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Some new oscillation criteria are given for first order neutral delay differential equations with variable coefficients. Our results
generalize and extend some of the well-known results in the literature. Some examples are considered to illustrate the main results.

1. Introduction

In recent years, oscillation of neutral delay differential equa-
tions (or NDDEs for short) has received great attention and
has been studied extensively. It is a relatively new field with
interesting applications from the real world. In fact, NDDEs
appear in modeling of the problems as transformation of
information, population dynamics, the networks containing
lossless transmission lines, and in the theory of automatic
control (see, e.g., [1–4] and references cited therein).

Consider the first order NDDE of the form

[𝑟(𝑡) (𝑥(𝑡) + 𝑝(𝑡)𝑥(𝑡 − 𝜏))]


+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡
0
,
(1)

where

𝑝 ∈ 𝐶 [[𝑡
0
,∞) ,R] , 𝑟, 𝑞 ∈ 𝐶 [[𝑡

0
,∞) ,R+] , 𝜏, 𝜎 ∈ R

+.
(2)

Let 𝑚 = max{𝜏, 𝜎}. By a solution of (1), we mean a
function 𝑥 ∈ 𝐶[[𝑡

1
− 𝑚,∞),R] for some 𝑡

1
≥ 𝑡
0
such

that 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝑡 − 𝜏) is continuously differentiable, and
(1) is satisfied identically for 𝑡

1
≥ 𝑡
0
. Such a solution of

(1) is said to be oscillatory if it has arbitrarily large zeros
and nonoscillatory if it is eventually positive or eventually
negative.The NDDE (1) is called oscillatory if all its solutions
are oscillatory; otherwise, it is called nonoscillatory.

Recently, some investigations such as [5–7] have appeared
which are concerned with the oscillation as well as the
nonoscillation behaviour of NDDE (1). In fact, Zahariev
and Băınov [8] is the first work dealing with oscillation of
neutral equations. A systematic development of oscillation
theory of NDDEs was initiated by Ladas and Sficas [9].
For the oscillation of (1) when 𝑟(𝑡) = 1 and 𝑝(𝑡) and
𝑞(𝑡) are constants, we refer the readers to the articles by
Ladas and Schults [10], Sficas and Stavroulakis [11], Gram-
matikopoulos et al. [12], Zhang [13], and Gopalsamy and
Zhang [14]. For the oscillation of (1) when 𝑟(𝑡) = 1 and 𝑝(𝑡)
is equal to a constant, we refer the readers to the papers by
Grammatikopoulos et al. [15], Zhang [13], Gopalsamy and
Zhang [14], and Saker and Elabbasy [16] and the references
cited therein. Grammatikopoulos et al. [6], Ladas and Schults
[10], Chuanxi and Ladas [17, 18], Kubiaczyk and Saker [19],
and Karpuz and Ocalan [20] considered the NDDE (1) when
𝑟(𝑡) = 1 and established some new oscillation results sorted
by the value of function 𝑝(𝑡). For further oscillation results
on the oscillatory behaviour of solutions of (1), we refer the
readers to the monographs by Győri and Ladas [21] and
Erbe et al. [22] as well as the papers of Yu et al. [23], Choi
and Koo [24], Ocalan [25], and Candan and Dahiya [26].

The purpose of this work is to find some sufficient
conditions for the oscillation of all solutions of the first order
NDDE (1).



2 Abstract and Applied Analysis

Remark 1. (i) When we write a functional inequality we
assume that it holds for all sufficiently large 𝑡.

(ii) Without loss of generality, we will deal only with the
positive solutions of (1).

In the proof of our main results, we need the following
well-known lemmas which can be found in Chuanxi and
Ladas [17], Győri and Ladas [21], and Kulenović et al. [27].

Lemma 2. Assume that 𝜌 is a positive constant. Let ℎ ∈
𝐶[[𝑡
0
,∞),R+], and suppose that

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜌

ℎ (𝑠) 𝑑𝑠 >
1

𝑒
. (3)

Then
(i) the delay differential inequality

𝑥 (𝑡) + ℎ (𝑡) 𝑥 (𝑡 − 𝜌) ≤ 0, 𝑡 ≥ 𝑡
0
, (4)

has no eventually positive solution;

(ii) the delay differential inequality

𝑥 (𝑡) + ℎ (𝑡) 𝑥 (𝑡 − 𝜌) ≥ 0, 𝑡 ≥ 𝑡
0
, (5)

has no eventually negative solution;

(iii) the advanced differential inequality

𝑥 (𝑡) − ℎ (𝑡) 𝑥 (𝑡 + 𝜌) ≤ 0, 𝑡 ≥ 𝑡
0
, (6)

has no eventually negative solution;

(iv) the advanced differential inequality

𝑥 (𝑡) − ℎ (𝑡) 𝑥 (𝑡 + 𝜌) ≥ 0, 𝑡 ≥ 𝑡
0
, (7)

has no eventually positive solution.

