⊂ R𝐷, (18)

the k(𝑥) homogeneous coordinates can be expressed as
convex combinations of the vertices with weights (𝑤1(𝑥),. . . , 𝑤𝐽(𝑥)) as

k (𝑥) = w (𝑥)R, where R = [[[[[[
r1 1... ...
r𝐽 1
]]]]]] , (19)

and it provides an enclosing polytope for theC image set with
the following vertices:

s𝑗 = [r𝑗 1][[[[[[
a1...
a𝐷+1

]]]]]] (∀𝑗 = 1 ⋅ ⋅ ⋅ 𝐽) , (20)

because it can be described as their convex combinations:

c (𝑥) = k (𝑥) [[[[[
a1...
a𝐷+1

]]]]] = w (𝑥)R
[[[[[

a1...
a𝐷+1

]]]]]
= w (𝑥) [[[[[

s1...
s𝐽

]]]]] .
(21)

This way, the polytopic description can be constructed
for the original image in the 𝐻 space by considering the 𝐷-
dimensional geometric problem.

4.2. Affine Singular Value Decomposition of Univariate Func-
tions. Consider the description on the affine hull in (17) and
restrict it to orthogonal (a1, . . . , a𝐷) bases and homogeneous,
orthonormal (V1(𝑥), . . . , V𝐷+1(𝑥)) coordinate functions.Then
we can define the following unique form that is called Affine
Singular Value Decomposition.

Definition 8 (affine SVD (ASVD)). The form represented by
(17) is called affine SVD of c function if it is a homogeneous,
orthonormal decomposition and the a𝑖 ∈ 𝐻 (𝑖 = 1 ⋅ ⋅ ⋅ 𝐷)
elements of the basis are orthogonal and ordered by their
norms as ⟨a𝑖, a𝑗⟩ = 𝛿𝑖𝑗𝜎2𝑖 ∀𝑖, 𝑗 = 1 ⋅ ⋅ ⋅ 𝐷,𝜎1 ≥ ⋅ ⋅ ⋅ ≥ 𝜎𝐷 > 0, (22)

which are called singular values.

The decomposition’s uniqueness property is inherited
from the uniqueness of SVD.

Lemma 9 (uniqueness of ASVD). The 𝜎1, . . . , 𝜎𝐷 singular
values and the a𝐷+1 offset are unique.

Now consider the ordered singular values and let (𝑚1,𝑚2, . . .) denote their multiplicities such that𝜎1 = ⋅ ⋅ ⋅ = 𝜎𝑚1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚1

> 𝜎𝑚1+1 = ⋅ ⋅ ⋅ = 𝜎𝑚1+𝑚2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚2

> ⋅ ⋅ ⋅ > 𝜎𝐷
> 0. (23)

Then the forms and only these forms are valid decomposition

c (𝑥) = 𝐷+1∑
𝑑=1

V󸀠𝑑 (𝑥) a󸀠𝑑, (24)

where [V󸀠1 (𝑥) ⋅ ⋅ ⋅ V󸀠𝐷 (𝑥)] = [V1 (𝑥) ⋅ ⋅ ⋅ V𝐷 (𝑥)]T,[a󸀠1 ⋅ ⋅ ⋅ a󸀠𝐷]𝑇 = T𝑇 [a1 ⋅ ⋅ ⋅ a𝐷]𝑇 ,
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V󸀠𝐷+1 (𝑥) = V𝐷+1 (𝑥) ,
a
󸀠
𝐷+1 = a𝐷+1,
T = blockdiag (Q1,Q2, . . .) ,

(25)

andQ𝑖 are arbitrary real orthogonal matrices with size𝑚𝑖×𝑚𝑖,
respectively.

Proof. These kinds of decomposition are ASVD because
(i) by multiplying the orthonormal V𝑑(𝑥)𝑑 = 1 ⋅ ⋅ ⋅ 𝐷

functions with a T orthogonal matrix, they remain
orthonormal,

(ii) by multiplying the orthogonal a𝑑 values of the same
norm with a Q𝑖 orthogonal matrix, they maintain
their orthogonality and norm as well. This way, the
singular values and their order do not change.

