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By using a linear operator, we obtain some new results for a normalized analytic function f defined by means of the Hadamard
product of Hurwitz zeta function. A class related to this function will be introduced and the properties will be discussed.

1. Introduction

A meromorphic function is a single-valued function, that is,
analytic in all but possibly a discrete subset of its domain, and
at those singularities it must go to infinity like a polynomial
(i.e., these exceptional points must be poles and not essential
singularities). A simpler definition states that a meromorphic
function 𝑓(𝑧) is a function of the form

𝑓 (𝑧) =
𝑔 (𝑧)

ℎ (𝑧)
, (1)

where 𝑔(𝑧) and ℎ(𝑧) are entire functions with ℎ(𝑧) ̸= 0 (see
[1, page 64]). A meromorphic function therefore may only
have finite-order, isolated poles and zeros and no essential
singularities in its domain. A meromorphic function with an
infinite number of poles is exemplified by csc(1/𝑧) on the
punctured disk 𝑈∗ = {𝑧 : 0 < |𝑧| < 1}.

An equivalent definition of a meromorphic function is a
complex analytic map to the Riemann sphere. For example,
the Gamma function is meromorphic in the whole complex
plane; see [1, 2].

In the present paper, we will derive some properties of
univalent functions defined by means of the Hadamard pro-
duct of Hurwitz Zeta function; a class related to this function
will be introduced and the properties of the liner operator
𝐿𝑡
𝑎
(𝛼, 𝛽)𝑓(𝑧) will be discussed.

2. Preliminaries

Let Σ denote the class of meromorphic functions 𝑓(𝑧) nor-
malized by

𝑓 (𝑧) =
1

𝑧
+
∞

∑
𝑛=1

𝑎
𝑛
𝑧𝑛, (2)

which are analytic in the punctured unit disk 𝑈∗. For 0 ≤ 𝛽,
we denote by 𝑆∗(𝛽) and 𝑘(𝛽) the subclasses of Σ consisting of
all meromorphic functions which are, respectively, starlike of
order 𝛽 and convex of order 𝛽 in 𝑈∗.

For functions 𝑓
𝑗
(𝑧) (𝑗 = 1; 2) defined by

𝑓
𝑗
(𝑧) =

1

𝑧
+
∞

∑
𝑛=1

𝑎
𝑛,𝑗
𝑧𝑛, (3)

we denote the Hadamard product (or convolution) of 𝑓
1
(𝑧)

and 𝑓
2
(𝑧) by

(𝑓
1
∗ 𝑓
2
) =

1

𝑧
+
∞

∑
𝑛=1

𝑎
𝑛,1

𝑎
𝑛,2

𝑧𝑛. (4)

Let us define the function 𝜙(𝛼, 𝛽; 𝑧) by

𝜙 (𝛼, 𝛽; 𝑧) =
1

𝑧
+
∞

∑
𝑛=0

(𝛼)
𝑛+1

(𝛽)
𝑛+1

𝑧𝑛, (5)
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for 𝛽 ̸= 0, −1, −2, . . ., and 𝛼 ∈ C/{0}, where (𝜆)𝑛 = 𝜆(𝜆 + 1)
𝑛+1

is the Pochhammer symbol. We note that

𝜙 (𝛼, 𝛽; 𝑧) =
1

𝑧2
𝐹
1
(1, 𝛼, 𝛽; 𝑧) , (6)

where

2
𝐹
1
(𝑏, 𝛼, 𝛽; 𝑧) =

∞

∑
𝑛=0

(𝑏)
𝑛
(𝛼)
𝑛

(𝛽)
𝑛

𝑧𝑛

𝑛!
(7)

is the well-known Gaussian hypergeometric function.
We recall here a general Hurwitz-Lerch-Zeta function,

which is defined in [3, 4] by the following series:

Φ (𝑧, 𝑡, 𝑎) =
1

𝑎𝑡
+
∞

∑
𝑛=1

𝑧𝑛

(𝑛 + 𝑎)𝑡
(8)

