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This paper presents an improved decision feedforward equalizer (DFFE) for high speed receivers in the presence of highly dispersive
channels. This decision-aided equalizer technique has been recently proposed for multigigabit communication receivers, where
the use of parallel processing is mandatory. Well-known parallel architectures for the typical decision feedback equalizer (DFE)
have a complexity that grows exponentially with the channel memory. Instead, the new DFFE avoids that exponential increase
in complexity by using tentative decisions to cancel iteratively the intersymbol interference (ISI). Here, we demostrate that the
DFFE not only allows to obtain a similar performance to the typical DFE but it also reduces the compelxity in channels with large
memory. Additionally, we propose a theoretical approximation for the error probability in each iteration. In fact, when the number
of iteration increases, the error probability in the DFFE tends to approach the DFE. These benefits make the DFFE an excellent
choice for the next generation of high-speed receivers.

1. Introduction

Future generation of communication systems will operate at
multigigabit-per-second data rates on highly dispersive chan-
nels [1, 2]. In commercial applications, the digital receiver is
often implemented as amonolithic chip in CMOS technology
[1]. Maximum clock frequency of state-of-the-art complex
digital signal processors in 28 nm CMOS technology is
limited to frequencies lower than 1GHz. Therefore, in order
to achieve multigigabit-per-second data rates, parallel pro-
cessing techniques are required [1].

Maximum likelihood sequence detection (MLSD) and
decision feedback equalization (DFE) are two efficient tech-
niques used to compensate the high ISI introduced by such
channels as the ones described in [3]. The complexity of
the former grows exponentially with the channel memory,
regardless of whether parallel processing is used or not. As for
the latter, although the complexity of serial implementations

grows linearly with channel memory, all presently known
parallel processing implementations require that the bottle-
neck created by the feedback loop be broken using techniques
like the ones proposed by [4–6], whose complexity again
grows exponentially with the channel memory.

Some algorithms to deal with the drawbacks of the DFE
in high-speed applications and parallel processing have been
proposed by [4–12]. For example, parallel DFE architectures
based on look-ahead pipelined multiplexer loops have been
introduced in [6, 7]. These architectures can mitigate the
speed limitation of feedback loops by using nested multi-
plexer loops where the implementation is reported in [10].
Some further improvements to these schemes have been
proposed in [8, 9]. However, the implementation complexity
of DFE parallel architectures based on look-ahead pipelined
multiplexer loops still increases exponentially with the num-
ber of feedback taps. Recent works [11, 12] present the con-
current look-ahead technique for high-speed data rate. This



2 Journal of Electrical and Computer Engineering

scheme reduces the hardware complexity in comparison with
a look-ahead pipelined multiplexer loops technique, but the
decision loop is not broken.

Iterative interference cancellation and turbo equalization
have received increasing attention in recent years [13]. For
example, iterative cancellation is proposed in [14–17] where
nonlinear equalizers for ISI channels are introduced. This
technique uses an iterative algorithm to successively cancel
ISI from a block of received data. The algorithm generates
symbol decisions whose reliability increases monotonically
with each iteration. According to these authors, so far these
techniques have not been applied to create efficient pipelined
and parallel-processing implementations of equalizer struc-
tures for ultra-high-speed applications despite its interesting
characteristics. Therefore, the application of both DFE and
MLSD is limited tomoderate ISI channels. As a consequence,
there is a need for reduced-complexity receivers which can
operate efficiently on channels with large ISI.

A preliminary study of a new low-complexity iterative
equalization architecture for high-speed receivers is intro-
duced in [18]. The decision feedforward equalizer (DFFE)
allows to obtain similar performance toDFEwith a paralleliz-
able architecture, whose complexity increases only quadrati-
cally with the channel memory. For channels with large ISI
this results in a dramatic complexity reduction if compared
with DFE. The central idea behind DFFE is the iteration
of tentative decisions to improve the accuracy of the ISI
estimation.Wewould like to highlight that tentative decisions
have been used in the past to cancel FEXT interference [19].

Finally, the error probability in the DFE has been widely
discussed in the literature with numerous authors who
develop different methods to estimate the error probability
in DFE [20–24].

In this work, we explain the concept of DFFE and its
implementation complexity to parallel architectures. More-
over, we propose a theoretical approximation for the error
probability in each iteration, where it is easy to appreciate that
when the number of iteration increases the error probability
in the DFFE tends to approach the DFE.

This paper is organized as follows.The concept of DFFE is
explained in Section 2. In Section 3 the performance evalua-
tion is researched. Section 4 analyzes parallel architectures for
DFFE and implementation complexity. Finally, conclusions
are drawn in Section 5.

