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We introduce a new general TV regularizer, namely, generalized TV regularization, to study image denoising and nonblind image
deblurring problems. In order to discuss the generalized TV image restoration with solution-driven adaptivity, we consider the
existence and uniqueness of the solution formixed quasi-variational inequality.Moreover, the convergence of amodified projection
algorithm for solving mixed quasi-variational inequalities is also shown. The corresponding experimental results support our
theoretical findings.

1. Introduction

Digital image restoration plays an important role in many
applications of sciences and engineering such as medical
and astronomical imaging, film restoration, and image and
video coding. Recovering an image from a degraded image
is usually an ill-posed inverse problem and it should be
dealt with through selecting a suitable regularizer. Since
the work of Rudin, Osher, and Fatemi (ROF) in [1], the
regularization methods based on total variation (TV) have
known a success, mostly due to their ability to preserve edges
in the image. In recent years, a number of researchworks have
been proposed in the field of TV regularization approaches,
which are used for the task of image denoising and nonblind
image deblurring. Aujol et al. [2] replaced 𝐿

2
norm of the

data fidelity term by 𝐿
1
norm to modify the ROF functional

model. The TV regularization approaches in [3, 4] can be
described by means of locally dependent constraint sets; that
is, the functional is adaptive to the input data. Another class
of approaches are the nonlocal methods [5, 6] including
nonlocal variants of TV regularization. [7–9] extended TV
regularization to second- or higher-order cases. These works

mentioned above considered TV regularization approaches
for solving the image denoising problems. In addition, these
approaches can also be utilized for the image deblurring;
see, for example, [10–12]. Chambolle [10] proposed algorithm
for minimizing the TV model and applied the algorithm to
image zooming. A TV deblurring approach with adaptive
choice of the regularization parameter was presented in [12].
In all these literatures, the image restoration problem is
always regarded as optimization problem using discrete TV
regularization. How to solve such optimization problem with
a TV regularization, which is fundamental and crucial, is the
core problem in our discussion.

It is well known that the theory of variational inequality
has been developed as a class of important tools for the study
of minimization problems; see, for example, [13]. Among
such variational inequalities, inverse variational inequalities,
mixed variational inequalities, and quasi-variational inequal-
ities are very significant generalizations, which have been
applied to a wide range of problems, such as mechanics,
economics, finance, optimal control, and transportation.
References [14, 15] proposedTikhonov regularizationmethod
and a general regularization method for solving inverse
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variational inequality problems. Luo and Yang [16, 17] further
extended the results of [14, 15] to the inverse mixed varia-
tional inequality problems.The generalized quasi-variational
inequality problem was introduced in [18]. However, to
our knowledge, a few works implemented quasi-variational
inequality to deal with image restoration problem. Recently,
Lenzen et al. [19–21] firstly considered a class of quasi-
variational inequalities for studying adaptive image restora-
tion, where adaptivity is solution-driven adaptivity. More-
over, they showed that a lot of experimental results support
their theoretical findings.

Inspired and motivated by the works of [19, 20], in
this paper, we introduce a general TV regularization which
includes TV regularization of the classical ROF model [1] as
its special case. For solving the minimization problem with
generalized TV regularization, we discuss its dual problem,
which is like the following formulation:

min
𝑝∈D

{𝐹 (𝑝) + Φ (𝑝)} , (1)

where D is a convex constraint set. For generalizing the
regularization approach to solution-driven adaptivity, we find
a fixed point of the following mapping:

𝑝
0
󳨃󳨀→ 𝑝 fl argmin

𝑝∈D(𝑝0)

{𝐹 (𝑝) + Φ (𝑝)} . (2)

The above fixed point problem is equivalent to solving
a mixed quasi-variational inequality [22]. We provide the
existence and uniqueness of a fixed point for the mixed
quasi-variational inequality for adaptive image restoration.
Thus, our theoretical results generalize the research works of
[19]. Meanwhile, we propose amodified projection algorithm
for solving mixed quasi-variational inequality and prove its
convergence. Finally, we give improved experimental results
compared to the experiments presented in [19]. Moreover,
our experimental results show that the solution-driven adap-
tive generalized TV model produces excellent restoration
effects for different test images.

The rest of this paper is organized as follows. In Section 2,
we recall some notations concerned with generalized Φ-
projection operator. In Section 3, we introduce the general-
ized TV regularization which covers other TV regularizers
given in literature. Our model of solution-driven adaptivity
described by means of mixed quasi-variational inequalities
is shown in Section 4. We consider the theoretical results
in Section 5, where we prove the existence and uniqueness
of the solution for mixed quasi-variational inequality. In
Section 6, we present a modified projection algorithm and
its convergence. We give a lot of numerical experiments
supporting our theoretical results and showing our better
improvement in Section 7. Finally, we conclude this paper in
Section 8.

2. Preliminaries

In this section, we recall the concept of the generalized Φ-
projection operator, together with its properties.

Let Ω be a nonempty closed convex subset of R𝑛. Let 𝐺 :

R𝑛 × Ω → R ∪ {+∞} be a function defined as follows:

𝐺 (𝑥, 𝜉) = ‖𝑥‖
2
− 2 ⟨𝑥, 𝜉⟩ +

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

+ 2𝜌Φ (𝜉) , (3)

where 𝜉 ∈ Ω, 𝑥 ∈ R𝑛, 𝜌 is a positive number, and Φ : Ω →

R ∪ {+∞} is a proper, convex, and lower semicontinuous
function.

Definition 1. The generalized Φ-projection operator ΠΦ
Ω

:

R𝑛 󴁂󴀱 Ω is defined as

Π
Φ

Ω
(𝑥) = {𝑢 ∈ Ω : 𝐺 (𝑥, 𝑢) = inf

𝜉∈Ω

𝐺 (𝑥, 𝜉)} ,

∀𝑥 ∈ R
𝑛
.