Only this kind of decomposition is ASVD, because
(i) to ensure the V󸀠𝐷+1(𝑥) = 1 and the orthonormality of

V𝑑(𝑥) functions, the offset part cannot change:∫𝑥
𝑥=𝑥

c (𝑥) 𝑑𝑥𝑥 − 𝑥 = 𝐷+1∑
𝑑=1

⟨V𝑑 (𝑥) , 1⟩ 𝑎𝑑 = 𝑎𝐷+1, (26)

(ii) the remaining part must be the SVD of function(c(𝑥) − a𝐷+1) inheriting its uniqueness properties,
which results in the structure of T.

Obviously, if every singular value is different, only the
signs of a𝑑 objects and V𝑑(𝑥) functions (𝑑 = 1, . . . , 𝐷) can
be varied, because the lemma allows for only Q𝑖 = ±1 values
in these cases.

Lemma 10 (complexity trade-off). Consider the affine SVD
in (17) with𝐷 singular values, where𝐷 is the dimension of the
affine hull.

The best 𝑑 < 𝐷-dimensional approximation (in terms of
the defined norm) can be obtained as

c (𝑥) = 𝑑∑
𝑙=1

V𝑙 (𝑥) a𝑙 + a𝐷+1. (27)

Proof. It was shown in (26) that the average value of c
function is a𝐷+1 so it is the best 𝑑 = 0-dimensional
approximation.

And if the best 𝑑-dimensional approximation is known,
the best 𝑑 + 1-dimensional can be obtained by adding the
a product with maximal possible norm (as in the Eckhart-
Young theorem [20]), which is here a𝑑+1V𝑑+1(𝑥).

Because the complexity of enclosing polytope generation
depends on the dimension of the affine hull, this property
allows for its reduction with minimal error in the defined
norm.

The following lemmadescribes the numerical reconstruc-
tion assuming a vector function given as a homogeneous,
orthonormal decomposition.

Lemma 11 (ASVD from a homogen. orthonorm. decomp.).
Consider the s : [𝑥, 𝑥] → R𝑅 function, which is given as a
homogeneous, orthonormal decomposition

s (𝑥) = 𝑀∑
𝑚=1

𝑓𝑚 (𝑥) k𝑚, (28)

in matrix form as s(𝑥) = f(𝑥)K.
Then s(𝑥) = k(𝑥)K󸀠 ASVD can be obtained as

k (𝑥) = f (𝑥) [U 0

0 1] ,
K󸀠 = [[SV𝑇

k𝑀
]] ,

(29)

where the matrices U, S, and V come from the SVD computa-
tion:

USV𝑇 = 𝑠V𝑑([[[[[[
k1...

k𝑀−1

]]]]]]) (30)

omitting the zero singular values and the corresponding
columns of singular matrices.

Proof. v(𝑥) is orthonormal, because f(𝑥) is orthonormal and
blockdiag (U, 1) is orthogonal. It is homogeneous because
V𝐷+1(𝑥) = 𝑓𝑀(𝑥) = 1. The k󸀠𝑑 values (𝑑 = 1 ⋅ ⋅ ⋅ 𝐷)
are orthogonal and ordered by norm from properties of
SVD.

5. Definition of Affine Tensor Product Form

This section presents the derivation of polytopic TP forms for
multivariate functions

c : Ω 󳨀→ 𝐻 (31)

based on the Affine TP form, which represents the affine geo-
metric structure for all parameter dependency, respectively.

Definition 12 (Affine TP form). The following form of func-
tion (31)

c (p) = Caff 𝑁⊠
𝑛=1

k(𝑛) (𝑝𝑛) (32)

is called Affine TP form, in which the Caff core tensor is on𝐻 asCaff ∈ 𝐻(𝐷1+1)×⋅⋅⋅×(𝐷𝑁+1), the 𝐷𝑛 (𝑛 = 1 ⋅ ⋅ ⋅ 𝑁) values are
called 𝑛-mode dimensions, and the 𝑛-mode expansion of (32)

c (p) = 𝐷𝑛+1∑
𝑑=1

(Caff
𝑑𝑛=𝑑

𝑁⊠
𝑙=1,𝑙 ̸=𝑛

k(𝑙) (𝑝𝑙)) V(𝑛)𝑑 (𝑝𝑛) (33)

is an ASVD with 𝜎(𝑛)1 , . . . , 𝜎(𝑛)𝐷𝑛
singular values for all 𝑛,

respectively.
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Remark 13 (ASVD on functions). The definition exploits
the fact that functions with norm in Definition 6 constitute
Hilbert spaces. This way, the c(p) function can be considered
as a univariate function[𝑝