2. Decision Feedforward Equalization (DFFE)

To begin with, we will explain the concept of DFFE. For sim-
plicity, we only consider a dispersive channel with postcursor
ISI. Our results can be generalized to channels with both
pre- and postcursor ISIs by combining the DFFE with a
feedforward equalizer [3]. Let 𝑦

𝑛
, ̂̃𝑎
(𝑖)

𝑛
, and 𝐿 be the DFFE

input sample, the tentative decision at the 𝑖th iteration, and
the memory of the channel, respectively. At the first iteration,
𝑖 = 0, we get the first tentative decision without any
cancellation of interference:

̂̃𝑎
(0)

𝑛
= Q (𝑦

𝑛
) , (1)

where Q(⋅) is the slicer function. This tentative decision can
be then used to cancel the postcursor ISI introduced by the
first past symbol and thus to improve the accuracy of the
detection. By using proper time delays, we can obtain the
tentative decision at the second iteration as follows:

̂̃𝑎
(1)

𝑛
= Q(𝑦

𝑛
− 𝑓
1
(̂̃𝑎
(0)

𝑛−1
)) , (2)

where 𝑓
𝑘
(⋅) with 0 < 𝑘 < 𝐿 denotes the partial postcursor

ISI caused by the past 𝑘 symbols. This process is repeated at
least until 𝐿 consecutive tentative decisions are available. At
this point, a final decision can be obtained from

𝑎
𝑛
= ̂̃𝑎
(𝐿)

𝑛
= Q(𝑦

𝑛
− 𝑓
𝐿
(̂̃𝑎
(𝐿−1)

𝑛−1
, . . . , ̂̃𝑎

(0)

𝑛−𝐿
)) , (3)

where 𝑓
𝐿
(⋅) is the total postcursor ISI of the channel. Based

on an information theory metric [25], in this work we show
that the reliability of the tentative decision ̂̃𝑎

(𝑖)

𝑛
improves as the

number of iteration 𝑖 grows. In this way, both the accuracy
of the interference estimate and the performance of the
DFFE are improved with the number of iterations. Numerical
results derived from computer simulations demonstrate that
the DFFE can achieve performance similar to the DFE
on highly dispersive channels. Furthermore, since tentative
decisions are used instead of final decisions to estimate the
postcursor ISI, it is possible to implement the DFFE in a
feedforward way, which leads to a direct parallel implemen-
tation. We show that the computational complexity of the
DFFE grows quadratically with 𝐿. This results in a drastic
complexity reduction in comparison to parallel architectures
for the DFE where the computational load grows exponen-
tially with 𝐿. This favorable tradeoff between performance
and complexity makes the DFFE an excellent alternative
for implementing high-speed receivers in transmissions over
highly dispersive channels.

As we expressed above, the iterative use of tentative
decisions to estimate the postcursor ISI is the key to DFFE. In
the following section, we use the mutual information [25] to
show how the iterations impact the reliability of the tentative
decisions. In addition, we study the DFFE performance in
transmissions over channels with high memory.

2.1. Architecture of DFFE. The received sample is given by

𝑦
𝑛
= 𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
+ 𝑧
𝑛
, (4)

where 𝑑
𝑘
with 𝑘 = 1, . . . , 𝐿 is the postcursor ISI tap, 𝑎

𝑛
is the

transmitted symbol (e.g., 𝑎
𝑛
∈ {±1}), and 𝑧

𝑛
is white Gaussian

noise with power 𝜎2. Assuming that the channel is known
at the receiver (i.e., perfect channel estimation), the detected
symbol provided by the DFFE at instant 𝑛 given by (3) can be
rewritten as

𝑎
𝑛
= ̂̃𝑎
(𝑅−1)

𝑛
= Q(𝑦

𝑛
−

𝐿

∑

𝑘=1

̂̃𝑎
(𝑅−1−𝑘)

𝑛−𝑘
𝑑
𝑘
) , (5)
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Figure 1: Example of a 3-tap DFFE (𝐿 = 3) with 𝑅 = 5. (a) Note that the latency between the input signal and the decision is 𝑅 − 1. (b) The
red dashed line denotes the critical path (see Section 4.4).

where 𝑅with 𝑅 > 𝐿 is the total number of iterations.The first
𝐿 tentative decisions are calculated iteratively as follows:

̂̃𝑎
(𝑖)

𝑛
= Q(𝑦

𝑛
−

𝑖

∑

𝑘=1

̂̃𝑎
(𝑖−𝑘)

𝑛−𝑘
𝑑
𝑘
) , 1 ≤ 𝑖 < 𝐿, (6)

with ̂̃𝑎
(0)

𝑛
= Q(𝑦

𝑛
) for 𝑖 = 0.

Figure 1 shows the architecture of the DFFE for a channel
with memory 𝐿 = 3 and 𝑅 = 5. Note that the final decision
𝑎
𝑛
= ̂̃𝑎
(4)

𝑛
uses past tentative decisions to estimate the postcur-

sor interference, and not previous final decisions as in the
DFE. As we will show later, this fact allows the direct parallel
implementation of the DFFE.

