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The performance of a strapdown inertial navigation system (SINS) largely depends on the accuracy and rapidness of the initial
alignment. The conventional alignment method with parameter identification has been already applied widely, but it needs to
calculate the gyroscope drifts through two-positionmethod; then the time of initial alignment is greatly prolonged. For this issue, a
novel self-alignment algorithm by parameter identification method under inertial frame for SINS is proposed in this paper. Firstly,
this coarse alignment method using the gravity in the inertial frame as a reference is discussed to overcome the limit of dynamic
disturbance on a rocking base and fulfill the requirement for the fine alignment. Secondly, the fine alignment method by parameter
identification under inertial frame is formulated. The theoretical analysis results show that the fine alignment model is fully self-
aligned with no external reference information and the gyrodrifts can be estimated in real time.The simulation results demonstrate
that the proposed method can achieve rapid and highly accurate initial alignment for SINS.

1. Introduction

Strapdown inertial navigation system (SINS) has been widely
used in aviation, marine, and land vehicle navigation and
positioning because of its special advantages, and it necessi-
tates an alignment stage to determine the initial conditions
prior to navigation operation [1]. Compared with the initial
attitude, initial velocity and position can be easily acquired
with reference navigation system, such as Global Position
System (GPS) [2]. Thus, the accuracy and stability of initial
alignment are critical for high performance SINS [3, 4], and
the purpose of initial alignment is to obtain an initial attitude
matrix from body frame to navigation frame and set the
misalignments to zero. The traditional initial alignment is
often divided into two procedures: coarse alignment and fine
alignment [5–7]. The coarse alignment is used to resolve
largemisalignment angle rapidly, and then the fine alignment
is used to compensate and correct the misalignment angle
further [8].

A lot of literature has been devoted to coarse alignment
methods. The conventional coarse alignment is based on
analytical method which generally uses two feature vectors

of the earth: the acceleration of gravity and the angular rate
of the earth’s rotation, and it asks for the base in a static case
[9, 10]. However, in many cases, the process of the alignment
is affected by various interference factors of the base, such as
engine vibration, crewmotion, and strong flurry. Because the
intensity of the interference signal is obviously larger than the
angular rate of the earth’s rotation, the earth rotation rate is
completely submerged inmeasurement noise. So the conven-
tional coarse alignment method cannot be utilized. In order
to solve the alignment problemon a rocking base, themethod
is to use the inertial frame as a transitional coordinate to real-
ize the initial alignment by using the gravity acceleration
information [11–14].

In the fine alignment procedure, gyrocompass alignment,
Kalman filter, and parameter identification method are the
mostly used techniques to deal with alignment problems
in SINS [15–17]. Gyrocompass alignment based on compass
effect is an important fine alignment method with the prop-
erties of interference suppression and lower computational
complexity [18, 19], but it needs to set longer damping
time constant and always costs much more time to finish
the alignment process [20, 21]. Kalman filter is an optimal
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linear estimator when measurement noise has a Gaussian
distribution with known measurement and process noise
variance values [8, 22–25]. However, it is impractical that
measurement noise has a Gaussian distribution with known
measurement and process noise variance values, and it is very
sensitive to the rocking interference and has the disadvantage
of large amount of calculation [20]. Parameter identification
method based on recursive least square method (RLS) is a
very useful fine alignment method, which does not need
to know the distribution of measurement noise and has
the characteristics of small computational amount [17, 20,
26]. However, all of them need to calculate the gyroscope
drifts through two-position method; then the time of initial
alignment is greatly prolonged.

Inspired by the idea in [17], a novel self-alignment
algorithm by parameter identification method under inertial
frame for SINS is proposed in this paper, and simulation
test verifies the effectiveness of the proposed method. Firstly,
similar to [8, 27], utilizing the gravity in the inertial frame as a
reference, the coarse alignment method is discussed to over-
come the limit of dynamic disturbance on a rocking base. Sec-
ondly, the fine alignment model by parameter identification
method in the inertial frame is developed, and the theoretical
analysis results show that the proposed fine alignment model
is fully self-aligned with no external reference information
and the gyrodrifts can be estimated in real time.