(4)

From Lemmas 3.1 and 3.2 of [25], we know that ΠΦ
Ω
is a

single valued and nonexpansive mapping and 𝑥∗ = Π
Φ

Ω
(𝑥) if

and only if

⟨𝑥
∗
− 𝑥, 𝑦 − 𝑥

∗
⟩ + 𝜌Φ (𝑦) − 𝜌Φ (𝑥

∗
) ≥ 0, ∀𝑦 ∈ Ω. (5)

3. Generalized TV Regularization

In this section, we introduce a new variational approach
for image denoising and nonblind image deblurring that is
based on total variation regularization. Our general approach
covers various adaptive and anisotropic types of TV regular-
ization approaches.

The image deblurring problem formulation is as follows.
Let 𝑓 ∈ R𝑛 be a degraded noisy image, which is obtained
from a noise-free image 𝑢 ∈ R𝑛 by convolution with a
blurring kernel𝑀, followed by an addition of Gaussian noise;
that is,

𝑓 = 𝑀𝑢 + 𝛿, (6)

where𝑀 is 𝑛×𝑛 invertiblematrix and 𝛿 is a Gaussian random
variable with zero mean. The above problem is a typical
inverse problem. In order to recover 𝑢 from 𝑓, assuming
that 𝑢 󳨃→ 𝑀 ∗ 𝑢 is a mapping from R𝑛 → R𝑛, we aim at
considering the following optimization problem:

argmin
𝑢∈R𝑛

𝐸 (𝑢) =
1

2

󵄩󵄩󵄩󵄩𝑀𝑢 − 𝑓
󵄩󵄩󵄩󵄩

2

𝐿
2 + 𝛼TV (𝑢) , 𝛼 > 0. (7)

In particular, if 𝑀 fl Id, the minimization problem (7)
reduces to image denoising problem, where Id denotes an
identity mapping.

Now we denote by 𝐿 : R𝑛𝑑 → R𝑛 the discretization of the
divergence operator div and denote by ‖ ⋅ ‖

2
𝐿
2
norm. Let us

define the following generalized total variation regularizer:

𝛼TV (𝑢) fl sup
𝑝∈D

{⟨𝐿𝑝, 𝑢⟩
𝐿2
−
󵄩󵄩󵄩󵄩󵄩
𝑀
−⊤
𝐿𝑝
󵄩󵄩󵄩󵄩󵄩2
} , (8)

where

D = {𝑝 ∈ R
𝑛𝑑
, 𝑝
𝑖
∈ 𝐵
𝛼
(0) , 𝑖 = 1, . . . , 𝑛} (9)
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for 𝑝 = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
)
⊤ with 𝑝

𝑖
∈ R𝑑 and 𝐵

𝛼
(0) is 𝑑-

dimensional closed ball with radius 𝛼 centered at 0. Then the
optimization problem is given as

argmin
𝑢∈R𝑛

𝐸 (𝑢) =
1

2

󵄩󵄩󵄩󵄩𝑀𝑢 − 𝑓
󵄩󵄩󵄩󵄩

2

2

+ sup
𝑝∈D

{⟨𝐿𝑝, 𝑢⟩
𝐿2
−
󵄩󵄩󵄩󵄩󵄩
𝑀
−⊤
𝐿𝑝
󵄩󵄩󵄩󵄩󵄩2
} .

(10)

Problem (10) includes a large variety of problems as its special
cases:

(i) If ‖𝑀−⊤𝐿𝑝‖
2
= 0, then (10) reduces to problem (2.12)

of [19].
(ii) If ‖𝑀−⊤𝐿𝑝‖

2
= 0 and 𝑀 fl Id, then (10) reduces to

the classical ROF model of [1].

We derive the corresponding dual problem of (10) as
follows. The optimality condition for 𝑢 reads

𝑀
⊤
(𝑀𝑢 − 𝑓) + 𝐿𝑝 = 0. (11)

It follows from (11) that

𝑢 = 𝑀
−1
(𝑓 −𝑀

−⊤
𝐿𝑝) , (12)

𝑀𝑢 = 𝑓 −𝑀
−⊤
𝐿𝑝, (13)

where 𝑀−⊤ fl (𝑀
⊤
)
−1
. Using the abbreviation 𝐴 fl 𝑀

−⊤
𝐿,

from (11) and (12) we obtain the dual problem

𝐸
∗
(𝑝) =

1

2

󵄩󵄩󵄩󵄩𝑀𝑢 − 𝑓
󵄩󵄩󵄩󵄩

2

2
+ ⟨𝐿𝑝, 𝑢⟩

𝐿2
−
󵄩󵄩󵄩󵄩󵄩
𝑀
−⊤
𝐿𝑝
󵄩󵄩󵄩󵄩󵄩2

=
1

2

󵄩󵄩󵄩󵄩󵄩
𝑀
−⊤
𝐿𝑝
󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑓
⊤
𝑀
−⊤
𝐿𝑝

− (𝑀
−1
𝑀
−⊤
𝐿𝑝)
⊤

𝐿𝑝 −
󵄩󵄩󵄩󵄩󵄩
𝑀
−⊤
𝐿𝑝
󵄩󵄩󵄩󵄩󵄩2

=
1

2

󵄩󵄩󵄩󵄩𝐴𝑝
󵄩󵄩󵄩󵄩

2

2
+ 𝑓𝐴𝑝 − (𝐴𝑝)

⊤

𝐴𝑝 −
󵄩󵄩󵄩󵄩𝐴𝑝

󵄩󵄩󵄩󵄩2

= −
1

2
(
󵄩󵄩󵄩󵄩𝐴𝑝

󵄩󵄩󵄩󵄩

2

2
− 2𝑓𝐴𝑝) −

󵄩󵄩󵄩󵄩𝐴𝑝
󵄩󵄩󵄩󵄩2

= −
1

2
(⟨𝐴𝑝 − 𝑓,𝐴𝑝 − 𝑓⟩

𝐿2
−
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

2
) −

󵄩󵄩󵄩󵄩𝐴𝑝
󵄩󵄩󵄩󵄩2

= −
1

2

󵄩󵄩󵄩󵄩𝐴𝑝 − 𝑓
󵄩󵄩󵄩󵄩

2

2
+
1

2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

2
−
󵄩󵄩󵄩󵄩𝐴𝑝

󵄩󵄩󵄩󵄩2
.