2.2. Reliability of the Tentative Decisions. Next, we analyze the
mutual information between the transmit symbol 𝑎

𝑛
and the

tentative decision at the 𝑖th iteration, ̂̃𝑎
(𝑖)

𝑛
, defined by

𝐼 (𝑎
𝑛
, ̂̃𝑎
(𝑖)

𝑛
) = 𝐻 (𝑎

𝑛
) − 𝐻(𝑎

𝑛
| ̂̃𝑎
(𝑖)

𝑛
) , (7)

where 𝐻(⋅) and 𝐻(⋅ | ⋅) denote entropy and conditional
entropy, respectively [25]. Note that 𝐼(𝑎

𝑛
, ̂̃𝑎
(𝑖)

𝑛
) is the informa-

tion on 𝑎
𝑛
contained in ̂̃𝑎

(𝑖)

𝑛
. For example, for binary transmit

symbols, 𝐼(𝑎
𝑛
, ̂̃𝑎
(𝑖)

𝑛
) = 1 indicates that no error occurs in the

tentative decisions (i.e., Pr{̂̃𝑎
(𝑖)

𝑛
= 𝑎
𝑛
} = 1). On the other

hand, in the presence of a high error rate in the tentative
decisions (i.e., Pr{̂̃𝑎

(𝑖)

𝑛
̸= 𝑎
𝑛
} = 1), the mutual information gets

𝐼(𝑎
𝑛
, ̂̃𝑎
(𝑖)

𝑛
) = 0. Thus, it can be concluded that the mutual

information (7) provides a measure of the reliability of the
tentative decision ̂̃𝑎

(𝑖)

𝑛
.

2.3. Numerical Results. Figure 2(a) depicts the mutual infor-
mation versus the signal-to-noise ratio (SNR), defined as
SNR = 𝐸{|𝑎

𝑛
|
2

}/𝜎
2. We consider 𝑎

𝑛
∈ {±1} and a postcursor

ISI channel modeled as

𝑑
𝑘
= {
𝛼
𝑘

0 < 𝑘 ≤ 𝐿,

0 otherwise,
(8)

with 𝛼 being a positive number smaller than one. In
Figure 2(a) we consider 𝛼 = 0.6with 𝐿 = 10 and a DFFE with
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Figure 2: Reliability of the DFFE tentative decisions. (a) Mutual information versus SNR for 𝛼 = 0.6, 𝐿 = 10, and 𝑅 = 11. (b) Mutual
information versus number of iterations for different postcursor channels with SNR = 15 dB.

𝑅 = 11. Notice that the mutual information grows as the SNR
increases; in a limit case, note that 𝐼(𝑎

𝑛
, ̂̃𝑎
(𝑅−1)

𝑛
) = 𝐼(𝑎

𝑛
, 𝑎
𝑛
) →

1 for SNR → ∞. For a given value of SNR, note that the
minimummutual information (or reliability) is verified at the
first iteration (𝑖 = 0). This can be understood from (1) in
which it is observed that the first tentative decision is obtained
directly from the received sample without any cancellation of
interference. Nevertheless, although the reliability of ̂̃𝑎

(0)

𝑛
is

low, some information of the transmit symbol 𝑎
𝑛
is contained

in ̂̃𝑎
(0)

𝑛
. More precisely, this fact is exploited in the second

iteration (𝑖 = 1), in which it is observed that the reliability of
̂̃𝑎
(1)

𝑛
has been improved as a result of the partial cancellation

of the postcursor ISI caused by ̂̃𝑎
(0)

𝑛
. This process is repeated

in the following iterations until the last iteration 𝑖 = 𝑅 − 1 is
reached. At this point, the DFFE is able to provide the final
decision 𝑎

𝑛
= ̂̃𝑎
(𝑅−1)

𝑛
with a high reliability.

Figure 2(b) shows the mutual information versus the
number of iterations for several postcursor ISI channels with
SNR = 15 dB. We use 𝛼 = 0.6, 0.82, and 0.92 with 𝐿 = 10, 30,
and 60, respectively. In all cases, it can be observed that the
reliability of the tentative decisions improveswith the number
of iterations. In particular, note that the reliability of theDFFE
decisions at 𝑅 > 𝐿 tends to reach that of the DFE. This result
suggests that the performances of theDFE and theDFFEwith
𝑅 > 𝐿 iterations should be similar.

3. Performance Evaluation

From (4) and (5), the slicer input signal at the 𝑖th iteration,
𝑦
(𝑖)

𝑛
, can be expressed as

𝑦
(𝑖)

𝑛
=

{{{{{{{{{{

{{{{{{{{{{

{

𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
+ 𝑧
𝑛
, 𝑖 = 0,

𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
−

𝑖

∑

𝑘=1

̂̃𝑎
(𝑖−𝑘)

𝑛−𝑘
𝑑
𝑘
+ 𝑧
𝑛
, 0 < 𝑖 < 𝐿,

𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
−

𝐿

∑

𝑘=1

̂̃𝑎
(𝑖−𝑘)

𝑛−𝑘
𝑑
𝑘
+ 𝑧
𝑛
, 𝑖 ≥ 𝐿.

(9)

Let Ψ(𝑖)
𝑛

be the DFFE-state vector at the 𝑖th iteration
defined by

Ψ
(𝑖)

𝑛

=

{{{{

{{{{

{

(𝑎
𝑛−1
, 𝑎
𝑛−2
, . . . , 𝑎

𝑛−𝐿
) , 𝑖 = 0,

(𝑎
𝑛−1
, 𝑎
𝑛−2
, . . . , 𝑎

𝑛−𝐿
, ̂̃𝑎
(𝑖−1)

𝑛−1
, ̂̃𝑎
(𝑖−2)

𝑛−2
, . . . , ̂̃𝑎

(0)

𝑛−𝑖
) , 0<𝑖<𝐿,

(𝑎
𝑛−1
, 𝑎
𝑛−2
, . . . , 𝑎

𝑛−𝐿
, ̂̃𝑎
(𝑖−1)

𝑛−1
, ̂̃𝑎
(𝑖−2)

𝑛−2
, . . . ., ̂̃𝑎

(0)

𝑛−𝐿
) , 𝑖 ≥ 𝐿.