𝑛
, 𝑝𝑛] 󳨀→ H (34)

for all 𝑛 = 1 ⋅ ⋅ ⋅ 𝑁, where H is the Hilbert space of functionsΩ1 × ⋅ ⋅ ⋅ × Ω𝑛−1 × Ω𝑛+1 × ⋅ ⋅ ⋅ × Ω𝑁 󳨀→ 𝐻(Ω𝑖 = [𝑝𝑖, 𝑝𝑖]) , (35)

and the ASVD is defined for it.

The polytopic TP form can be obtained by determining
enclosing polytopes for all k(𝑛)(𝑝𝑛) trajectories in the 𝐷𝑛-
dimensional spaces for all 𝑛 = 1 ⋅ ⋅ ⋅ 𝑁 and applying the
following theorem.

�eorem 14 (derivation of polytopic TP form). If for all 𝑛 =1 ⋅ ⋅ ⋅ 𝑁 the vertices r(𝑛)1 , . . . , r(𝑛)𝐽𝑛
construct enclosing polytopes

for trajectories k(𝑛)(𝑝𝑛), they can be expressed as k(𝑛)(𝑝𝑛) =
w(𝑛)(𝑝𝑛)R(𝑛) (see (19)). Then

c (p) = C𝑎𝑓𝑓 𝑁⊠
𝑛=1
(w(𝑛) (𝑝𝑛)R(𝑛))

= (C𝑎𝑓𝑓 𝑁⊠
𝑛=1

R(𝑛)) 𝑁⊠
𝑛=1

w(𝑛) (𝑝𝑛) (36)

which is a polytopic TP form.

Proof. FromSection 4.1, the uniqueness of theAffineTP form
can be characterized by the following theorem.

�eorem 15 (uniqueness). The 𝜎(𝑛)
𝑑

singular values are
unique; let (𝑚(𝑛)1 , 𝑚(𝑛)2 , . . .) denote their multiplicities as in (23).

If (32) is an Affine TP form, the following and only the
following forms are Affine TP Models:

c (p) = (C𝑎𝑓𝑓 𝑁⊠
𝑛=1

T(𝑛)𝑇) 𝑁⊠
𝑛=1
(k(𝑛) (𝑝𝑛)T(𝑛)) , (37)

where the matrices are defined as T(𝑛) = 𝑑𝑖𝑎𝑔(T(𝑛)
0 , 1) and T(𝑛)

0
is a block-diagonal matrix constructed by arbitrary orthogonal
matrices with sizes𝑚(𝑛)1 ×𝑚(𝑛)1 ,𝑚(𝑛)2 ×𝑚(𝑛)2 , and so on as shown
in Lemma 9.

Proof. Only these forms are allowed by uniqueness properties
of ASVD (see Lemma 9) and their 𝑛-mode expansions

c (p) = 𝐷𝑛+1∑
𝑑=1

(Caff 𝑁⊠
𝑙=1,𝑙 ̸=𝑛

k(𝑙) (𝑝𝑙) ×𝑛 T(𝑛)𝑇)
𝑑𝑛=𝑑⋅ (k(𝑛) (𝑝𝑛)T(𝑛))

𝑑

(38)

show that these forms are ASVD, so the TP form is affine.

The form enables the 𝑛-mode dimension reductions with
the following error (regarding the defined norm) based on the
properties of TP forms on orthonormal weighting functions,
which are discussed in the Appendix.

�eorem 16 (complexity reduction). The reduction of one 𝑛-
mode dimension from 𝐷𝑛 to 𝐷󸀠𝑛 < 𝐷𝑛 with minimal error
in the defined norm can be achieved by omitting the (𝐷󸀠𝑛 +1), . . . , 𝐷𝑛th subtensors ofC𝑎𝑓𝑓 and the corresponding elements
of k(𝑛)(𝑝𝑛). Then the error is‖c − ĉ‖2 = 𝐷𝑛∑

𝑑=𝐷󸀠
𝑛
+1

𝜎(𝑛)2𝑑 . (39)