(𝑎 ∈ C/Z−
0
, Z−
0
= {0, −1, −2, . . .}; 𝑡 ∈ C when 𝑧 ∈ 𝑈 = 𝑈∗ ⊂

{0};R(𝑡) > 1 when 𝑧 ∈ 𝜕𝑈).
Important special cases of the functionΦ(𝑧, 𝑡, 𝑎) include,

for example, the Riemann zeta function 𝜁(𝑡) = Φ(1, 𝑡, 1),
the Hurwitz zeta function 𝜁(𝑡, 𝑎) = Φ(1, 𝑡, 𝑎), the Lerch zeta
function 𝑙

𝑡
(𝜁) = Φ(exp2𝜋𝑖𝜉, 𝑡, 1), (𝜉 ∈ R,R(𝑡) > 1), and the

polylogarithm 𝐿𝑖
𝑡
(𝑧) = 𝑧Φ(𝑧, 𝑡, 𝑎). Recent results onΦ(𝑧, 𝑡, 𝑎)

can be found in the expositions [5, 6]. By making use of the
following normalized function we define

𝐺
𝑡,𝑎

(𝑧) = (1 + 𝑎)
𝑡 [Φ (𝑧, 𝑡, 𝑎) − 𝑎𝑡 +

1

𝑧(1 + 𝑎)𝑡
]

=
1

𝑧
+
∞

∑
𝑛=1

(
1 + 𝑎

𝑛 + 𝑎
)
𝑡

𝑧𝑛, (𝑧 ∈ 𝑈∗) .

(9)

Corresponding to the functions 𝐺
𝑡,𝑎
(𝑧) and using the Hada-

mard product for 𝑓(𝑧) ∈ Σ, we define a new linear operator
𝐿
𝑡,𝑎
(𝛼, 𝛽) on Σ by the following series:

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧) = 𝜙 (𝛼, 𝛽; 𝑧) ∗ 𝐺

𝑡,𝑎
(𝑧)

=
1

𝑧
+
∞

∑
𝑛=1

(𝛼)
𝑛+1

(𝛽)
𝑛+1

(
1 + 𝑎

𝑛 + 𝑎
)
𝑡

𝑎
𝑛
𝑧𝑛.

(𝑧 ∈ 𝑈∗) .

(10)

The meromorphic functions with the generalized hypergeo-
metric functions were considered recently by many others;
see, for example, [7–12].

It follows from (10) that

𝑧(𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

󸀠

= 𝛼 (𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)) − (𝛼 + 1) 𝐿

𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧) .

(11)

In order to prove our main results, we recall the following
lemma according to Yang [13].

Lemma 1. Let 𝑞(𝑧) = 1 + 𝑞
𝑛
𝑧𝑛 + 𝑞

𝑛+1
𝑧𝑛+1 + ⋅ ⋅ ⋅ be analytic

functions in 𝑈 = 𝑈∗ ∪ {0} with 𝑞(𝑧) ̸= 0 for 𝑧 ∈ 𝑈. If

R{1 + 𝑎
𝑧𝑞󸀠 (𝑧)

𝑞2 (𝑧)
} < 𝑀, (𝑧 ∈ 𝑈) , (12)

where 𝑎 > 0, and

1 < 𝑀 ≤
𝑛 𝑎

2 log 2
, (13)

then

R{
1

𝑞 (𝑧)
} > 1 −

2 (𝑀 − 1)

𝑛𝑎
log 2, (𝑧 ∈ 𝑈) . (14)

The bound in (14) is the best possible.

3. Main Results

We begin with the following theorem.