(10)

Let 𝑁
𝑖
denote the dimension of the state vector Ψ(𝑖)

𝑛
. Thus,

observe that

Ψ
(𝑖)

𝑛
∈ {𝜓
(𝑖,0)

, 𝜓
(𝑖,1)

, . . . , 𝜓
(𝑖,2
𝑁𝑖
−1)

} , (11)

where 𝜓(𝑖,0) = (+1, +1, . . . , +1), 𝜓(𝑖,1) = (+1, +1, . . . , −1),. . .,
𝜓
(𝑖,2
𝑁𝑖
−1)

= (−1, −1, . . . , −1), are𝑁
𝑖
-dimensional vectors. The

slicer input signal at the 𝑖th iteration given by (9) can be
rewritten as

𝑦
(𝑖)

𝑛
= 𝑔 (𝑎

𝑛
,Ψ
(𝑖)

𝑛
) + 𝑧
𝑛
, (12)

where

𝑔 (𝑎
𝑛
,Ψ
(𝑖)

𝑛
) =

{{{{{{{{{{

{{{{{{{{{{

{

𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
, 𝑖 = 0,

𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
−

𝑖

∑

𝑘=1

̂̃𝑎
(𝑖−𝑘)

𝑛−𝑘
𝑑
𝑘
, 0 < 𝑖 < 𝐿,

𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
−

𝐿

∑

𝑘=1

̂̃𝑎
(𝑖−𝑘)

𝑛−𝑘
𝑑
𝑘
, 𝑖 ≥ 𝐿.

(13)

Then, the probability density function (pdf) given the
transmit symbol 𝑎

𝑛
can be expressed as

𝑓
𝑦|𝑎
(𝑦
(𝑖)

𝑛
| 𝑎
𝑛
) =

2
𝑁𝑖
−1

∑

𝑘=0

𝑓
𝑦|𝑎,Ψ
(𝑦
(𝑖)

𝑛
| 𝑎
𝑛
, 𝜓
(𝑖,𝑘)

) 𝑃 (𝜓
(𝑖,𝑘)

) ,

(14)
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where 𝑃(𝜓(𝑖,𝑘)) = Pr{Ψ(𝑖)
𝑛
= 𝜓
(𝑖,𝑘)

} and

𝑓
𝑦|𝑎,Ψ
(𝑦
(𝑖)

𝑛
| 𝑎
𝑛
, 𝜓
(𝑖,𝑘)

) =
1

√2𝜋𝜎
𝑒
−(1/2𝜎

2
)(𝑦
(𝑖)

𝑛
−𝑔(𝑎𝑛 ,𝜓

(𝑖,𝑘)
))

2

.

(15)

The symbol error probability at the 𝑖th iteration is

𝑃
(𝑖)

𝑒
= Pr {𝑦(𝑖)

𝑛
< 0 | 𝑎

𝑛
= +1}Pr {𝑎

𝑛
= +1}

+ Pr {𝑦(𝑖)
𝑛
≥ 0 | 𝑎

𝑛
= −1}Pr {𝑎

𝑛
= −1} .

(16)

Note that Pr{𝑦(𝑖)
𝑛
< 0 | 𝑎

𝑛
= +1} and Pr{𝑦(𝑖)

𝑛
≥ 0 | 𝑎

𝑛
= −1}

can be computed by using the pdf given by (14).

3.1. Example. In the following equations we consider a
postcursor channel with 𝐿 = 1 and 𝑑

1
= 1 (i.e., a duobinary

channel). At the first iteration, we get

Ψ
(0)

𝑛
= (𝑎
𝑛−1
) , (17)

𝑔 (𝑎
𝑛
,Ψ
(0)

𝑛
) = 𝑎
𝑛
+ 𝑎
𝑛−1
. (18)

Note that𝑁
𝑖
= 1 and

Ψ
(0)

𝑛
∈ {𝜓
(0,0)

, 𝜓
(0,1)

} (19)

with𝜓(0,0) = (+1) and𝜓(0,1) = (−1).The transmit symbols are
assumed independent and identically distributed with

Pr {𝑎
𝑛
= +1} = Pr {𝑎

𝑛
= −1} =

1

2
∀𝑛. (20)

In this situation, from (17) and (19) note that

𝑃 (𝜓
(0,𝑘)

) =
1

2
, 𝑘 = 0, 1. (21)

The error probability 𝑃(0)
𝑒

can be derived from (16) and

𝑓
𝑦|𝑎
(𝑦
(0)

𝑛
| 𝑎
𝑛
) =
1

2

1

∑

𝑘=0

𝑓
𝑦|𝑎,Ψ
(𝑦
(0)

𝑛
| 𝑎
𝑛
, 𝜓
(0,𝑘)

) . (22)

At the second iteration, we get

Ψ
(1)