(14)

When maximizing 𝐸
∗
(𝑝) over D, the constant term

(1/2)‖𝑓‖
2

2
can be omitted without changing the optimum.

Moreover, the maximization of 𝐸∗ equals the minimization
of 𝐺(𝑝) fl −𝐸

∗
(𝑝), and we can formulate the dual problem

of (10) as

argmin
𝑝∈D

𝐺 (𝑝) = 𝐹 (𝑝) + Φ (𝑝)

=
1

2

󵄩󵄩󵄩󵄩𝐴𝑝 − 𝑓
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩𝐴𝑝

󵄩󵄩󵄩󵄩2

(15)

withD fl D1loc×D
2

loc×⋅ ⋅ ⋅×D
𝑛

loc, where each local constraint
setD𝑖loc is a 𝑑-dimensional closed ball.

From a solution 𝑝 of the dual problem, we can retrieve
the solution 𝑢 of the primal problem by 𝑢 = 𝑀

−1
(𝑓 − 𝐴𝑝).

Therefore, the key issue in our discussion of generalized TV
image restoration problem is to solve the aboveminimization
problem (15).

4. Solution-Driven Adaptivity

In [20], Lenzen et al. proposed a kind of adaptivity, where the
constraint set D depends on the unknown solution 𝑝 of the
problem. Naturally, the adaptivity is determined by the noise-
free image 𝑢, which can be obtained by 𝑢 = 𝑀

−1
(𝑓 − 𝐴𝑝).

Moreover, the experimental results of [19] showed that the
adaptivity was improved by solution-driven model. In the
following, in order to study generalized TV image restoration
with solution-driven adaptivity, we generalize problem (15)
by introducing a dependency ofD on the dual variable: find
a fixed point 𝑝∗ of the mapping

𝑝
0
󳨃󳨀→ 𝑝 fl argmin

𝑝∈D(𝑝0)

𝐺 (𝑝) = 𝐹 (𝑝) + Φ (𝑝) . (16)

Having found a fixed point 𝑝∗, the corresponding constraint
set isD(𝑝

∗
); that is, the adaptivity is solution-driven. Solving

problem (16) is equivalent to considering the followingmixed
quasi-variational inequality (MQVI):

find 𝑝
∗
∈ D (𝑝

∗
) such that ⟨∇𝐹 (𝑝∗) , 𝑝 − 𝑝∗⟩

+ Φ (𝑝) − Φ (𝑝
∗
) ≥ 0, ∀𝑝 ∈ D (𝑝

∗
) ,

(17)

where 𝐹(𝑝) = (1/2)‖𝐴𝑝 − 𝑓‖2
2
and Φ(𝑝) = ‖𝐴𝑝‖

2
.

From (5), it is easy to see that theMQVI (17) is equivalent
to the following projection equation:

𝑝
∗
= Π
Φ

D(𝑝∗) (𝑝
∗
− 𝜌∇𝐹 (𝑝

∗
)) , ∀𝜌 > 0. (18)

5. Theory for MQVI

In this section, we provide the existence and uniqueness
results for the MQVI (17).

5.1. Existence of Solutions

Theorem 2. Let 𝐹(𝑝) fl (1/2)‖𝐴𝑝 − 𝑓‖
2

2
and Φ(𝑝) fl ‖𝐴𝑝‖

2
,

where 𝐴 : R𝑚𝑛 → R𝑛 is a linear operator. LetD(𝑝) be defined
as follows:

D : 𝑝 󴁂󴀱 D (𝑝) fl {𝑝 ∈ R
𝑚𝑛

: 𝑝
𝑖
∈ D
𝑖

loc (𝑝) ⊂ R
𝑚𝑛
, 𝑖 = 1, . . . , 𝑛} , (19)

where eachD𝑖loc : R
𝑚𝑛

󴁂󴀱 R𝑚𝑛, 𝑖 = 1, . . . , 𝑛, has the following
properties:

(i) For fixed 𝑝 the set D𝑖loc(𝑝) is a closed convex subset of
R𝑚𝑛.

(ii) There exists 𝐶 > 0 such that, for all 𝑖, 𝑝, one has
D𝑖loc(𝑝) ⊂ 𝐵𝐶(0).
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(iii) There exists 𝑐 > 0 such that, for every 𝑝 and every
𝑖, one has 𝐵

𝑐
(0) ⊂ D𝑖loc(𝑝). In particular, D𝑖loc(𝑝) is

nonempty.
(iv) The generalized Φ-projection operator ΠΦ

D𝑖loc(𝑝)
(𝑞) of 𝑞

ontoD𝑖loc(𝑝) for a fixed 𝑞 is continuous with respect to
𝑝.

Then mixed quasi-variational inequality (17) has a solution.