Theorem 2. Let 𝛼 + 1 > 0, 𝐿𝑡
𝑎
(𝛼, 𝛽)𝑓(𝑧)/𝐿𝑡

𝑎
(𝛼 + 1, 𝛽)𝑓(𝑧) ̸= 0

for 𝑧 ∈ 𝑈∗ and suppose that

R{1 +
𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

(𝛼 + 1) 𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

(1 +
𝛼𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

)

−
𝐿𝑡
𝑎
(𝛼 + 2, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

} < 𝑀,

(15)

where

1 < 𝑀 ≤
𝑛

2 (𝛼 + 1) log 2
. (16)

Then

R{
𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

}

> 1 −
2 (𝛼 + 1) (𝑀 − 1)

𝑛
log 2, (𝑧 ∈ 𝑈∗) .

(17)

The bound in (17) is the best possible.

Proof. Define the function 𝑞(𝑧) by

𝑞 (𝑧) =
𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

. (18)

Then, clearly 𝑞(𝑧) = 1+𝑞
𝑛
𝑧𝑛+𝑞
𝑛+1

𝑧𝑛+1+⋅ ⋅ ⋅ analytic function
in 𝑈∗ with 𝑞(𝑧) ̸= 0 for 𝑧 ∈ 𝑈∗. It follows from (18) and (11)
that

𝑧𝑞󸀠 (𝑧)

𝑞 (𝑧)
=

𝑧(𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

󸀠

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

−
𝑧(𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))

󸀠

𝐿∗
𝑝
(𝑎 + 1, 𝑐) 𝑓 (𝑧)

(19)

by making use of the familiar identity (11) in (19), we obtain

𝐿𝑡
𝑎
(𝛼 + 2, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

=
1

𝛼 + 1
+

1

(𝛼 + 1) 𝑞 (𝑧)
−

𝑧𝑞󸀠 (𝑧)

(𝛼 + 1) 𝑞 (𝑧)
(20)
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or, equivalent,

1 +
1

(𝛼 + 1)

𝑧𝑞󸀠 (𝑧)

𝑞2 (𝑧)

= 1 +
𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

(𝛼 + 1) 𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

(1 +
𝛼𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

)

−
𝐿𝑡
𝑎
(𝛼 + 2, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

.

(21)

Applying Lemma 1, with 𝑎 = 1/(1 + 𝛼), we get the required
result.

Letting 𝛼 = 𝛽 = 1 in Theorem 2, we have the following.

Corollary 3. Let 𝐺
𝑡,𝑎
(𝑧)/𝑧(𝐺

𝑡,𝑎
(𝑧))󸀠 ̸= 0 for 𝑧 ∈ 𝑈∗ and

suppose that

R{1 +
𝑧(𝐺
𝑡,𝑎

(𝑧))
󸀠

2𝐺
𝑡,𝑎

(𝑧)
(1 +

𝑧(𝐺
𝑡,𝑎

(𝑧))
󸀠

𝐺
𝑡,𝑎

(𝑧)
)

−
𝑧(𝐺
𝑡,𝑎

(𝑧))
󸀠

+ (1/2) (𝐺
𝑡,𝑎

(𝑧))
󸀠󸀠

𝐺
𝑡,𝑎

(𝑧)
} < 𝑀,

(22)

where

1 < 𝑀 ≤
𝑛

4 log 2
. (23)

Then

R{
𝑧(𝐺
𝑡,𝑎

(𝑧))
󸀠

𝐺
𝑡,𝑎

(𝑧)
} > 1 −

4 (𝑀 − 1)

𝑛
log 2, (𝑧 ∈ 𝑈∗) .

(24)

The bound in (24) is the best possible.

Letting 𝑀 = 1 + 𝑛/4 log 2 in Corollary 3, we have the
following.

Corollary 4. Let 𝐺
𝑡,𝑎
(𝑧)/𝑧(𝐺

𝑡,𝑎
(𝑧))󸀠 ̸= 0 and 𝑡 = 0 for 𝑧 ∈ 𝑈∗

and suppose that

R{1 +
𝑧𝑓󸀠 (𝑧)

2𝑓 (𝑧)
(1 +

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
) −

𝑧𝑓󸀠 (𝑧) + (1/2) 𝑧2𝑓󸀠󸀠 (𝑧)

𝑓 (𝑧)
}

< 1 +
𝑛

4 log 2
.