𝑛
= (𝑎
𝑛−1
, ̂̃𝑎
(0)

𝑛−1
) , (23)

𝑔 (𝑎
𝑛
,Ψ
(1)

𝑛
) = 𝑎
𝑛
+ 𝑎
𝑛−1
− ̂̃𝑎
(0)

𝑛−1
. (24)

In this case, notice that𝑁
𝑖
= 2 and

Ψ
(1)

𝑛
∈ {𝜓
(1,0)

, 𝜓
(1,1)

, 𝜓
(1,2)

, 𝜓
(1,3)

} (25)

with 𝜓(1,0) = (+1, +1), 𝜓(1,1) = (+1, −1), 𝜓(1,2) = (−1, +1), and
𝜓
(1,3)

= (−1, −1). From (20) and (23), we get

Pr {Ψ(1)
𝑛
} = Pr {𝑎

𝑛−1
, ̂̃𝑎
(0)

𝑛−1
}

= Pr {̂̃𝑎
(0)

𝑛−1
| 𝑎
𝑛−1
}Pr {𝑎

𝑛−1
}

=
1

2
Pr {̂̃𝑎
(0)

𝑛−1
| 𝑎
𝑛−1
} .

(26)

Since

Pr {̂̃𝑎
(0)

𝑛−1
| 𝑎
𝑛−1
} = 𝑃

(0)

𝑒
, ̂̃𝑎
(0)

𝑛−1
̸= 𝑎
𝑛−1
, (27)

with 𝑃(0)
𝑒

being the symbol error probability of the first
iteration, the probability (26) results

𝑃 (𝜓
(1,0)

) = 𝑃 (𝜓
(1,3)

) =
1

2
(1 − 𝑃

(0)

𝑒
) ,

𝑃 (𝜓
(1,1)

) = 𝑃 (𝜓
(1,2)

) =
1

2
𝑃
(0)

𝑒
.

(28)

Generalizing, for 𝑖 > 0 it is possible to show that

𝑃 (𝜓
(𝑖,0)

) = 𝑃 (𝜓
(𝑖,3)

) =
1

2
(1 − 𝑃

(𝑖−1)

𝑒
) ,

𝑃 (𝜓
(𝑖,1)

) = 𝑃 (𝜓
(𝑖,2)

) =
1

2
𝑃
(𝑖−1)

𝑒
.

(29)

On the other hand, taking into account that

𝑔 (𝑎
𝑛
, 𝜓
(𝑖,0)

) = 𝑔 (𝑎
𝑛
, 𝜓
(𝑖,3)

) = 𝑎
𝑛
,

𝑔 (𝑎
𝑛
, 𝜓
(𝑖,1)

) = 𝑎
𝑛
+ 2,

𝑔 (𝑎
𝑛
, 𝜓
(𝑖,2)

) = 𝑎
𝑛
− 2,

(30)

it is possible to verify that

𝑓
𝑦|𝑎,Ψ
(𝑦
(𝑖)

𝑛
| 𝑎
𝑛
, 𝜓
(𝑖,0)

) = 𝑓
𝑦|𝑎,Ψ
(𝑦
(𝑖)

𝑛
| 𝑎
𝑛
, 𝜓
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1
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𝑒
−(1/2𝜎

2
)(𝑦
(𝑖)

𝑛
−𝑎𝑛)

2

,

(31)

𝑓
𝑦|𝑎,Ψ
(𝑦
(𝑖)

𝑛
| 𝑎
𝑛
, 𝜓
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√2𝜋𝜎
𝑒
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2
)(𝑦
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𝑛
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, (32)

𝑓
𝑦|𝑎,Ψ
(𝑦
(𝑖)

𝑛
| 𝑎
𝑛
, 𝜓
(𝑖,2)
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√2𝜋𝜎
𝑒
−(1/2𝜎

2
)(𝑦
(𝑖)

𝑛
−𝑎𝑛+2)

2

. (33)

Thus, at high SNR (i.e., 1/𝜎 ≫ 1), from (19)–(33) it is possible
to show that

𝑃
(𝑖)

𝑒
=
1

2
[Pr {𝑦(𝑖)

𝑛
< 0 | 𝑎

𝑛
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= −1}]
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1

𝜎
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1

2
𝑃
(𝑖−1)

𝑒
[1 − 𝑄(

1

𝜎
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1
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𝑒
𝑄(
3

𝜎
)

≈ 𝑄(
1

𝜎
) +
1

2
𝑃
(𝑖−1)

𝑒
,

(34)

where

𝑄 (𝑥) =
1

√2𝜋
∫

∞

𝑥

𝑒
−𝑡
2
/2

𝑑𝑡. (35)

Operating on the recursive form of the error probability
(34), it is simple to verify that

𝑃
(𝑖)

𝑒
≈ 2𝑄(

1

𝜎
) , 𝑖 ≫ 1. (36)



6 Journal of Electrical and Computer Engineering

0 5 10 15 20
9

10

11

12

13

14

15

16

17

18

19

20
log10(BER)

SN
R 

(d
B)

−18

−16

−14

−12

−10

−8

−6

−4

−2

Iterations (𝑅)

Figure 3: BER versus SNR and number of iterations. Postcursor
channel with 𝛼 = 0.5/𝐿 = 6.