Lemma 3. Consider the NDDE

(𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏))


+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡
0
, (8)

where 𝑝, 𝑞, 𝜏, and 𝜎 are as in (2). Assume that

∫
∞

𝑡0

𝑞 (𝑠) 𝑑𝑠 = ∞. (9)

Let 𝑥(𝑡) be an eventually positive solution of equation and set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) . (10)

Then the following statements are true:

(i) 𝑧(𝑡) is an eventually decreasing function;

(ii) if 𝑝(𝑡) ≤ −1 then 𝑧(𝑡) < 0;
(iii) if −1 ≤ 𝑝(𝑡) ≤ 0 then 𝑧(𝑡) > 0 and lim

𝑡→∞
𝑧(𝑡) = 0.

Lemma 4. Assume that (9) holds and let 𝑥(𝑡) be an eventually
positive solution of NDDE

[(𝑥(𝑡) + 𝑝𝑥 (𝑡 − 𝜏))]


+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡
0
, (11)

where 𝑝 ̸= 1, 𝑞 ∈ 𝐶[[𝑡
0
,∞),R+], and 𝜏, 𝜎 ∈ R+.

Set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏) . (12)

Then

(a) 𝑧(𝑡) is a decreasing function and either

lim
𝑡→∞

𝑧 (𝑡) = −∞ (13)

or

lim
𝑡→∞

𝑧 (𝑡) = 0. (14)

(b) The following statements are equivalent:

(i) (13) holds;
(ii) 𝑝 < −1;
(iii) lim

𝑡→∞
𝑥(𝑡) = ∞;

(iv) 𝑤(𝑡) > 0, 𝑤(𝑡) > 0.

(c) The following statements are equivalent:

(i) (14) holds;
(ii) 𝑝 > −1;
(iii) lim

𝑡→∞
𝑥(𝑡) = 0;

(iv) 𝑤(𝑡) > 0, 𝑤(𝑡) < 0.

2. Main Results

In this section we give some new sufficient conditions for all
solutions of NDDE (1) to be oscillatory.

Theorem 5. Assume that (2) and (9) hold, 𝑝(𝑡) ≤ −1, 𝜏 > 𝜎,
and

lim
𝑡→∞

inf ∫
𝑡+𝜏

𝑡+𝜎

[
𝑞 (𝑠 − 𝜏)

−𝑟 (𝑠 − 𝜎) 𝑝 (𝑠 − 𝜎)
] 𝑑𝑠 >

1

𝑒
. (15)

Then every solution of NDDE (1) is oscillatory.

Proof. Assume, for the sake of a contradiction, that (1) has an
eventually positive solution 𝑥(𝑡) > 0 for all 𝑡 ≥ 𝑡

0
> 0. Set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) . (16)

Then by Lemma 3 we have

𝑧 (𝑡) < 0. (17)
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Observe that

𝑧 (𝑡) > 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) . (18)

From which we find eventually

1

𝑝 (𝑡 + 𝜏 − 𝜎)
𝑞(𝑡)𝑧(𝑡 + 𝜏 − 𝜎)< 𝑞(𝑡)𝑥(𝑡 − 𝜎)= −(𝑟 (𝑡) 𝑧 (𝑡)),

(19)

and hence

𝑧 (𝑡) +
𝑟 (𝑡)

𝑟 (𝑡)
𝑧 (𝑡) +

𝑞 (𝑡)

𝑟 (𝑡) 𝑝 (𝑡 + 𝜏 − 𝜎)
𝑧 (𝑡 + 𝜏 − 𝜎) < 0.