The approximation error of dimension reduction in multiple
(𝑛 = 1 ⋅ ⋅ ⋅ 𝑁) parameter dependencies is bounded as‖c − ĉ‖2 ≤ 𝑁∑

𝑛=1

𝐷𝑛∑
𝑑=𝐷󸀠
𝑛
+1

𝜎(𝑛)2𝑑 . (40)

Proof. Construct a tensor Ĉaff with the same sizes asCaff that
contains zeros in the omitted subtensors. Then, if ΔCaff =
Caff − Ĉaff , the approximation error can be written as

c (p) − ĉ (p) = ΔCaff 𝑁⊠
𝑛=1

k(𝑛) (𝑝𝑛) . (41)

If only one 𝑛-mode dimension is decreased, the error of the
approximation can be written as (based on Lemma A.2)‖c − ĉ‖2 = 𝐷𝑛+1∑

𝑑=1

󵄩󵄩󵄩󵄩󵄩ΔCaff
𝑑𝑛=𝑑

󵄩󵄩󵄩󵄩󵄩2 = 𝐷𝑛∑
𝑑=𝐷󸀠
𝑛
+1

𝜎(𝑛)2𝑑 (42)

that is minimal as Lemma 10 indicated.
Considering the case when more than one n-mode

dimension is decreased, the worst case (equality) of (40)
occurs if there are zero elements in the intersection of the
omitted subtensors. Otherwise, the error of the approxima-
tion is smaller.

Finally, themethod is presented for its exact derivation or
at least approximate reconstruction.

Method 17 (numerical reconstruction of Affine TP form).
The first step is to obtain an initial TP form with the desired
parameter groups

ĉ (p) = D 𝑁⊠
𝑛=1
𝛼
(𝑛) (𝑝𝑛)

= 𝑀1∑
𝑚1=1

⋅ ⋅ ⋅ 𝑀𝑁∑
𝑚𝑁=1

d𝑚1,...,𝑚𝑁

𝑁∏
𝑛=1

𝛼(𝑛)𝑚𝑛
(𝑝𝑛) . (43)

Here we describe two approaches for it.

Step 1a (analytical initial form). If the function is analytically
given, the c(p) = ĉ(p) initial form may be constructed
analytically.

Step 1b (discretization based initial form). The function can
be approximated by the TP form as c(p) ≈ ĉ(p) via
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discretization in general: For each p𝑛 parameter, choose𝑀𝑛 discrete points denoted as {. . . , g(𝑛)𝑚𝑛
, . . .} and appropriate

𝛼
(𝑛)(p𝑛) interpolatory functions (as Lagrange polynomials,

piecewise linear/constant functions, etc.).
Then the initial TP form (43) can be constructed to

approximate the function by choosing elements of the core
tensor D ∈ 𝐻𝑀1×𝑀2×⋅⋅⋅×𝑀𝑁 denoted by d𝑚1 ,...,𝑚𝑁 which is the
value of c(p) function at (g(1)𝑚1 , g(2)𝑚2 , . . .).
Step 2 (homogeneous orthonormalization). Determine the
homogeneous, orthonormal weighting functions 𝛾(𝑛): [𝑝

𝑛
,𝑝𝑛] → R𝐿𝑛 as 𝛾(𝑛)(𝑝𝑛)T(𝑛) = 𝛼(𝑛)(𝑝𝑛) to obtain the following

orthonormal TP form:

ĉ (p) = F 𝑁⊠
𝑛=1
𝛾(𝑛) (𝑝𝑛) , (44)

where

F = D 𝑁⊠
𝑛=1

T(𝑛). (45)

Some examples are Gram-Schmidt orthogonalization [21],
the Householder transformation [22–24], or the Givens
rotation [25].

Step 3 (sequential ASVD). Denote the TP form as

ĉ (p) =K 𝑁⊠
𝑛=1

f(𝑛) (𝑝𝑛) , (46)

whose initial value isK = F and f(𝑛)(𝑝𝑛) = 𝛾(𝑛)(𝑝𝑛) for 𝑛 =1 ⋅ ⋅ ⋅ 𝑁.
Then for index 𝑛 = 1, compute the ASVD of f(𝑛)(𝑝𝑛)K(𝑛)

form as

f(𝑛) (𝑝𝑛)K(𝑛) = k(𝑛) (𝑝𝑛)K󸀠 (47)

(see Lemma 11) and continue with K fl inv unfold(K󸀠),
f(𝑛)(𝑝𝑛) fl k(𝑛)(𝑝𝑛), and 𝑛 = 𝑛 + 1 until 𝑛 ≤ 𝑁.