Proof. Firstly, we know from the definition ofD(𝑝) that

D (𝑝) fl D
1

loc (𝑝) ×D
2

loc (𝑝) × ⋅ ⋅ ⋅ ×D
𝑛

loc (𝑝) . (20)

Thus, from assumption (ii), we immediately derive that

D (𝑝) ⊂ (𝐵
𝐶
(0))
𝑛

⊂ 𝐵
√𝑛𝐶

(0) , 𝑝 ∈ R
𝑚𝑛
. (21)

Since 𝐵
√𝑛𝐶

(0) is a bounded closed convex ball, 𝐵
√𝑛𝐶

(0) is
compact convex.

Assumptions (i) and (iii) imply that D is a nonempty
closed convex valuedmapping on𝐵

√𝑛𝐶
(0).Moreover,Φ(𝑝) =

‖𝐴𝑝‖
2
is a proper, convex, and lower semicontinuous func-

tion. Hence the generalized Φ-projection operator ΠΦD(𝑝) is
well defined. By ΠΦD(𝑝)(𝑞) = (Π

Φ

D1loc(𝑝)
(𝑞
1
), . . . , Π

Φ

D𝑛loc(𝑝)
(𝑞
𝑛
))
⊤

and (iv), we obtain that ΠΦD(𝑝) is continuous with respect to
𝑝.

Now we define the mapping 𝑆 : 𝐵
√𝑛𝐶

(0) → 𝐵
√𝑛𝐶

(0) by

𝑆 (𝑝) fl Π
Φ

D(𝑝) (𝑝 − 𝜌∇𝐹 (𝑝)) , ∀𝜌 > 0. (22)

It follows from the continuity of ∇𝐹(𝑝) = 𝐴
⊤
(𝐴𝑝 − 𝑓) and

Π
Φ

D(𝑝) that 𝑆 is continuous. Hence by (18) and the Brouwer
fixed point theorem, we have that problem (17) has a solution.

In the case that Φ ≡ 0, a similar result of Theorem 2 was
obtained (see Proposition 4.2 of [19]). Therefore, Theorem 2
can also be considered as a generalization of Proposition 4.2
of [19].

5.2. Uniqueness Result of the Proposed Approach. In this
subsection, let us consider the uniqueness results for MQVI
(17). In [19], Lenzen et al. discussed the uniqueness of solution
of quasi-variational inequality on only a subspace of R𝑚𝑛,
because ∇𝐹 is not strongly monotone on the null spaceN(𝐴)

of 𝐴 (N(𝐴) fl {𝑥 ∈ R𝑛 : 𝐴𝑥 = 0}). On the other
hand, our main aim is to find 𝑢 = 𝑀

−1
(𝑓 − 𝐴𝑝), which

does not depend on the component of 𝑝 in N(𝐴). In view
of these reasons mentioned, [19] restricted the problem of
quasi-variational inequality to the complement N⊥(𝐴) of
N(𝐴). Now we utilize similar method to study problem (17).
Firstly, we give the following search model that is restricted
toN⊥(𝐴):

Find 𝑝
∗
∈ ΠN⊥(𝐴)D (𝑝

∗
) (23)

such that ⟨∇𝐹 (𝑝∗) , 𝑝 − 𝑝∗⟩ + Φ (𝑝) − Φ (𝑝
∗
) ≥ 0,

∀𝑝 ∈ ΠN⊥(𝐴)D (𝑝
∗
) .

(24)

Theorem 3. Assume that the setD(𝑝) depends only on 𝑝res fl
ΠN⊥(𝐴)(𝑝).

(i) Let 𝑝∗res be a solution to the restricted problem (23), and
then any 𝑝∗ ∈ Π

−1

N⊥(𝐴)(𝑝
∗

res) ∩D(𝑝
∗

res) is a solution to
the original problem (17).

(ii) Let 𝑝∗ be a solution to the unrestricted problem (17),
and then any 𝑝∗res ∈ Π

−1

N⊥(𝐴)(𝑝
∗
) is a solution to the

restricted problem (23).

Proof. Let 𝑝∗res ∈ ΠN⊥(𝐴)(D(𝑝
∗

res)) be a solution to the
restricted problem (23); that is,

⟨∇𝐹 (𝑝
∗

res) , 𝑝 − 𝑝
∗

res⟩ + Φ (𝑝) − Φ (𝑝
∗

res) ≥ 0,

∀𝑝 ∈ ΠN⊥(𝐴) (D (𝑝
∗

res)) .
(25)

For any 𝑝∗ ∈ D(𝑝
∗

res) such that 𝑝∗res = ΠN⊥(𝐴)𝑝
∗
= 𝑝
∗
−

ΠN(𝐴)𝑝
∗, it holds that 𝑝∗ ∈ D(𝑝

∗
) = D(𝑝

∗

res). Now let 𝑝 ∈

D(𝑝
∗

res) = D(𝑝
∗
) be arbitrary. We decompose 𝑝 into 𝑝 =

𝑝res + 𝑝N, where 𝑝res fl ΠN⊥(𝐴)𝑝 and 𝑝N fl ΠN(𝐴)𝑝.Then it
follows from (25) and 𝐴𝑝 = 𝐴𝑝res and 𝐴𝑝

∗
= 𝐴𝑝
∗

res that

⟨∇𝐹 (𝑝
∗
) , 𝑝 − 𝑝

∗
⟩ + Φ (𝑝) − Φ (𝑝

∗
)