The rest of this paper is organized as follows. Section 2
introduces the fundamental principles of coarse alignment
method using the gravity information in the inertial frame.
Thefine alignmentmethod by parameter identification under
inertial frame is formulated in Section 3. In Section 4,
the validity of the proposed method is further verified by
simulation. Finally, some conclusions are made in Section 5.

2. Coarse Alignment Method by
Using the Gravity Information in
the Inertial Frame

2.1. Coordinate Frame Definitions. In order to better under-
stand SINS initial alignment, it is necessary to explain the
navigation coordinate system, that is, the earth frame (𝑒
frame), the inertial frame (𝑖 frame), the computed inertial
frame (𝑖 frame), the navigation frame (𝑛 frame), and the
body frame (𝑏 frame), together with the body inertial frame
(𝑖
𝑏0

frame), which will be introduced in the sequel, and the
relationship among the various frames is denoted in Figure 1,
where 𝜔

𝑖𝑒
is the angular rate of the earth’s rotation, 𝑔 is the

local gravity acceleration, and 𝑡 is the time for alignment. And
the various frames are defined in detail as follows.

(i) 𝑒 Frame. The earth’s core is the origin and 𝑥
𝑒
axis points

to the intersection of the prime meridian and the equator. 𝑧
𝑒

axis goes upward along earth polar axis. 𝑥
𝑒
, 𝑦
𝑒
, and 𝑧

𝑒
form

a right-hand coordinate frame. 𝑒 frame moves with the earth
in angular rate 𝜔

𝑖𝑒
.
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Figure 1: The relationship among the various frames.

(ii) 𝑖 Frame. It is the ideal inertial coordinate frame; at the
starting time for the initial alignment, 𝑖 frame coincides with
𝑒 frame and is fixed in the inertial space.

(iii) 𝑖 Frame. It is the computed inertial coordinate frame
where there is some error between 𝑖 frame and 𝑖 frame owing
to the alignment error and the sensor error.

(iv) 𝑛 Frame. The origin is the centroid of the carrier. 𝑧
𝑛
axis

goes upward along the local geodetic vertical and 𝑦
𝑛
axis

north (and horizontal) with 𝑥
𝑛
axis east (and horizontal).

(v) 𝑏 Frame. The origin is the centroid of the carrier. 𝑥
𝑏
axis

shifts rightward along the carrier’s transverse axis, 𝑦
𝑏
forward

along the longitudinal axis, and 𝑧
𝑏
upward along the vertical

axis.

(vi) 𝑖
𝑏0
Frame.At the starting time for the initial alignment, 𝑖

𝑏0

frame coincides with 𝑏 frame and is fixed in the inertial space.

2.2. The Coarse Alignment Algorithm in the Inertial Frame.
The basic idea using the gravity acceleration information in
the inertial frame for the initial alignment is to decompose
C𝑛
𝑏
(𝑡) into several attitude matrices, whose references are all

based on the inertial frame [8, 12, 27]. The decomposition
method in this paper is as follows:

C𝑛
𝑏
(𝑡) = C𝑛

𝑖
(𝑡)C𝑖
𝑖𝑏0
C𝑖𝑏0
𝑏
(𝑡) . (1)

It shows that time-varying matrix C𝑛
𝑏
(𝑡) is composed of

three parts. One part is C𝑛
𝑖
(𝑡), which is the transformation
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matrix between 𝑛 frame (geographic coordinate frame) and
𝑖 frame. And it is produced by the earth rotation rate:

C𝑛
𝑖
(𝑡) = C𝑛

𝑒
C𝑒
𝑖
(𝑡)

=
[

[

[

0 1 0

− sin 𝐿 0 cos 𝐿
cos 𝐿 0 sin 𝐿

]