Then the resulting TP form is affine.

Proof. For TP forms on orthonormal weighting functions, if
K×𝑛 v(𝑛)(𝑝𝑛) is ASVD, then(K 𝑁⊠

𝑙=1,𝑙 ̸=𝑛
f(𝑙) (𝑝𝑙)) ×𝑛 k(𝑛) (𝑝𝑛) (48)

is ASVD as well; see Lemma A.3 of the Appendix.

The method proves the existence of Affine TP forms
for cases where the separation of parameter dependencies is
possible, and it extends the previous approach by allowing
exact analytical separation or the application of discretization
with varying density along the parameter domain Ω with
different interpolation strategies.

Remark 18. The sequential truncation approach (see [26])
can also be applied by using the complexity reductions in
iterations of Step 3 in order to decrease the computational
cost.

Remark 19. By applying SVD instead of ASVD in Step 3 (and
optionally simple orthonormalization in Step 2), the method
can be used to determine the so-called HOSVD-based TP
form as well.

6. Application for LPV/qLPV Models

The results of the previous section are appropriate for system
matrices S(p) of (q)LPV models (9). By defining the inner
product and norm for F,G ∈ S system matrices as⟨F,G⟩ = trace (F ⋅ G𝑇) , ‖F‖ = √⟨F, F⟩, (49)

the space S constitutes a Hilbert space and the following TP
Model can be defined.

Definition 20 (Affine TP Model). The system matrix of the
(q)LPV model (9) is given in Affine TP form as

S (p) = Saff 𝑁⊠
𝑛=1

k(𝑛) (𝑝𝑛) ; (50)

see Definition 12.

The elements of core tensor Saff are system matrices and
the functions k(𝑛)(𝑝𝑛) are 𝐷𝑛-dimensional trajectories given
by homogeneous coordinates.

The uniqueness of the description is inherited fromThe-
orem 15. Complexity (dimension of the affine hull) reduction
can be done based on Theorem 16 but it must be mentioned
that it does not give guarantee about its distribution along
the parameter domain in terms of dynamical effects, and
thus, it is not closely related to its dynamical properties in
ill-conditioned cases. It means that if the omitted details are
not only numerical error (representing essential information
about the system dynamics), it is recommended to apply
robust designmethods taking into account the neglected part
as in [27].

Furthermore, it has direct link with polytopic model
generation based onTheorem 14.

Corollary 21 (polytopic model generation). The determina-
tion of vertices r(𝑛)1 , r(𝑛)2 , . . . , r(𝑛)𝐽𝑛

∈ R𝐷𝑛 (𝐽𝑛 ≥ 𝐷𝑛 + 1)
for all 𝑛 = 1 ⋅ ⋅ ⋅ 𝑁 constructs an enclosing polytope for the[V(𝑛)1 (𝑝𝑛) ⋅ ⋅ ⋅ V(𝑛)𝐷𝑛

(𝑝𝑛)] trajectory and the weighting functions
w(𝑛)(𝑝𝑛) (interpreting convex combination for all 𝑝𝑛) in such
a way that

w(𝑛) (𝑝𝑛)R(𝑛) = k(𝑛) (𝑝𝑛) (51)

(as in (19)).
Then the polytopic TP Model (13) can be formalized with

w(𝑛)(𝑝𝑛) weighting functions and core tensor
S = S𝑎𝑓𝑓 𝑁⊠

𝑛=1
R(𝑛). (52)

There exist numerical methods for enclosing simplex
polytope generation (where 𝐽𝑛 = 𝐷𝑛 +1) such as theMinimal
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Volume Simplex Approach [13] and other simplex methods:
CNO, IRNO, and SNNN [15, 17]. The classical convex hull
methods [28, 29] can also be applied, but they usually result
in enclosing polytopes with toomany vertices (up to infinity).

Fine-tuning manipulation/optimization is an important
technique in polytopic model-based design. Similarly to the
polytope generation methods, manipulation techniques are
also immediately connectible to the Affine TP Model.