= ⟨𝐴
⊤
(𝐴𝑝
∗
− 𝑓) , 𝑝 − 𝑝

∗
⟩ +

󵄩󵄩󵄩󵄩𝐴𝑝
󵄩󵄩󵄩󵄩2
−
󵄩󵄩󵄩󵄩𝐴𝑝
∗󵄩󵄩󵄩󵄩2

= ⟨𝐴𝑝
∗
− 𝑓,𝐴 (𝑝 − 𝑝

∗
)⟩ +

󵄩󵄩󵄩󵄩𝐴𝑝
󵄩󵄩󵄩󵄩2
−
󵄩󵄩󵄩󵄩𝐴𝑝
∗󵄩󵄩󵄩󵄩2

= ⟨𝐴𝑝
∗

res − 𝑓,𝐴 (𝑝res − 𝑝
∗

res)⟩ +
󵄩󵄩󵄩󵄩𝐴𝑝res

󵄩󵄩󵄩󵄩2

−
󵄩󵄩󵄩󵄩𝐴𝑝
∗

res
󵄩󵄩󵄩󵄩2

= ⟨𝐴
⊤
(𝐴𝑝
∗

res − 𝑓) , 𝑝res − 𝑝
∗

res⟩ +
󵄩󵄩󵄩󵄩𝐴𝑝res

󵄩󵄩󵄩󵄩2

−
󵄩󵄩󵄩󵄩𝐴𝑝
∗

res
󵄩󵄩󵄩󵄩2
≥ 0.

(26)

Thus, 𝑝∗ is a solution of (17).
Let 𝑝∗ be a solution of problem (17). In particular, 𝑝∗ ∈

D(𝑝
∗
).Weconsider the decomposition𝑝∗ = 𝑝∗res+𝑝

∗

N, where
𝑝
∗

res fl ΠN⊥(𝐴)𝑝
∗ and 𝑝∗N fl ΠN(𝐴)𝑝

∗
.Then

𝑝
∗

res ∈ ΠN⊥(𝐴) (D (𝑝
∗
)) = ΠN⊥(𝐴) (D (𝑝

∗

res)) . (27)

Let 𝑝res ∈ ΠN⊥(𝐴)(D(𝑝
∗

res)) be arbitrary. There exists 𝑝 ∈

D(𝑝
∗

res) such that

𝑝res = ΠN⊥(𝐴)𝑝 = 𝑝 − ΠN(𝐴)𝑝. (28)

It follows from (28) that
⟨∇𝐹 (𝑝

∗

res) , 𝑝res − 𝑝
∗

res⟩ + Φ (𝑝res) − Φ (𝑝
∗

res)

= ⟨𝐴𝑝
∗

res − 𝑓,𝐴 (𝑝res − 𝑝
∗

res)⟩ +
󵄩󵄩󵄩󵄩𝐴𝑝res

󵄩󵄩󵄩󵄩2

−
󵄩󵄩󵄩󵄩𝐴𝑝
∗

res
󵄩󵄩󵄩󵄩2

= ⟨𝐴𝑝
∗
− 𝑓,𝐴 (𝑝 − 𝑝

∗
)⟩ +

󵄩󵄩󵄩󵄩𝐴𝑝
󵄩󵄩󵄩󵄩2
−
󵄩󵄩󵄩󵄩𝐴𝑝
∗󵄩󵄩󵄩󵄩2

= ⟨𝐴
⊤
(𝐴𝑝
∗
− 𝑓) , 𝑝 − 𝑝

∗
⟩ +

󵄩󵄩󵄩󵄩𝐴𝑝
󵄩󵄩󵄩󵄩2
−
󵄩󵄩󵄩󵄩𝐴𝑝
∗󵄩󵄩󵄩󵄩2

≥ 0,

(29)

where the last inequality holds since 𝑝 ∈ D(𝑝
∗
) due to

D(𝑝
∗
) = D(𝑝

∗

res) and 𝑝
∗ solves (17). Thus 𝑝∗res is a solution

of (23).
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From Section 3, we can see that the final purpose of
finding the existence and uniqueness of 𝑝∗ is to solve the
optimal problem (10), because 𝑢∗ = 𝑀

−1
(𝑓 − 𝐴𝑝

∗
) which

does not depend on 𝑝
∗

N. We therefore focus on V∗ = 𝐴𝑝
∗,

which depends only on the component 𝑝∗res of 𝑝
∗ inN⊥(𝐴);

that is, we only need to consider the restricted problem (23).
Based on Theorem 3, the restricted problem has a solution
if and only if the original problem has a solution. Here we
specify ‖V∗‖

2
= ‖𝑝
∗
‖
𝐵
fl √(𝑝∗)

⊤
𝐴⊤𝐴𝑝∗. In the following

discussion, D̃(V) denotes a nonempty, closed, convex set such
that D̃(V) = D(𝑝) = D̃(𝐴𝑝).

Before showing the uniqueness, let us define 𝑇 : R𝑛 󴁂󴀱

R𝑚𝑛 such that 𝑝 ∈ 𝑇(V) if and only if 𝑝 ∈ D̃(V) and 𝑝 is a
solution to the following MQVI:

⟨∇𝐹 (𝑝) , 𝑝 − 𝑝⟩ + Φ (𝑝) − Φ (𝑝) ≥ 0, ∀𝑝 ∈ D̃ (V) . (30)

Theorem4. Under all the assumption conditions ofTheorem 2
and the assumptions

(i) ∇𝐹 is Lipschitz continuouswith Lipschitz constant𝜇
2
fl

‖𝐴
⊤
𝐴‖
2
> 0, that is,

󵄩󵄩󵄩󵄩∇𝐹 (𝑥) − ∇𝐹 (𝑦)
󵄩󵄩󵄩󵄩2
≤ 𝜇
2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩2
, ∀𝑥, 𝑦 ∈ R

𝑚𝑛
, (31)

(ii) the generalized Φ-projection operator ΠΦ
D̃(V)𝑞 is Lips-

chitz continuous with respect to V with the variation
rate 𝜂̃ > 0, that is,

󵄩󵄩󵄩󵄩󵄩
Π
Φ

D̃(V)𝑞 − Π
Φ

D̃(V󸀠)𝑞
󵄩󵄩󵄩󵄩󵄩2
≤ 𝜂̃

󵄩󵄩󵄩󵄩󵄩
V − V󸀠

󵄩󵄩󵄩󵄩󵄩2
, ∀𝑞 ∈ R

𝑚𝑛
, (32)

(iii) 𝜂̃ < 1/√𝜇2,
if 𝑝∗ is a solution of mixed quasi-variational inequality (17),
then V∗ = 𝐴𝑝∗ is unique.