(25)

Then 𝑓(𝑧) is starlike in 𝑈∗.

Theorem 5. Let 𝛿(𝛼+1) > 0, 𝑧𝐿𝑡
𝑎
(𝛼+1, 𝛽)𝑓(𝑧) ̸= 0 for 𝑧 ∈ 𝑈∗

and suppose that

R{(𝑧𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))

𝛿

(
𝐿𝑡
𝑎
(𝛼 + 2, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

)} < 𝑀,

(26)

where

1 < 𝑀 ≤
𝑛

2𝛿 (𝛼 + 1) log 2
. (27)

Then

R(𝑧𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))

𝛿

> 1 −
2𝛿 (𝛼 + 1) (𝑀 − 1)

𝑛
log 2, (𝑧 ∈ 𝑈∗) .

(28)

The bound in (28) is the best possible.

Proof. Define the function 𝑞(𝑧) by

𝑞 (𝑧) = (𝑧𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))

𝛿

. (29)

Then, clearly 𝑞(𝑧) = 1+𝑞
𝑛
𝑧𝑛+𝑞
𝑛+1

𝑧𝑛+1+⋅ ⋅ ⋅ analytic function
in 𝑈∗ with 𝑞(𝑧) ̸= 0 for 𝑧 ∈ 𝑈∗. It follows from (29) that

𝑧𝑞󸀠 (𝑧)

𝛿𝑞 (𝑧)
=

𝑧(𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))

󸀠

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

− 1. (30)

by making use of the familiar identity (11) in (30), we get

𝐿𝑡
𝑎
(𝛼 + 2, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

− 1 =
1

𝛿 (𝛼 + 1)

𝑧𝑞󸀠 (𝑧)

𝑞 (𝑧)
, (31)

or, equivalent

1 +
1

𝛿 (𝛼 + 1)

𝑧𝑞󸀠 (𝑧)

𝑞2 (𝑧)

= (𝑧𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))

𝛿

(
𝐿𝑡
𝑎
(𝛼 + 2, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

) .

(32)

Applying Lemma 1, with 𝑎 = 1/(1 + 𝛼), we get the required
result.

Letting 𝛼 = 𝛽 = 1 in Theorem 5, we have

Corollary 6. Let 𝛿 > 0, 𝐺
𝑡,𝑎
(𝑧) ̸= 0 for 𝑧 ∈ 𝑈∗ and suppose

that

R{(𝑧𝐺
𝑡,𝑎
(𝑧))
𝛿

(
𝑧(𝐺
𝑡,𝑎
(𝑧))
󸀠

+ (1/2) (𝐺
𝑡,𝑎
(𝑧))
󸀠󸀠

𝐺
𝑡,𝑎

(𝑧)
)} < 𝑀,

(33)

where

1 < 𝑀 ≤
𝑛

4𝛿 log 2
. (34)

Then

R(𝑧𝐺
𝑡,𝑎
(𝑧))
𝛿

> 1 −
4𝛿 (𝑀 − 1)

𝑛
log 2, (𝑧 ∈ 𝑈∗) . (35)

The bound in (35) is the best possible.

Letting 𝛿 = 1,𝑀 = 1+𝑛/8 log 2, and 𝑡 = 0 in Corollary 6,
we have the following.
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Corollary 7. Let 𝑓󸀠(𝑧) ̸= 0 for 𝑧 ∈ 𝑈∗ and suppose that

R{𝑧𝑓(𝑧)
󸀠 (1 +

𝑧𝑓󸀠󸀠 (𝑧)

2𝑓󸀠 (𝑧)
)} < 1 +

𝑛

8 log 2
. (36)

Then

R {𝑧𝑓(𝑧)
󸀠} > 0, (𝑧 ∈ 𝑈∗) . (37)

The result is sharp.