Corollary 22 (polytopicmodel manipulation). Asmanipula-
tion of N ⊂ {1, . . . , 𝑁} mode enclosing polytopes, determinate
the vertices r󸀠(𝑛)1 , r󸀠(𝑛)2 , . . . , r󸀠(𝑛)𝐽󸀠

𝑛

∈ R𝐷𝑛 (𝐽󸀠𝑛 ≥ 𝐷𝑛 + 1) and
weighting functions w󸀠(𝑛)(𝑝𝑛) for all 𝑛 ∈ N that constructs
an enclosing polytope for the trajectory [V(𝑛)1 (𝑝𝑛) ⋅ ⋅ ⋅ V(𝑛)𝐷𝑛

(𝑝𝑛)] in
such a way thatw󸀠(𝑛)(𝑝𝑛)R󸀠(𝑛) = k(𝑛)(𝑝𝑛) as in (19), taking into
account the control design experience with previous enclosing
polytopes.

Then the manipulated polytopic TP Model can be formal-
ized as

S (p) = S𝑚𝑎𝑛 𝑁⊠
𝑛=1, 𝑛∉N

w(𝑛) (𝑝𝑛) ⊠
𝑛∈N

w󸀠(𝑛) (𝑝𝑛) , (53)

where

S
𝑚𝑎𝑛 = S𝑎𝑓𝑓 𝑁⊠

𝑛=1,𝑛∉N
R(𝑛) ⊠

𝑛∈N
R󸀠(𝑛). (54)

Relevant examples are themanipulation of the constraints
in MVS method based on the achievable performance with
the previous polytopes (see [13, 30]) or the nonsimplex
method where problematic regions are cut off from the
polytope [16].

7. Numerical Example

This section discusses a control-related example that gives
hands-on insight into a realistic design scenario.

Consider the translational oscillator with an eccentric
rotational mass actuator (TORA) system shown in Figure 1.
The goal of the control effort is to stabilize its translational
motion using a rotational actuator [31–35].

The equation of motion is usually reformulated in the
following dimensionless form:𝜒󸀠󸀠 = −𝜒 + 𝜖 sin 𝜃,

𝜃󸀠󸀠 = 𝜖𝜒 cos 𝜃 + 𝑢1 − 𝜖2 cos2 𝜃 − 𝜖2 (𝜃󸀠2 + 1) cos 𝜃1 − 𝜖2 cos2 𝜃 sin 𝜃, (55)

where 𝜒 = 𝜉 + 𝜖 sin 𝜃,𝜉 = √ 𝑀 +𝑚𝐼 + 𝑚𝑒2 𝑞,𝑢 = 𝑀 + 𝑚𝑘 (𝐼 + 𝑚𝑒2)𝑁,

k
M

N e
m, I

F

q

Figure 1: The mechanical model of the TORA system.

𝜏 = √ 𝑘𝑚 +𝑀𝑡,𝜖 = 𝑚𝑒√(𝐼 + 𝑚𝑒2) (𝑀 + 𝑚) ,
(56)

where 𝜉 denotes the dimensionless translational position, 𝑢
the dimensionless input, 𝜏 dimensionless time, and 𝜖 the
coupling parameter.

The nonlinear ODE is used for the purpose of construct-
ing the qLPV model; the state variables are chosen as

x = [𝜒 𝜒󸀠 𝜃 𝜃󸀠]𝑇 , (57)

and the parameters as𝑝1 = |𝜃| ,𝑝2 = (𝜃󸀠2 + 1) cos 𝜃1 − 𝜖2 cos2 𝜃 . (58)

Then the constructed qLPV realization reads

x󸀠 = [A (p) B (p)] [x𝑢] = S (p) [x𝑢] , (59)

where

A (p) = [[[[[[[[[
0 1 0 0−1 0 𝜖 sin𝑝1𝑝1 00 0 0 1𝜖 cos𝑝1𝐺 (𝑝1) 0 −𝜖2𝑝2 sin𝑝1𝑝1 0

]]]]]]]]]
,

B (p) = [[[[[[[[
0001𝐺 (𝑝1)
]]]]]]]]
,

𝐺 (𝑝1) = 1 − 𝜖2cos2𝑝1,

(60)
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Figure 2:The k(1)(𝑝1) and k(2)(𝑝2)weighting functions in the Affine
TP Model.

and here the |𝜃| < 0.6𝜋 | ̇𝜃| < 3 (rad/s) domain is considered
with 𝜖 = 0.2 value.