Proof. Fix V
1
, V
2
∈ Im(𝐴). LetD

𝑖
fl D̃(V

𝑖
), 𝑝
𝑖
∈ 𝑇(V
𝑖
) :

(i) If 𝐴(𝑝
1
− 𝑝
2
) = 0, we obtain

󵄩󵄩󵄩󵄩𝐴𝑇 (V1) − 𝐴𝑇 (V2)
󵄩󵄩󵄩󵄩2
=
󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑝2

󵄩󵄩󵄩󵄩2
= 0

<
󵄩󵄩󵄩󵄩V1 − V

2

󵄩󵄩󵄩󵄩2
.

(33)

(ii) If 𝐴(𝑝
1
− 𝑝
2
) ̸= 0, since 𝑝

𝑖
, 𝑖 = 1, 2, solve

argmin
𝑝∈D̃(V𝑖)

(1/2)‖𝐴𝑝 − 𝑓‖
2

2
+ ‖𝐴𝑝‖

2
, the following

MQVI

⟨∇𝐹 (𝑝
𝑖
) , 𝑞 − 𝑝

𝑖
⟩ + Φ (𝑞) − Φ (𝑝

𝑖
) ≥ 0, ∀𝑞 ∈ D

𝑖
, (34)

holds; that is, for any 𝜌 ≥ 0,

𝑝
𝑖
= Π
Φ

D𝑖
(𝑝
𝑖
− 𝜌∇𝐹 (𝑝

𝑖
)) . (35)

In particular, 𝑞 fl Π
Φ

D2
(𝑝
1
− 𝜌∇𝐹(𝑝

1
)), and it follows from

(35) and (ii) that
󵄩󵄩󵄩󵄩𝑝1 − 𝑞

󵄩󵄩󵄩󵄩2

=
󵄩󵄩󵄩󵄩󵄩
Π
Φ

D1
(𝑝
1
− 𝜌∇𝐹 (𝑝

1
)) − Π

Φ

D2
(𝑝
1
− 𝜌∇𝐹 (𝑝

1
))
󵄩󵄩󵄩󵄩󵄩2

≤ 𝜂̃
󵄩󵄩󵄩󵄩V1 − V

2

󵄩󵄩󵄩󵄩2
.

(36)

On the other hand, 𝑝
2
∈ D
2
implies that

⟨𝑞 − (𝑝
1
− 𝜌∇𝐹 (𝑝

1
)) , 𝑝
2
− 𝑞⟩ + Φ (𝑝

2
) − Φ (𝑞) ≥ 0. (37)

Therefore, from (34) and (37), we have

⟨𝑞 − 𝑝
1
, 𝑝
2
− 𝑞⟩ ≥ 𝜌 ⟨∇𝐹 (𝑝

1
) , 𝑞 − 𝑝

2
⟩ − Φ (𝑝

2
)

+ Φ (𝑞)

= 𝜌 ⟨∇𝐹 (𝑝
1
) , 𝑞 − 𝑝

1
⟩

+ 𝜌 ⟨∇𝐹 (𝑝
2
) , 𝑝
1
− 𝑞⟩

+ 𝜌 ⟨∇𝐹 (𝑝
2
) , 𝑞 − 𝑝

2
⟩ + Φ (𝑞)

− Φ (𝑝
2
)

+ 𝜌 ⟨∇𝐹 (𝑝
1
) − ∇𝐹 (𝑝

2
) , 𝑝
1
− 𝑝
2
⟩

≥ 𝜌 ⟨∇𝐹 (𝑝
1
) − ∇𝐹 (𝑝

2
) , 𝑞 − 𝑝

1
⟩

+ 𝜌 ⟨∇𝐹 (𝑝
1
) − ∇𝐹 (𝑝

2
) , 𝑝
1
− 𝑝
2
⟩

= 𝜌 ⟨𝐴
⊤
𝐴 (𝑝
1
− 𝑝
2
) , 𝑞 − 𝑝

1
⟩

+ 𝜌
󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑝2

󵄩󵄩󵄩󵄩

2

2
;

(38)

that is,

𝜌
󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑝2

󵄩󵄩󵄩󵄩

2

2
≤ ⟨𝑞 − 𝑝

1
, 𝑝
2
− 𝑞⟩

+ 𝜌 ⟨𝐴
⊤
𝐴 (𝑝
1
− 𝑝
2
) , 𝑝
1
− 𝑞⟩

≤
󵄩󵄩󵄩󵄩𝑞 − 𝑝1

󵄩󵄩󵄩󵄩2
⋅
󵄩󵄩󵄩󵄩𝑞 − 𝑝2

󵄩󵄩󵄩󵄩2

+ 𝜌
󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑝2

󵄩󵄩󵄩󵄩2
⋅
󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑞

󵄩󵄩󵄩󵄩2

(39)

and, by dividing by𝜌‖𝐴𝑝
1
−𝐴𝑝
2
‖
2
> 0, because𝐴𝑝

1
−𝐴𝑝
2

̸= 0,

󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑝2
󵄩󵄩󵄩󵄩2
≤

󵄩󵄩󵄩󵄩𝑞 − 𝑝1
󵄩󵄩󵄩󵄩2
⋅
󵄩󵄩󵄩󵄩𝑞 − 𝑝2

󵄩󵄩󵄩󵄩2

𝜌
󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑝2

󵄩󵄩󵄩󵄩2

+
󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑞

󵄩󵄩󵄩󵄩2
.