]

]

[

[

[

cos𝜔
𝑖𝑒
(𝑡 − 𝑡
0
) sin𝜔

𝑖𝑒
(𝑡 − 𝑡
0
) 0

− sin𝜔
𝑖𝑒
(𝑡 − 𝑡
0
) cos𝜔

𝑖𝑒
(𝑡 − 𝑡
0
) 0

0 0 1

]

]

]

=

[

[

[

[

− sin𝜔
𝑖𝑒
(𝑡 − 𝑡
0
) cos𝜔

𝑖𝑒
(𝑡 − 𝑡
0
) 0

− sin 𝐿 cos𝜔
𝑖𝑒
(𝑡 − 𝑡
0
) − sin 𝐿 sin𝜔

𝑖𝑒
(𝑡 − 𝑡
0
) cos 𝐿

cos 𝐿 cos𝜔
𝑖𝑒
(𝑡 − 𝑡
0
) cos 𝐿 sin𝜔

𝑖𝑒
(𝑡 − 𝑡
0
) sin 𝐿

]

]

]

]

,

(2)

where 𝑡
0
is the starting time for the alignment, 𝑡 is the time

for alignment, and 𝐿 is the latitude.
Another part is C𝑖𝑏0

𝑏
(𝑡), which is the transformation

matrix between 𝑖
𝑏0
frame and 𝑏 frame. It can be obtained by

the output signal of the gyroscopes at any time:

Ċ𝑖𝑏0
𝑏
(𝑡) = C𝑖𝑏0

𝑏
(𝑡) (𝜔

𝑏

𝑖𝑏0𝑏
×) , (3)

where C𝑖𝑏0
𝑏
(𝑡
0
) = I and (𝜔

𝑏

𝑖𝑏0𝑏
×) denotes the skew-symmetric

matrix of 𝜔𝑏
𝑖𝑏0𝑏

which is measured by the gyroscopes in 𝑏

frame.
Therefore, the mission of the coarse alignment is trans-

formed into the estimation problem of C𝑖
𝑖𝑏0

which is the
transformation matrix between 𝑖 frame and 𝑖

𝑏0
frame, and it

is a constant value. Owning to

f 𝑖𝑏0 = C𝑖𝑏0
𝑏
f𝑏,

g𝑖 = C𝑖
𝑛
g𝑛,

(4)

where f𝑏 denotes the specific force measured by accelerom-
eters in 𝑏 frame, g𝑛 = [0 0 −𝑔]

𝑇 is the gravity vector in 𝑛

frame.
Ignoring the influence of the installation error, acceler-

ometer drift, and the disturbing acceleration, the relationship
of g𝑖 and f 𝑖𝑏0 is

g𝑖 = C𝑖
𝑖𝑏0
f 𝑖𝑏0 . (5)

Selecting different times 𝑡
1
and 𝑡
2
, C𝑖
𝑖𝑏0

can be presented
as

Ĉ𝑖
𝑖𝑏0

=

[

[

[

[

[

(g𝑖 (𝑡
1
))

𝑇

(g𝑖 (𝑡
2
))

𝑇

(g𝑖 (𝑡
1
) × g𝑖 (𝑡

2
))

𝑇

]

]

]

]

]

−1

[

[

[

[

[

(f 𝑖𝑏0 (𝑡
1
))

𝑇

(f 𝑖𝑏0 (𝑡
2
))

𝑇

(f 𝑖𝑏0 (𝑡
1
) × f 𝑖𝑏0 (𝑡

2
))

𝑇

]

]

]

]

]

,

(6)

where hat “∧” denotes the calculated value. To improve the
measurement accuracy on a rocking base, it can be integrated
from (5) that