(20)

Set

𝑧 (𝑡) = 𝑒
−∫
𝑡

𝑡0

(𝑟

(𝑠)/𝑟(𝑠))𝑑𝑠

𝑦 (𝑡) . (21)

This implies that 𝑦(𝑡) < 0.
Substituting in (20) yields for all 𝑡 ≥ 𝑡

0

𝑦 (𝑡) +
𝑞 (𝑡)

𝑟 (𝑡 + 𝜏 − 𝜎) 𝑝 (𝑡 + 𝜏 − 𝜎)
𝑦 (𝑡 + 𝜏 − 𝜎) < 0, (22)

or

𝑦 (𝑡) − [
𝑞 (𝑡)

−𝑟 (𝑡 + 𝜏 − 𝜎) 𝑝 (𝑡 + 𝜏 − 𝜎)
] 𝑦 (𝑡 + (𝜏 − 𝜎)) < 0.

(23)

In view of (15) and Lemma 2(iii), it is impossible for (23) to
have an eventually negative solution.This contradicts the fact
that 𝑦(𝑡) < 0 and the proof is complete.

Example 6. Consider NDDE

[
𝑒𝑡+1

𝑡 + 1
(𝑥 (𝑡) −

𝑡 + 1

𝑡
𝑥 (𝑡 − 2))]



+ 𝑒𝑡+2𝑥 (𝑡 − 1) = 0, 𝑡 > 0.

(24)

Here we have

𝑝 (𝑡) = −
𝑡 + 1

𝑡
≤ −1, 𝑞 (𝑡) = 𝑒𝑡+2,

𝑟 (𝑡) =
𝑒𝑡+1

𝑡 + 1
, 𝜏 = 2, 𝜎 = 1.

(25)

Then all the hypotheses of Theorem 5 are satisfied where

lim
𝑡→∞

inf ∫
𝑡+𝜏

𝑡+𝜎

𝑞 (𝑠 − 𝜏)

−𝑟 (𝑠 − 𝜎) 𝑝 (𝑠 − 𝜎)
𝑑𝑠

= lim
𝑡→∞

inf ∫
𝑡+2

𝑡+1

(𝑠 − 1) 𝑑𝑠 = lim
𝑡→∞

inf (𝑡 + 9

2
) = ∞ >

1

𝑒
.

(26)

Hence every solution of (24) is oscillatory.

Remark 7. Theorem 5 is an extent of [17, Theorem 2], [15,
Theorem 7], and [21, Theorem 6.4.3].

Theorem 8. Assume that (2) and (9) hold, −1 ≤ 𝑝(𝑡) ≤ 0, and

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜎

𝑞 (𝑠)

𝑟 (𝑠 − 𝜎)
𝑑𝑠 >

1

𝑒
. (27)

Then every solution of NDDE (1) oscillates.

Proof. Assume, for the sake of contradiction, that (1) has an
eventually positive solution 𝑥(𝑡) > 0 for all 𝑡 ≥ 𝑡

0
> 0. Set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡 − 𝜏) . (28)

Then by Lemma 3, it follows that

𝑧 (𝑡) > 0. (29)

As 𝑥(𝑡) > 𝑧(𝑡), it follows from (1) that

(𝑟 (𝑡) 𝑧 (𝑡)) + 𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) ≤ 0. (30)

Dividing the last inequality by 𝑟(𝑡) > 0, we obtain

𝑧 (𝑡) +
𝑟 (𝑡)

𝑟 (𝑡)
𝑧 (𝑡) +

𝑞 (𝑡)

𝑟 (𝑡)
𝑧 (𝑡 − 𝜎) ≤ 0. (31)

Let

𝑧 (𝑡) = 𝑒
−∫
𝑡

𝑡0

(𝑟

(𝑠)/𝑟(𝑠))𝑑𝑠

𝑦 (𝑡) . (32)

This implies that 𝑦(𝑡) > 0.
Substituting in (31) yields for all 𝑡 ≥ 𝑡

0

𝑦 (𝑡) +
𝑞 (𝑡)

𝑟 (𝑡 − 𝜎)
𝑦 (𝑡 − 𝜎) ≤ 0, 𝑡 ≥ 𝑡

0
. (33)

In view of Lemma 2(i) and (27), it is impossible for (33) to
have an eventually positive solution.This contradicts the fact
that 𝑦(𝑡) > 0 and the proof is complete.

Example 9. Consider the NDDE

[
1

𝑡
(𝑥 (𝑡) −

𝑡

𝑡 + 1
𝑥 (𝑡 − 𝜏))]



+
1

𝑡 − (5𝜋/2)
𝑥 (𝑡 −

5𝜋

2
) = 0,

𝑡 >
5𝜋

2
.