(40)

Since 𝜌 is arbitrarily large, we find
󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑝2

󵄩󵄩󵄩󵄩2
≤
󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑞

󵄩󵄩󵄩󵄩2
. (41)

By (i), we have ‖𝐴‖
2
= √𝜇2.Thus, it follows from (36) that

󵄩󵄩󵄩󵄩𝐴𝑝1 − 𝐴𝑞
󵄩󵄩󵄩󵄩2
≤ ‖𝐴‖2

󵄩󵄩󵄩󵄩𝑝1 − 𝑞
󵄩󵄩󵄩󵄩2
≤ √𝜇2𝜂̃

󵄩󵄩󵄩󵄩V1 − V
2

󵄩󵄩󵄩󵄩2
; (42)

that is,
󵄩󵄩󵄩󵄩𝐴𝑇 (V1) − 𝐴𝑇 (V2)

󵄩󵄩󵄩󵄩2
≤ √𝜇2𝜂̃

󵄩󵄩󵄩󵄩V1 − V
2

󵄩󵄩󵄩󵄩2
. (43)

Therefore, we can see from (iii) that 𝐴 ∘ 𝑇 : R𝑛 → R𝑛

is a contractive mapping. Moreover, the Banach fixed point
theorem implies that there exists a unique fixed point V∗ =
𝐴𝑝
∗ of 𝐴 ∘ 𝑇 in R𝑛.

We already mentioned that, in the considered applica-
tions for image restoration, we are actually interested in the
variable 𝑢 fl 𝑀

−1
(𝑓 − 𝐴𝑝). Obviously, it follows from

Theorem 4 that 𝑢 is unique.
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Input: The maximal number of iterations𝑁; the constraint setD(𝑝
0
); the starting point

𝑝
0
∈ D(𝑝

0
) ⊂ 𝐵
√𝑛𝐶

(0); the parameter number 𝜌 and such that 0 < 𝜌 < 1/𝜇
2
.

Output: 𝑝𝑁.
begin

for 𝑘 = 0 to𝑁 − 1 do
Step 1. 𝑝𝑘−1 fl Π

Φ

D(𝑝𝑘−1)
(𝑝
𝑘−1

− 𝜌∇𝐹(𝑝
𝑘−1
));

Step 2. 𝑝𝑘 fl Π
Φ

D(𝑝
𝑘−1
)
(𝑝
𝑘−1

− 𝜌∇𝐹(𝑝
𝑘−1

));
Step 3. If |𝑝𝑘 − 𝑝𝑘−1| ≤ 𝜀, for all 𝜀 > 0, then, stop; otherwise, 𝑘 = 𝑘 + 1 and go the Step 1.

end
end

Algorithm 1: Modified projection method for solving the MQVI (17).

(a) (b) (c)

Figure 1: (a) Noisy input data, MSSIM = 0.327. (b) Solution-driven adaptive TV, MSSIM = 0.812. (c) Solution-driven adaptive generalized
TV, MSSIM = 0.822.

6. Numerics

Throughout this section, assume that all the assumption
conditions ofTheorems 2 and 4 are satisfied.Next, we propose
an iterative algorithm to solve the MQVI (17) and show
convergence of the proposed algorithm.

6.1. Proposed Iterative Algorithm. See Algorithm 1.

6.2. Convergence of Algorithm 1

Theorem 5. Let all the assumptions of Theorems 2 and 4 be
satisfied. Moreover, assume that ∇𝐹 is monotone; that is,

⟨∇𝐹 (𝑥) − ∇𝐹 (𝑦) , 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ R
𝑚𝑛
. (44)

Then the sequence {𝑝𝑘} generated by Algorithm 1 converges to
the unique solution 𝑝∗ of MQVI (17).

Proof. For the proof, see Theorem 2.5 in [26].

7. Experiment Results

7.1. Improvement of Solution-Driven Adaptive TV Regulariza-
tion. In this section, we show that the adaptivity is improved
by switching from a solution-driven adaptive TV regulariza-
tion to a solution-driven adaptive generalized TV model. To

this end, we consider the imageCameraman.We generate test
data for the denoising problemby addingGaussian noisewith
zero mean and standard deviation 0.1 and for the deblurring
problemby applying a blurring operator and addingGaussian
noise with zero mean and standard deviation 0.01. For
comparison, we make use of a mean SSIM (MSSIM) index
[27] to evaluate the restored image quality in Figures 1 and 2.
The definitions of the similarity measures SSIM and MSSIM
are given as follows:

SSIM (𝑥, 𝑦) =

(2𝜇
𝑥
𝜇
𝑦
+ 𝑐
1
) (2𝜎
𝑥
𝜎
𝑦
+ 𝑐
2
)

(𝜇2
𝑥
+ 𝜇2
𝑦
+ 𝑐
1
) (𝜎2
𝑥
+ 𝜎2
𝑦
+ 𝑐
2
)

, (45)

where 𝜇
𝑥
, 𝜇
𝑦
are the average values of two signals 𝑥 and 𝑦, 𝜎2

𝑥

and 𝜎2
𝑦
are the variances of 𝑥 and 𝑦, and 𝑐

1
, 𝑐
2
are variables to

stabilize the division with weak denominator

MSSIM (𝑋, 𝑌) =
1

𝑀

𝑀

∑

𝑗=1

SSIM (𝑥
𝑗
, 𝑦
𝑗
) , (46)

where 𝑋 and 𝑌 are the reference and the distorted images,
respectively; 𝑥

𝑗
and 𝑦

𝑗
are the image contents at the 𝑗th local

window; and𝑀 is the number of local windows of the image.
In Figure 1, we give the close-up of the results of

denoising the image Cameraman with TV regularization
and generalized TV regularization approaches. The values
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(a) (b) (c)

Figure 2: (a) Blurred input data, MSSIM = 0.032. (b) Solution-driven adaptive TV, MSSIM = 0.866. (c) Solution-driven adaptive generalized
TV, MSSIM = 0.868.