Since the error probability of the DFE with error propagation
is given by [3]

𝑃
DFE
𝑒
≃ 2
𝐿

𝑄(
1

𝜎
) , (37)

from (36) we can conclude that for a number of iterations
sufficiently large, the performance of theDFFE in the presence
of a duobinary channel (i.e., 𝐿 = 1) is reduced to that
achieved by the DFEwith error propagation. As we shall show
later, the proper number of iterations depends strongly on
both the noise power and the channel dispersion. Finally, we
realize that the conclusions derived from this example can be
extended for channels with memory 𝐿 > 1.

3.2. Simulation Results. A theoretically based estimation of
the error probability provides an effective tool for designing
the DFFE parameters. The design process is simple and
consists of two main steps.

(i) Estimate the number of taps for the feedforward and
feedback filters according to the expected channel
response (similarly to the design of the DFE).

(ii) Estimate the number of the DFFE iterations based
on performance evaluation. This task can be also
achieved by using computer simulations. As initial
point, set 𝑅 = 𝐿 + 1.

Figure 3 shows the contour of the BER as a function of
the SNR and the iteration number. In this case, we use a
postcursor ISI channel defined by 𝑑

𝑘
= 𝛼
𝑘, 0 < 𝑘 ≤ 𝐿

with 𝛼 = 0.5, 𝐿 = 6, and 𝑅 = 20. We can observe that the
performance of the DFFE for 𝑅 > 6 is similar in all iterations.
Therefore, we conclude that DFFEwith𝑅 = 𝐿+1 achieves the
same performance as the traditional DFE, as it can be verified
from Figure 4. For the DFFE, note the excellent agreement
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Figure 4: Performance of DFFE with 𝑅 = 7 and DFE. Postcursor
channel with 𝛼 = 0.5/𝐿 = 6.
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Figure 5: Performance of DFE and adaptive DFFE with 𝑅 = 𝐿 + 1
for different postcursor ISI channels.

between the values derived from computer simulations and
the theoretical prediction given by (16).

The performance of the DFE and an adaptive DFFE with
𝑅 = 𝐿 + 1 iterations in the presence of different dispersive
channels is evaluated in Figure 5. We consider four channels:
𝛼 = 0.6, 0.82, 0.92, and 0.95 with 𝐿 = 10, 30, 60, and 100,
respectively. The adaptive DFFE has been implemented with
the least mean square (LMS) algorithm [3] by using the final
decision to estimate the error signal. In all cases, it can be
observed that DFFE and DFE achieve essentially the same
performance. This result agrees with the theoretical analysis
presented in the Appendix, where the impact of imperfect
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Table 1: Complexity of the parallel DFFE architecture for 2-PAM
and 𝑅 > 𝐿.

Adders 𝐿(𝑅 − 𝐿/2 − 1/2)𝑃

Registers ((𝑅−1)𝑅/2+(𝑅−𝐿)(𝐿+1)𝐿/2+(𝐿
2

−1)𝐿/6)𝑃

2-to-1 Mux 𝐿(𝑅 − 𝐿/2 − 1/2)𝑃

DFFE0 DFFE1 DFFE2 DFFE3

𝑦4𝑛
𝑦4𝑛+1
𝑦4𝑛+2
𝑦4𝑛+3

�̂�4(𝑛−𝑅+2)−1 �̂�4(𝑛−𝑅+2)−2 �̂�4(𝑛−𝑅+2)−3 �̂�4(𝑛−𝑅+2)−4

Figure 6: Parallel DFFE architecture for 𝑃 = 4 and 𝐿 = 3. Blocks
DFFEn are as shown in Figure 1.

channel estimation on the performance of DFE and DFFE is
investigated.

4. Parallel Implementation and Complexity

4.1. Parallel-Processing DFFE Architecture. As mentioned in
Section 1, the DFFE breaks the bottleneck created by the
feedback loop of the DFE using tentative decisions in a
feedforward fashion.This enables pipelined implementations
which are able to operate at high clock rates. Moreover, paral-
lel processing can be used to further increase the throughput
and achievable data rate of the DFFE-based receiver. A 𝑃-
way parallel implementation is shown in Figure 6. Using this
architecture, the data rate and throughput may be increased
by a factor 𝑃 with growth in complexity linear in 𝑃.

4.2. Complexity of DFFE. Table 1 shows the numbers of
adders, registers, and multiplexers for the DFFE, computed
under the following assumptions. The multipliers shown
in Figure 1 were considered to be 2-to-1 multiplexers (it is
assumed that both the positive and negative values of the
coefficients 𝑑

𝑘
are available), which is a correct assumption

for binary decisions with values ±1 (e.g., 2-pulse amplitude
modulation (PAM) [3]). The number of adders for the DFFE
was estimated assuming that the basic building block is a two-
input adder.