(34)

Note that all the hypotheses of Theorem 8 are satisfied:

lim
𝑡→∞

inf ∫
𝑡

𝑡−𝜎

𝑞 (𝑠)

𝑟 (𝑠 − 𝜎)
𝑑𝑠 = lim
𝑡→∞

inf ∫
𝑡

𝑡−(5𝜋/2)

𝑑𝑠 =
5𝜋

2
>
1

𝑒
.

(35)

Therefore every solution of (34) is oscillatory.

Remark 10. Theorem 8 is an extent of [17,Theorem 3] and [21,
Theorem 6.4.2].

Theorem 11. Assume that (2) holds with 𝑝(𝑡) ≡ 𝑝 ̸= ±1, 𝑟(𝑡) ≡
𝑟 > 0, 𝑞(𝑡) being 𝜏 periodic, and

1

𝑟 (1 + 𝑝)
lim
𝑡→∞

inf ∫
𝑡−𝜏

𝑡−𝜎

𝑞 (𝑠) 𝑑𝑠 >
1

𝑒
. (36)
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Then every solution of NDDE

[𝑟 (𝑥(𝑡) + 𝑝𝑥 (𝑡 − 𝜏))]


+ 𝑞 (𝑡) 𝑥 (𝑡 − 𝜎) = 0, 𝑡 ≥ 𝑡
0
,
(37)

is oscillatory.

Proof. Assume, for the sake of contradiction, that (37) has an
eventually positive solution 𝑥(𝑡) > 0 for all 𝑡 ≥ 𝑡

0
> 0. Set

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑝𝑥 (𝑡 − 𝜏) ,

𝑤 (𝑡) = 𝑧 (𝑡) + 𝑝𝑧 (𝑡 − 𝜏) .
(38)

It is easily seen, by direct substituting, that 𝑧(𝑡) and 𝑤(𝑡) are
also solutions of (37). That is,

𝑟𝑧 (𝑡) + 𝑝𝑟𝑧 (𝑡 − 𝜏) + 𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) = 0, (39)

𝑟𝑤 (𝑡) + 𝑝𝑟𝑤 (𝑡 − 𝜏) + 𝑞 (𝑡) 𝑤 (𝑡 − 𝜎) = 0. (40)

By Lemma 4, 𝑧(𝑡) is decreasing and either (13) or (14) holds.
In either case we claim that

𝑤 (𝑡 − 𝜏) ≥ 𝑤 (𝑡) . (41)

Indeed,

𝑤 (𝑡) = −
1

𝑟
𝑞 (𝑡) 𝑧 (𝑡 − 𝜎) ≤ −

1

𝑟
𝑞 (𝑡) 𝑧 (𝑡 − 𝜎 − 𝜏)

= −
1

𝑟
𝑞 (𝑡 − 𝜏) 𝑧 (𝑡 − 𝜎 − 𝜏) = 𝑤 (𝑡 − 𝜏) .

(42)

Furthermore, we have by Lemma 4 that as long as 𝑝 ̸= ± 1,

𝑤 (𝑡) > 0. (43)

Using (41) in (40) implies

𝑟 (1 + 𝑝)𝑤 (𝑡 − 𝜏) + 𝑞 (𝑡) 𝑤 (𝑡 − 𝜎) ≤ 0 (44)

or

𝑤 (𝑡 − 𝜏) +
1

𝑟 (1 + 𝑝)
𝑞 (𝑡) 𝑤 (𝑡 − 𝜎) ≤ 0. (45)

Since 𝑞(𝑡) is periodic of period 𝜏, we find

𝑤 (𝑡) +
1

𝑟 (1 + 𝑝)
𝑞 (𝑡) 𝑤 (𝑡 − (𝜎 − 𝜏)) ≤ 0, if 1 + 𝑝 > 0,

(46)
or

𝑤 (𝑡) − [
1

−𝑟 (1 + 𝑝)
] 𝑞 (𝑡) 𝑤 (𝑡 + (𝜏 − 𝜎)) ≥ 0,

if 1 + 𝑝 < 0.

(47)

In view of Lemma 2((i) and (iv)) and (36), it is impossible
for (46) and (47) to have eventually positive solutions.
This contradicts the fact that 𝑤(𝑡) > 0 and the proof is
complete.

Remark 12. Theorem 11 extends [15, Theorems 8 and 10]. See
also [21, Theorem 6.4.4].
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