(a) (b)

(c) (d)

Figure 3: Test images. (a) Cameraman. (b) Lena. (c) Pepper. (d) Building.

for similarity given show that generalized TV regularization
approach enhances the reconstruction compared to the TV
regularization.

In Figure 2, close-up of the results of deblurring the image
Cameraman with TV regularization and generalized TV reg-
ularization approaches is shown. In terms of similarity to the
original data, we can see that generalized TV regularization

approach improves the reconstruction compared to the TV
regularization.

7.2. Comparison of Image Restoration for Different Test Images.
In this subsection, we report that our method can remove
Gaussian noise efficiently while preserving details very well.
For noise removal, we compare our method with some
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Noisy image (PSNR = 8.748 dB). (b) Local TV, Split Bregman (PSNR = 28.18 dB). (c) Nonlocal TV, Split Bregman (PSNR =
30.35 dB). (d) Anisotropic TV, Split Bregman (PSNR = 27.687 dB). (e) Isotropic TV, Split Bregman (PSNR = 28.594 dB). (f) Solution-driven
adaptive generalized TV, modified projection (PSNR = 30.56 dB).

recently developed models, namely, the local TV [28], the
NLTV [29], the anisotropic TV [30], and the isotropic TV
[30], when the Split Bregman method is considered. The
quality of our restoration is measured by the peak signal-to-
noise ratio (PSNR) in decibels (dB):

PSNR = 10 log
10
(

𝑀×𝑁

∑
𝑀

𝑖=1
∑
𝑁

𝑗=1
(𝑢
𝑖,𝑗
− 𝑢̃
𝑖,𝑗
)
2
) , (47)

where𝑀×𝑁 indicates the image size and 𝑢 and 𝑢̃ denote the
original image and the restored one, respectively. Generally,
the higher PSNR values indicate better quality of the restored
images.

The test images are shown in Figure 3.
In Figure 4, wemake use of the local TVmodel, theNLTV

model, the anisotropic TV model, the isotropic TV model,
and the solution-driven adaptive generalized TV model to
display the restoration results for the test image (a) corrupted
by 8% Gaussian noise. Here, our proposed model performs
significantly better and can suppress the Gaussian noise
successfully.

Table 1 lists the restoration results in the PSNRof different
methods for test images Cameraman, Lena, Pepper, and
Building corrupted by Gaussian noise.

Table 1: Comparison of restoration results in PSNR (dB) for images
corrupted by Gaussian noise.

Methods Cameraman Lena Pepper Building
Local TV 28.18 27.68 26.68 27.55
NLTV 30.35 29.87 30.86 29.23
Anisotropic TV 27.687 26.1 26.591 29.3
Isotropic TV 28.594 27.902 27.661 26.603
Proposed 30.56 30.21 30.98 29.5

From Table 1, it is apparent that our proposed method
generates the best restoration results for all the test images.
Actually, in Table 1, the proposed method obtains the highest
PSNR values for all the test images. This demonstrated that
our method is more robust for images corrupted by Gaussian
noise.

7.3. Expanded Experiments. Remote sensing very often deals
with inverting a forward model. To this aim, one has
to produce an accurate and robust model able to predict
physical, chemical, geological, or atmospheric parameters
from spectra, such as surface temperature, water vapour, and
ozone; see, for example, [31]. Denoising images could be part
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(a) (b)

(c) (d)

Figure 5: (a) Original satellite image. (b) Gaussian noise (𝜎 = 0.02) image. (c) Fourth-order PDE model. (d) Proposed method.

of the accurate and robust model. In particular, our image
restoration method could be used to remove noises in the
class of satellite images.

In Figure 5,we give the close-up of the results of denoising
the satellite image adding Gaussian noise with the standard
derivation 𝜎 = 0.02. Though the fourth-order PDE model
removes noise more thoroughly, texture detail also had been
changed. Comparing rivers and streets with those in the
original image, some information was lost. Our method not
only suppresses the noise very well but also keeps a lot of
detail and texture information of the original image.

From Table 2, we can see that our method has better
denoising effects than pure anisotropic diffusion and fourth-
order PDE.

8. Conclusion

In this paper, our main contribution is to introduce the
generalized TV regularization which includes various types
of TV regularization as special cases.We studied the existence
and uniqueness of the solution for mixed quasi-variational

Table 2: Comparison of restoration results in PSNR (dB) for satellite
images.

Methods 𝜎 = 0.01 𝜎 = 0.02 𝜎 = 0.05 𝜎 = 1

Pure anisotropic diffusion [23] 30.16 23.68 15.36 6.10
Fourth-order PDE [24] 31.64 25.40 17.40 11.36
Proposed 34.32 27.68 19.54 13.28

inequality for solution-driven adaptive image denoising and
image deblurring with generalized TV regularization. The
convergence of proposed algorithm forMQVI was proposed.
Moreover, our experimental results showed that we improve
the image restoration quality and apply the proposed model
to deal with the images in many different fields. Our further
work will consider utilizing the theory of other variational
inequalities for solving optimization problems with other
kinds of generalized TV regularizations.
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