V𝑖 (𝑡) = C𝑖
𝑖𝑏0
V𝑖𝑏0 (𝑡) , (7)

where V𝑖(𝑡) and V𝑖𝑏0(𝑡) are already expressed in [13] as

V𝑖 (𝑡) = ∫

𝑡

𝑡0

g𝑖𝑑𝑡 = ∫

𝑡

𝑡0

C𝑖
𝑛
g𝑛𝑑𝑡

=

[

[

[

[

[

[

[

𝑔 cos 𝐿 sin𝜔
𝑖𝑒
(𝑡 − 𝑡
0
)

𝜔
𝑖𝑒

−𝑔 cos 𝐿 [cos𝜔
𝑖𝑒
(𝑡 − 𝑡
0
) − 1]

𝜔
𝑖𝑒

(𝑡 − 𝑡
0
) 𝑔 sin 𝐿

]

]

]

]

]

]

]

,

(8)

V𝑖𝑏0 (𝑡) = ∫

𝑡

𝑡0

f 𝑖𝑏0𝑑𝑡 = ∫

𝑡

𝑡0

C𝑖𝑏0
𝑏(𝑡)

f𝑏𝑑𝑡

=

𝑁−1

∑

𝑘=0

C𝑖𝑏0
𝑏(𝑡𝑘)

∫

𝑡𝑘+1

𝑡𝑘

C𝑏(𝑡𝑘)
𝑏(𝑡)

f𝑏𝑑𝑡

≈

𝑁−1

∑

𝑘=0

C𝑖𝑏0
𝑏(𝑡𝑘)

∫

𝑡𝑘+1

𝑡𝑘

(I + (∫

𝑡

𝑡𝑘

(𝜔
𝑏

𝑖𝑏0𝑏
×) 𝑑𝜏)) f𝑏𝑑𝑡

=

𝑁−1

∑

𝑘=0

C𝑖𝑏0
𝑏(𝑡𝑘)

[ΔV
1
+ ΔV
2
+

1

2

(Δ𝜃
1
+ Δ𝜃
2
)

× (ΔV
1
+ ΔV
2
) +

2

3

(Δ𝜃
1
× ΔV
2
+ ΔV
1
× Δ𝜃
2
)] ,

(9)

where ΔV
1
and ΔV

2
are the first and second samples of

the accelerometer-measured incremental velocity and Δ𝜃
1

and Δ𝜃
2
are the first and second samples of the gyroscope-

measured incremental angle, respectively, so that

̂C𝑖
𝑖𝑏0

=

[

[

[

[

[

(V𝑖 (𝑡
1
))

𝑇

(V𝑖 (𝑡
2
))

𝑇

(V𝑖 (𝑡
1
) × V𝑖 (𝑡

2
))

𝑇

]

]

]

]

]

−1

⋅

[

[

[

[

[

(V𝑖𝑏0 (𝑡
1
))

𝑇

(V𝑖𝑏0 (𝑡
2
))

𝑇

(V𝑖𝑏0 (𝑡
1
) × V𝑖𝑏0 (𝑡

2
))

𝑇

]

]

]

]

]

.

(10)

This is the practical equation for the coarse alignment.

3. Fine Alignment by Parameter
Identification under Inertial frame

The coarse initial attitude angle can be obtained by the coarse
alignment method in Section 2. The carrier heading angle
error is estimated to be within a few degrees and pitch/roll
angle to be within a few tenths of a degree. In this section, the
fine alignment by parameter identification in inertial frame is
developed.