Table 2 presents a comparison of the complexity of the
DFFE with the DFE architectures proposed in [4, 7, 9,
10]. The numbers of adders and 2-to-1 multiplexers for
the parallel DFE schemes were extracted from [4, 7, 9],
while the number of registers was estimated based on their
architectures. Figure 7 shows the numbers of the three types
of components as functions of the number of feedback taps.
The most important difference between the DFFE and the
DFE proposals considered is that the former does not use
look-ahead techniques or multiplexer loops, and this reduces
the implementation complexity. In all the cases, the benefits

of the DFFE are evident in the presence of highly dispersive
channels (i.e., 𝐿 ≫ 1). A comparison of the complexity for
𝑀-PAM is shown in Table 3. We observe that the DFFE still
provides a significant reduction of complexity with respect
to the DFE architectures [7, 9]. (In 𝑀-PAM, multiplication
operations are achieved by using𝑀 − 1 2-to-1 muxes.) This
conclusion can be extended to𝑀-QAMwhere the complexity
of both DFE and DFFE is approximately two times the one
obtained with𝑀-PAM.

4.3. VLSI Implementation. We consider an application-speci-
fic integrated circuit (ASIC) implementation of the proposed
DFFE in a 10Gb/s 2-PAM receiver. The DFFE architecture
was succesfully synthetized (i.e., no timing issues) by using
28 nm CMOS technology with standard voltage threshold
(SVT) transistors for 𝐿 = 5/10/30, 𝑃 = 16 (𝑓clock =
625.0MHz), and 𝑃 = 32 (𝑓clock = 312.5MHz) with 𝑅 = 𝐿+ 1
iterations. Multiplication operations were implemented by
using 2-to-1 multiplexers. The number of bits of the input
samples (𝑁

𝑖
) and taps (𝑁

𝑐
) has been derived from computer

simulations for the different postcursor channels (i.e., 𝐿 =
5/10/30). We used𝑁

𝑐
= 7 and𝑁

𝑖
= 7 for 𝐿 = 5 and 10. For

𝐿 = 30, the number of bits of the input samples was increased
to𝑁
𝑖
= 8 (see Figure 8). Adderswere implementedwith carry

propagation, thus𝑁
𝑐
+ log
2
(𝐿) bits are required to represent

the sample at the slicer input. Finally, the slicer uses the MSB
of the input sample to control the muxes in order to select the
positive or negative coefficient.

Table 4 shows the total number of cells and components
normalized to the values of 𝑃 = 16 and 𝐿 = 5. Note that these
results agree very well with the expected values derived from
the complexity analysis developed in Section 4.2; that is, the
complexity increases linearly with the parallelization factor
(𝑃) and quadratically with the memory of channel 𝐿.

4.4. Analysis of the Critical Path. The speed of the different
DFE architectures are related to their critical paths. The
existing parallel DFE architectures of [4, 9, 10] are faster
than the DFFE. However, they are not considered for a speed
comparison as a result of their prohibitive high implemen-
tation complexity in the presence of channels with high ISI
(𝐿 ≫ 1). On the other hand, the critical path of the less
complex DFE solution proposed in [7] is given by 𝑇DFE−[7] ≈
(1/(𝐿/2+1))𝑇add+log2(𝑀)𝑇mux for𝑀-PAM,where𝑇mux and
𝑇add are the multiplexer and adder delays, respectively. Note
that 𝑇DFE−[7] is independent of the channel memory 𝐿. For
example, for 28 nm CMOS technology, 𝑇mux ≈ 0.05 ns and
𝑇add ≈ 0.10 ns; therefore, the maximum data rates with 𝑃 = 1
for 2-PAM and 4-PAM are ∼17.8 and 18.8Gb/s, respectively.

The critical path for theDFFE is shown in Figure 1. Notice
that the delay of the critical path given by 𝑇DFFE ≈ 𝐿𝑇add +
log
2
(𝑀)𝑇mux increases linearly with the memory channel.

As it is shown in Section 4.3, no timing issues have been
observed with 𝐿 = 30 and 𝑃 = 32 for 2-PAM with 𝑓clock =
312.5MHz by using 28 nm CMOS technology. Thus, the
maximum data rates achieved by the DFFE for 2-PAM and
4-PAM are 10 and ∼20Gb/s (since 𝐿 ≫ 1 and 𝑇mux < 𝑇add,
note that 𝑇DFFE is dominated by the term 𝐿𝑇add. Therefore
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Table 2: Complexity comparison between parallel DFFE and DFE architectures for 2-PAM with 𝑅 = 𝐿 + 1 for 𝐿 ≫ 1.

Component Receiver
DFFE (this work) DFE [4] DFE [7] DFE [9] DFE [10]

Adders 𝐿
2

𝑃/2 2
𝐿

𝑃 2
𝐿/2

2𝑃 2
𝐿

𝑃 2
𝐿+1

𝑃

Registers 𝐿
3

𝑃/6 ∼ 2
𝐿

𝑃 ∼2
𝐿/2

(𝑃 + 1) 𝐿
2

+ 2
𝐿

𝑃 (2
𝐿

+ 𝐿)𝑃

2-to-1 multiplexers 𝐿
2

𝑃/2 (2
𝐿

− 1)𝑃 (2
𝐿/2

− 1)2𝑃 2
𝐿

𝐿(𝑃 − 𝐿/2 + 𝑃/𝐿 − 1) 2
𝐿

𝑃

Table 3: Complexity comparison between parallel DFFE and DFE architectures for𝑀-PAM with 𝑅 = 𝐿 + 1 for 𝐿 ≫ 1.