In order to obtain the Affine TP form of function (59), the
parameter dependencies are separated leading to an initial TP
form with the following weighting functions:

𝛼
(1) (𝑝1) = [ sin𝑝1𝑝1 cos𝑝1𝐺 (𝑝1) 1𝐺 (𝑝1) 1] ,
𝛼
(2) (𝑝2) = [𝑝2 1] (61)

performing Step 1a of Method 17. After orthogonalization
and sequential ASVD, we get the affine form

S (p) = Saff ×1 k(1) (𝑝1) ×2 k(2) (𝑝2)= Saff 2⊠
𝑛=1

k(𝑛) (𝑝𝑛) , (62)

where the 𝑛-mode dimensions are 𝐷1 = 3 and 𝐷2 = 1
and the corresponding weighting functions are depicted in
Figure 2. The singular values: 𝜎(1)1 = 9.15 ⋅ 10−2, 𝜎(1)2 =5.75 ⋅ 10−3, 𝜎(1)3 = 1.91 ⋅ 10−5, and 𝜎(2)1 = 2.90 ⋅10−2. (By applying discretization and interpolator functions,
numerically reconstructed approximations of this TP form
can be obtained.)

The enclosing polytope generation for 𝑝2 dependency is
trivial, because it is a one-dimensional problem.The vertices:
r(2)1 = [−1.731 1] and r(2)2 = [1.731 1].

The three-dimensional problem of 𝑝1 dependency is
more challenging. The methods for generation of the enclos-
ing polytope can be applied as MVS (or SNNN, CNO); see

MVS
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Figure 3:TheMVS enclosing polytope for k(1)(𝑝1) on the affine hull.
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Figure 4: The w(1)(𝑝1) and w(2)(𝑝2) weighting functions in the
polytopic TP Model.

Section 6. Figure 3 shows the resulting tetrahedron enclosing
polytope and Figure 4 the weighting functions (denoting
convex combinations) and the vertices are

r(1)1 = [−1.873 0.864 −0.691 1] ,
r(1)2 = [0.201 −2.311 0.661 1] ,
r(1)3 = [1.676 0.964 −2.647 1] ,
r(1)4 = [2.102 3.027 5.659 1] .

(63)
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The resulting polytopic TP Model has two parameter
dependencies, and it has the following general form:

x󸀠 = S (p) [x𝑢] , (64)

where

S (p) = S 2⊠
𝑛=1

w(𝑛) (𝑝𝑛)
= 2∑

𝑗1=1

4∑
𝑗2=1

𝑤(1)𝑗1
(𝑝1) 𝑤(2)𝑗2

(𝑝2) [A𝑗1,𝑗2
B𝑗1 ,𝑗2] . (65)

For the sake of brevity, only the quadratic stabilization via
state feedback problem is recalled and applied. To exploit the
separated parameter dependencies, the controller-candidate
depends only on the first parameter as

𝑢 = F (𝑝1) x, F (𝑝1) = 4∑
𝑗=1

𝑤(1)𝑗 (𝑝1) F𝑗. (66)

Then the closed-loop system is stable if there exist X ∈ R4×4

symmetric matrix and M𝑗 ∈ R1×4 𝑗 = 1 ⋅ ⋅ ⋅ 4 matrices such
that

X > 0,Γ𝑗1,𝑗1 ,𝑗2 < 0 ∀𝑗1 = 1 ⋅ ⋅ ⋅ 4, 𝑗2 = 1, 2,Γ𝑗1 ,𝑖1 ,𝑗2 < 0 ∀𝑗1 = 1 ⋅ ⋅ ⋅ 4, 1 ≥ 𝑖1 < 𝑗1, 𝑗2 = 1, 2,
where Γ𝑗1,𝑖1 ,𝑗2 = He (A𝑗1,𝑗2

X + B𝑗1,𝑗2
M𝑖1
)

(67)

and the gains of the state feedback are F𝑗 = M𝑗X−1.
Here the problem is feasible with gains:

F1 = [0.2419 −0.5642 −1.8000 −0.6950] ,
F2 = [0.4320 −0.6009 −1.9145 −0.7264] ,
F3 = [0.5588 −0.6120 −1.9458 −0.7305] ,
F4 = [0.5935 −0.6124 −1.9449 −0.7285] .