3.1. Analysis of the AttitudeMisalignment Angles in the Inertial
Frame. Note that there is a big calculation error between
estimation value ̂C𝑖

𝑖𝑏0
and true value C𝑖

𝑖𝑏0
, and ̂C𝑖𝑏0

𝑏
calculated
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by the outputs of gyroscopes also exists error. Therefore, we
have

C𝑛
𝑏
= C𝑛
𝑖
C𝑖
𝑖
C𝑖


𝑏
, (11)

where C𝑖


𝑏
= Ĉ𝑖
𝑖𝑏0
Ĉ𝑖𝑏0
𝑏
, and C𝑖

𝑖
 which is the transformation

matrix from ideal inertial coordinate frame (𝑖 frame) to
erroneously computed inertial coordinate frame (𝑖 frame)
can be formulated as

C𝑖


𝑖
= I −Φ𝑖× =

[

[

[

1 𝜙
𝑐

−𝜙
𝑏

−𝜙
𝑐

1 𝜙
𝑎

𝜙
𝑏

−𝜙
𝑎

1

]

]

]

, (12)

whereΦ𝑖 = [𝜙
𝑎

𝜙
𝑏

𝜙
𝑐
]

𝑇 is the misalignment angle vector in
𝑖 frame. The subscripts 𝑎, 𝑏, 𝑐 are the three axes of 𝑖 frame,
respectively. And the task of fine alignment is to estimate
misalignment angleΦ𝑖.

In ideal conditions, the differential equation of C𝑖
𝑏
is

Ċ𝑖
𝑏
= C𝑖
𝑏
(𝜔
𝑏

𝑖𝑏
×) , (13)

where C𝑖
𝑏
is the transformation matrix between 𝑖 frame and 𝑏

frame. 𝜔𝑏
𝑖𝑏
denotes the angular rate of 𝑏 frame with respect to

𝑖 frame, expressed in 𝑏 frame.
In practice, the differential equation of C𝑖



𝑏
is

Ċ𝑖


𝑏
= C𝑖



𝑏
(�̂�
𝑏

𝑖𝑏
×) , (14)

where C𝑖


𝑏
is the transformation matrix between 𝑖

 frame
and 𝑏 frame. �̂�𝑏

𝑖𝑏
measured by gyroscopes in 𝑏 frame is the

computed value of 𝜔𝑏
𝑖𝑏
. And �̂�𝑏

𝑖𝑏
can be formulated as

�̂�
𝑏

𝑖𝑏
= 𝜔
𝑏

𝑖𝑏
+ 𝛿𝜔
𝑏

𝑖𝑏
, (15)

where 𝛿𝜔𝑏
𝑖𝑏
is the gyroscope error vector in 𝑏 frame.

Differentiating C𝑖


𝑖
= C𝑖



𝑏
C𝑏
𝑖
on both sides yields

Ċ𝑖


𝑖
= Ċ𝑖



𝑏
C𝑏
𝑖
+ C𝑖



𝑏
Ċ𝑏
𝑖
= Ċ𝑖



𝑏
C𝑏
𝑖
+ C𝑖



𝑖
C𝑖
𝑏
Ċ𝑏
𝑖
. (16)

Owing toC𝑏
𝑖
C𝑖
𝑏
= I andC𝑖

𝑏
Ċ𝑏
𝑖
= −Ċ𝑖
𝑏
C𝑏
𝑖
, substituting them

into (5) and multiplying C𝑖
𝑏
from right on each part yield

̇C𝑖


𝑖
C𝑖
𝑏
=

̇C𝑖


𝑏
− C𝑖



𝑖

̇C𝑖
𝑏
. (17)

Substituting (13), (14), and (15) into (17), we have

Ċ𝑖


𝑖
C𝑖
𝑏
= C𝑖



𝑏
(�̂�
𝑏

𝑖𝑏
×) − C𝑖



𝑖
C𝑖
𝑏
(𝜔
𝑏

𝑖𝑏
×)

= C𝑖


𝑖
C𝑖
𝑏
((�̂�
𝑏

𝑖𝑏
×) − (𝜔

𝑏

𝑖𝑏
×)) = C𝑖



𝑖
C𝑖
𝑏
(𝛿𝜔
𝑏

𝑖𝑏
×) .