Theorem8. Let 𝜉 > 0, 𝑧(𝐿𝑡
𝑎
(𝛼 + 1, 𝛽)𝑓(𝑧))

󸀠

/𝐿𝑡
𝑎
(𝛼, 𝛽)𝑓(𝑧) ̸= 0

for 𝑧 ∈ 𝑈∗ and suppose that

R
{
{
{

1 + (
𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

)

𝜉

× (
(𝛼 + 1) 𝐿𝑡

𝑎
(𝛼 + 2, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

)

− 𝛼(
𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

)

𝜉

− 1
}
}
}

< 𝑀,

(38)

where

1 < 𝑀 ≤ 1 +
𝑛

2𝜉 log 2
. (39)

Then

R(
𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

)

𝜉

> 1 −
2𝜉 (𝑀 − 1)

𝑛
log 2 (𝑧 ∈ 𝑈∗) .

(40)

The bound in (40) is the best possible.

Proof. Define the function 𝑞(𝑧) by

𝑞 (𝑧) = (
𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

)

𝜉

. (41)

Then, clearly 𝑞(𝑧) = 1+𝑞
𝑛
𝑧𝑛+𝑞
𝑛+1

𝑧𝑛+1+⋅ ⋅ ⋅ analytic function
in𝑈∗ with 𝑞(𝑧) ̸= 0 for 𝑧 ∈ 𝑈∗. Also by a simple computation
and by making use of the familiar identity (11), we find from
(41) that

1 +
1

𝜉

𝑧𝑞󸀠 (𝑧)

𝑞2 (𝑧)
= 1 + (

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

)

𝜉

×(
(𝛼 + 1) 𝐿𝑡

𝑎
(𝛼 + 2, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

−𝛼(
𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

)

𝜉

− 1) .

(42)

Applying Lemma 1, with 𝑎 = 1/𝜉, we get the required result.

Letting 𝛼 = 𝛽 = 1 in Theorem 8, we have the following.

Corollary 9. Let 𝜉 > 0, 𝑧(𝐺
𝑡,𝑎
(𝑧))󸀠/𝐺

𝑡,𝑎
(𝑧) ̸= 0 for 𝑧 ∈ 𝑈∗ and

suppose that

R
{
{
{

1 + (
𝐺
𝑡,𝑎

(𝑧)

𝑧(𝐺
𝑡,𝑎

(𝑧))
󸀠
)

𝜉

× (1 +
𝑧(𝐺
𝑡,𝑎

(𝑧))
󸀠󸀠

(𝐺
𝑡,𝑎

(𝑧))
− (

𝐺
𝑡,𝑎
(𝑧)

𝑧(𝐺
𝑡,𝑎
(𝑧))
󸀠
)

𝜉

)
}
}
}

< 𝑀,

(43)

where

1 < 𝑀 ≤ 1 +
𝑛

2𝜉 log 2
. (44)

Then

R(
𝐺
𝑡,𝑎
(𝑧)

𝑧(𝐺
𝑡,𝑎
(𝑧))
󸀠
)

𝜉

> 1 −
2𝜉 (𝑀 − 1)

𝑛
log 2, (𝑧 ∈ 𝑈) . (45)

The bound in (45) is the best possible.

Letting 𝜉 = 1,𝑀 = 1+𝑛/2 log 2, and 𝑡 = 0 in Corollary 9,
we have the following.

Corollary 10. Let 𝑧𝑓󸀠(𝑧)/𝑓(𝑧) ̸= 0 for 𝑧 ∈ 𝑈∗ and suppose
that

R{1 + (
𝑓(𝑧)

𝑧𝑓󸀠(𝑧)
)
𝜉

(1 +
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
− (

𝑓(𝑧)

𝑧𝑓󸀠(𝑧)
)
𝜉

)}

< 1 +
𝑛

2 log 2
.

(46)

Then

R(
𝑓 (𝑧)

𝑧𝑓󸀠 (𝑧)
) > 0, (𝑧 ∈ 𝑈∗) . (47)

The result is sharp.
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