Component Receiver
DFFE (this work) DFE [7] DFE [9]

Adders 𝐿
2

𝑃/2 𝑀
𝐿/2

2𝑃 𝑀
𝐿

𝑃

Registers 𝐿
3

𝑃/6 ∼𝑀
𝐿/2

(𝑃 + 1) 𝐿
2

+𝑀
𝐿

𝑃

2-to-1 multiplexers (𝑀 − 1)𝐿
2

𝑃/2 (𝑀
𝐿/2

− 1)2𝑃 𝑀
𝐿

𝐿(𝑃 − 𝐿/2 + 𝑃/𝐿 − 1)

Table 4: Synthesis results for parallel DFFE architecture for 2-PAM
and 𝑅 = 𝐿 + 1 with 28 nm CMOS technology.

𝑓clock (MHz) 𝑃 𝐿 Number of cells† Number of components†

625.0 16 5 1.00 1.00

625.0 16 10 5.19 4.18

312.5 32 5 1.96 2.00

312.5 32 10 10.03 9.62

312.5 32 30 180.65 159.00

†The total number of cells and components normalized to the values of 𝑃 =
16 and 𝐿 = 5.

the impact of the increase of the constellation size (2 → 4)
on the critical path will be small), respectively. On the other
hand, for 𝐿 = 30 the relative complexity of the DFE [7] with
𝑃 = 1 (∝ 2𝑀𝐿/2) with respect to the DFFE with 𝑃 = 32
(∝ 32(𝑀 − 1)𝐿2) is (a) 2 × 2(30/2)/(32 × 302) = 2.28 for
2-PAM and (b) 2 × 4(30/2)/(32 × 3 × 302) = 2.49 × 104
for 4-PAM. Therefore, the DFFE is able to provide high data
rates (e.g.,>10 Gb/s) by using existingCMOS technologywith
complexity implementation lower than that derived from the
less complex parallel DFE proposed in [7].

5. Conclusions

In this paperwe have proposed and analyzed theDFFE, a low-
complexity iterative equalization architecture for high-speed
receivers which uses tentative decisions in a feedforward way
to estimate postcursor ISI.This central feature lends itself well
to a simple parallel implementation, resulting in a reduction
of complexity. Using typical examples, we show that DFFE
allows to obtain a similar performance to DFE architecture.
Moreover, we have proposed a theoretical approximation to
estimate the error probability which allows us to demon-
strate that the DFFE reaches the same performance as DFE
when the number of iterations increases. These advantages
make the DFFE an excellent choice for high-speed receivers
required to operate over highly dispersive channels. Further-
more, owing to the DFFE flexibility, the architecture can be
combined with traditional linear feedforward equalizers or

Viterbi algorithm (VA) [3] to compensate channel impair-
ments in the presence of both pre- and postcursor ISI.

Appendix

Impact of Imperfect Channel Estimation

Since the DFFE is an attractive solution in the presence of
channels with high ISI (i.e., 𝐿 ≫ 1), it is possible to show
that the impact of an imperfect channel estimation is similar
in both equalizers, that is, DFE and DFFE.The received input
sample 𝑦

𝑛
can be expressed as

𝑦
𝑛
= 𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
+ 𝑧
𝑛
, (A.1)

where 𝑑
𝑘
with 𝑘 = 1, . . . , 𝐿 is the postcursor ISI tap, 𝑎

𝑛
is

the transmitted symbol, and 𝑧
𝑛
is white Gaussian noise with

power 𝜎2. The signal (A.1) can be rewritten as

𝑦
𝑛
= 𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
+ 𝑧
𝑛

= 𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
Δ
𝑘
+ 𝑧
𝑛
,

(A.2)

where 𝑑
𝑘
and Δ

𝑘
denote the tap estimated at the receiver

and the error estimation, respectively (i.e., 𝑑
𝑘
= 𝑑
𝑘
+ Δ
𝑘
).

Since 𝐿 ≫ 1 and symbols 𝑎
𝑛
are assumed independent and

identically distributed (iid), from the central limit theorem
note that the term

𝑟
𝑛
=

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
Δ
𝑘

(A.3)

can be modeled as a zero mean Gaussian random variable
with variance 𝜎2

𝑟
. Therefore, the signal at the input of the

receiver with imperfect channel estimation can be seen as

𝑦
𝑛
= 𝑎
𝑛
+

𝐿

∑

𝑘=1

𝑎
𝑛−𝑘
𝑑
𝑘
+ �̃�
𝑛
, (A.4)
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Figure 7: Number of adders, registers, and 2-to-1 multiplexers versus the number of feedback taps 𝐿, for the parallel DFFE with 𝑅 = 𝐿 + 1
and DFE architectures proposed in [4, 7, 9, 10]. Parallelization factor: 𝑃 = 16. Modulation format: 2-PAM.
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where

�̃�
𝑛
= 𝑟
𝑛
+ 𝑧
𝑛

(A.5)

is zero mean Gaussian noise with power 𝜎2
𝑟
+ 𝜎
2. Thus, from

(A.4) and (A.5) we can conclude that the impact of the
imperfect channel estimation on the performance ofDFE and
DFFE will be similar.
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