(68)

For more complex examples that apply other polytopic
model generation, manipulation methods, and controller
design techniques, see papers [9, 11, 13, 16, 30].

8. Conclusion

The proposed Affine TP Model Transformation is a signifi-
cant development in polytopic model-based control provid-
ing a general yet practically advantageous methodology for
polytopicmodel generation.The unique Affine TPModel as a
central concept serves as starting point for complexity reduc-
tion, polytopic model creation, and various polytope manip-
ulation/optimization approaches helping to fully exploit the

directly applicable powerful LMI-based synthesis methods.
Themost important benefits of the proposed intermediate TP
form are the geometrically appropriate representation of the
LPV structure in each dimension and the capability of dimen-
sion reduction with minimal error and low computational
cost. In addition to the theoretical discussion, for the sake
of technical completeness, an illustrative numerical example
was provided to clearly show the practical merit of the Affine
TP form.

In some sense, the paper sums up and consolidates the
theoretical basis of TP Model Transformation that has been
evolved in the past decade through the contribution of a
broader research community.

Appendix

Mathematical Background of Affine TP Form

First, the following lemma highlights important properties of
orthonormal decomposition.

Lemma A.1 (inner product and norm of orthonormal
decomp.). If b, c : 𝑋 → 𝐻 functions are given with the same{. . . , 𝑓𝑖(x), . . .} orthonormal weighting functions, their inner
product and norm can be computed as

⟨b, c⟩ = 𝐼∑
𝑖=1

⟨b𝑖, c𝑖⟩ , ‖c‖ = √ 𝐼∑
𝑖=1

󵄩󵄩󵄩󵄩c𝑑󵄩󵄩󵄩󵄩2. (A.1)

This property appears in orthonormal TP forms in the
following way.

Lemma A.2 (inner product and norm of orthonormal TP
forms). If there are two TP functions given on the same
orthonormal weighting function system as

c (p) = C 𝑁⊠
𝑛=1

f(𝑛) (𝑝𝑛) ,
d (p) = D 𝑁⊠

𝑛=1
f(𝑛) (𝑝𝑛) , (A.2)

their inner product can be obtained as⟨c, d⟩ = ⟨C,D⟩ . (A.3)

Furthermore, their norm can be derived as‖c‖ = ‖C‖ . (A.4)

This way, the functions’ orthogonality depends only on
the orthogonality of the core tensors. Based on this property,
the following lemma formalizes an important property of the
Affine TP form.

Lemma A.3 (𝑛-mode ASVD of orthonormal TP forms). If
the weighting functions of TP form

k (p) =K 𝑁⊠
𝑛=1

f(𝑛) (𝑝𝑛) (A.5)
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are orthonormal, the following statements are equivalent for all𝑛 = 1 ⋅ ⋅ ⋅ 𝑁:
(i) The following form is an ASVD along 𝑝𝑛 parameter(K 𝑁⊠

𝑙=1,𝑙 ̸=𝑛
f(𝑙) (𝑝𝑙)) ×𝑛 f(𝑛) (𝑝𝑛) . (A.6)

(ii) The form is an ASVD along 𝑝𝑛 parameter

K×𝑛 f(𝑛) (𝑝𝑛) . (A.7)

Furthermore, their singular values are equal.

Proof. The requirements for the f(𝑛)(𝑝𝑛) weighting functions
are the same and the inner products of the bases are also equal
because from Lemma A.2⟨K𝑑𝑛=𝑖

𝑁⊠
𝑙=1,𝑙 ̸=𝑛

f(𝑙) (𝑝𝑙) ,K𝑑𝑛=𝑗

𝑁⊠
𝑙=1,𝑙 ̸=𝑛

f(𝑙) (𝑝𝑙)⟩= ⟨K𝑑𝑛=𝑖
,K𝑑𝑛=𝑗

⟩ ; (A.8)

this way, their orthogonality, order, and norms are the same.

Conclusively, the 𝑛-mode singular values can be obtained
as norm of the 𝑛-mode subtensors of the core tensor and
the ASVD on 𝑝𝑛 parameter dependency is invariant for
inner transformations among orthonormal decomposition
on other 𝑝𝑛 parameter dependencies.
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