(18)

That is,

Ċ𝑖


𝑖
= C𝑖



𝑖
C𝑖
𝑏
(𝛿𝜔
𝑏

𝑖𝑏
×)C𝑏
𝑖
= C𝑖



𝑖
(𝛿𝜔
𝑏

𝑖𝑏
×) . (19)

Substituting (12) into (19) and ignoring the second-order
small amount, we have

Φ̇
𝑖

= −𝛿𝜔
𝑖

𝑖𝑏
= −C𝑖
𝑏
𝛿𝜔
𝑏

𝑖𝑏
. (20)

Ignoring the influence of the installation error and scale
factor error, (20) can be rewritten as

Φ̇
𝑖

= −C𝑖
𝑏
𝜀
𝑏
= −C𝑖
𝑛
C𝑛
𝑏
𝜀
𝑏
, (21)

where 𝜀𝑏 is the bias of gyroscope in 𝑏 frame, and it can be
approximately regarded as a random constant vector in the
process of alignment. And this is the attitude error equation
in 𝑖 frame.

When the carrier shakes modestly, C𝑛
𝑏
can be nearly a

constant matrix, so C𝑛
𝑏
𝜀
𝑏 can be approximately regarded as

a random constant vector named as gyroscope’s equivalent
constant drift in 𝑛 frame; that is,

C𝑛
𝑏
𝜀
𝑏
= 𝜀
𝑛
= [𝜀
𝐸

𝜀
𝑁

𝜀
𝑈
]

𝑇

, (22)

where subscripts 𝐸, 𝑈, 𝑁 are the three axes of 𝑛 frame,
respectively.

The alignment process is usually performed in a few
minutes (not more than ten minutes), so 𝜔

𝑖𝑒
𝑡 is a very small

amount. Then, cos (𝜔
𝑖𝑒
𝑡) and sin (𝜔

𝑖𝑒
𝑡) can be approximately

rewritten as

cos (𝜔
𝑖𝑒
𝑡) ≈ 1,

sin (𝜔
𝑖𝑒
𝑡) ≈ 𝜔

𝑖𝑒
𝑡.

(23)

To this respect, (23) can be rewritten as

[

[

[

[

̇
𝜙
𝑎

̇
𝜙
𝑏

̇
𝜙
𝑐

]

]

]

]

= −C𝑖
𝑛
C𝑛
𝑏
𝜀
𝑏
= −C𝑖
𝑛
𝜀
𝑛
= C𝑖
𝑛

[

[

[

𝜀
𝐸

𝜀
𝑁

𝜀
𝑈

]

]

]

= −
[

[

[

− sin (𝜔
𝑖𝑒
𝑡) − sin 𝐿 cos (𝜔

𝑖𝑒
𝑡) cos 𝐿 cos (𝜔

𝑖𝑒
𝑡)

cos (𝜔
𝑖𝑒
𝑡) − sin 𝐿 sin (𝜔

𝑖𝑒
𝑡) cos 𝐿 sin (𝜔

𝑖𝑒
𝑡)

0 cos 𝐿 sin 𝐿

]

]

]

[

[

[

𝜀
𝐸

𝜀
𝑁

𝜀
𝑈

]

]

]

≈ −
[

[

[

−𝜔
𝑖𝑒
𝑡 − sin 𝐿 cos 𝐿

1 −𝜔
𝑖𝑒
𝑡 sin 𝐿 𝜔

𝑖𝑒
𝑡 cos 𝐿

0 cos 𝐿 sin 𝐿

]

]

]

[

[

[

𝜀
𝐸

𝜀
𝑁

𝜀
𝑈

]

]

]

=
[

[

[

𝜀
𝐸
𝜔
𝑖𝑒
𝑡 + 𝜀
𝑁
sin 𝐿 − 𝜀

𝑈
cos 𝐿

−𝜀
𝐸
+ 𝜀
𝑁
𝜔
𝑖𝑒
𝑡 sin 𝐿 − 𝜀

𝑈
𝜔
𝑖𝑒
𝑡 cos 𝐿

−𝜀
𝑁
cos 𝐿 − 𝜀

𝑈
sin 𝐿

]

]

]

.

(24)

Integrating both sides of (24), the misalignment angles
changing with the time can be formulated as follows:

𝜙
𝑎
= 𝜙
𝑎0

+ (𝜀
𝑁
sin 𝐿 − 𝜀

𝑈
cos 𝐿) 𝑡 + 𝑡

2

2

𝜀
𝐸
𝜔
𝑖𝑒
,

𝜙
𝑏
= 𝜙
𝑏0
− 𝜀
𝐸
𝑡 +

𝑡
2

2

𝜔
𝑖𝑒
(𝜀
𝑁
sin 𝐿 − 𝜀

𝑈
cos 𝐿) ,

𝜙
𝑐
= 𝜙
𝑐0
− (𝜀
𝑁
cos 𝐿 + 𝜀

𝑈
sin 𝐿) 𝑡,

(25)
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where Φ𝑖
0

= [𝜙
𝑎0

𝜙
𝑏0

𝜙
𝑐0
]

𝑇 is the initial value vector of
misalignment angle in 𝑖 frame.

It is easy to see that 𝜙
𝑖0
(𝑖 = 𝑎, 𝑏, 𝑐) and 𝜀

𝑗
(𝑗 = 𝐸,𝑁,𝑈)

are the constant valves; based on them, we can calculate the
misalignment angles in real time. In this respect, the fine
alignment problem has been transformed into the parameter
identification problem for 𝜙

𝑖0
and 𝜀
𝑗
.

3.2. Estimation of Attitude Misalignment Angles by Parameter
Identification Method. On a rocking base, the measured
specific force projected from accelerometer in 𝑖

 frame can
be written as

f 𝑖


= C𝑖


𝑏

̂f
𝑏

= C𝑖


𝑖
C𝑖
𝑏

̂f
𝑏

= C𝑖


𝑖
C𝑖
𝑏
(−g𝑏 + f𝑏

𝑑
+ ∇
𝑏
)

= C𝑖


𝑖
(−g𝑖 + f 𝑖

𝑑
+ ∇
𝑖
)

=
[

[

[

1 𝜙
𝑐

−𝜙
𝑏

−𝜙
𝑐

1 𝜙
𝑎

𝜙
𝑏

−𝜙
𝑎

1

]

]

]

[

[

[

−𝑔
𝑎
+ 𝑓
𝑑𝑎

+ ∇
𝑎

−𝑔
𝑏
+ 𝑓
𝑑𝑏

+ ∇
𝑏

−𝑔
𝑐
+ 𝑓
𝑑𝑐
+ ∇
𝑐

]

]

]

.

(26)

Ignoring the second-order small amount yields

𝑓
𝑖


𝑎
= −𝑔
𝑏
𝜙
𝑐
+ 𝑔
𝑐
𝜙
𝑏
− 𝑔
𝑎
+ 𝑓
𝑑𝑎

+ ∇
𝑎
,

𝑓
𝑖


𝑏
= 𝑔
𝑎
𝜙
𝑐
− 𝑔
𝑐
𝜙
𝑎
− 𝑔
𝑏
+ 𝑓
𝑑𝑏

+ ∇
𝑏
,

𝑓
𝑖


𝑐
= −𝑔
𝑎
𝜙
𝑏
+ 𝑔
𝑏
𝜙
𝑎
− 𝑔
𝑐
+ 𝑓
𝑑𝑐
+ ∇
𝑐
,

(27)

where ∇
𝑏 is the accelerometer bias vector in 𝑏 frame. f𝑏

𝑑
is

uncertainty measurement disturbance caused by the carrier’s
rocking and swaying in 𝑏 frame. 𝑔

𝑎
, 𝑔
𝑏
, 𝑔
𝑐
are the three

components of the gravity vector in 𝑖 frame, respectively.
∇
𝑎
, ∇
𝑏
, ∇
𝑐
are the three components of the accelerometer

bias in 𝑖 frame, respectively. According to the time for
alignment, [𝑔

𝑎
𝑔
𝑏

𝑔
𝑐
]

𝑇 and [∇
𝑎

∇
𝑏

∇
𝑐
]

𝑇 can be calculated,
respectively, as follows:

[

[

[

𝑔
𝑎

𝑔
𝑏

𝑔
𝑐

]

]

]

= C𝑖
𝑛
g𝑛

=
[

[

[

− sin (𝜔
𝑖𝑒
𝑡) − sin 𝐿 cos (𝜔

𝑖𝑒
𝑡) cos 𝐿 cos (𝜔

𝑖𝑒
𝑡)

cos (𝜔
𝑖𝑒
𝑡) − sin 𝐿 sin (𝜔

𝑖𝑒
𝑡) cos 𝐿 sin (𝜔

𝑖𝑒
𝑡)

0 cos 𝐿 sin 𝐿

]

]

]

[

[

[

0

0

−𝑔

]

]

]

=
[

[

[

−𝑔 cos 𝐿 cos (𝜔
𝑖𝑒
𝑡)

−𝑔 cos 𝐿 sin (𝜔
𝑖𝑒
𝑡)

−𝑔 sin 𝐿

]

]

]

,

(28)

[

[

[

∇
𝑎

∇
𝑏

∇
𝑐

]

]

]

= C𝑖
𝑛
C𝑛
𝑏

[

[

[

∇
𝑥

∇
𝑦

∇
𝑧

]

]

]

= C𝑖
𝑛

[

[

[

∇
𝐸

∇
𝑁

∇
𝑈

]

]

]

=
[

[

[

−∇
𝐸
sin (𝜔

𝑖𝑒
𝑡) − ∇

𝑁
sin 𝐿 cos (𝜔

𝑖𝑒
𝑡) + ∇

𝑈
cos 𝐿 cos (𝜔

𝑖𝑒
𝑡)

∇
𝐸
cos (𝜔

𝑖𝑒
𝑡) − ∇

𝑁
sin 𝐿 sin (𝜔

𝑖𝑒
𝑡) + ∇

𝑈
cos 𝐿 sin (𝜔

𝑖𝑒
𝑡)

∇
𝑁
cos 𝐿 + ∇

𝑈
sin 𝐿

]

]

]

,

(29)

where∇
𝐸
,∇
𝑁
,∇
𝑈
are the three components of the accelerom-

eter equivalent bias in 𝑛 frame, respectively. Because 𝜔
𝑖𝑒
𝑡 is a

small amount, substituting (22) into (28) and (29) yields

[

[

[

𝑔
𝑎

𝑔
𝑏

𝑔
𝑐

]

]

]

=
[

[

[

−𝑔 cos 𝐿
−𝑔𝜔
𝑖𝑒
𝑡 cos 𝐿

−𝑔 sin 𝐿

]

]

]

,

[

[

[

∇
𝑎

∇
𝑏

∇
𝑐

]

]

]

=
[

[

[

−∇
𝐸
𝜔
𝑖𝑒
𝑡 − ∇
𝑁
sin 𝐿 + ∇

𝑈
cos 𝐿

∇
𝐸
− ∇
𝑁
𝜔
𝑖𝑒
𝑡 sin 𝐿 + ∇

𝑈
𝜔
𝑖𝑒
𝑡 cos 𝐿

∇
𝑁
cos 𝐿 + ∇

𝑈
sin 𝐿

]

]

]

.

(30)

Substituting (30) into (27), we have

𝑓
𝑖


𝑎
= 𝑡𝜙
𝑐
𝑔𝜔
𝑖𝑒
cos 𝐿 − 𝜙

𝑏
𝑔 sin 𝐿 + 𝑔 cos 𝐿 + 𝑓

𝑑𝑎

− ∇
𝐸
𝜔
𝑖𝑒
𝑡 − ∇
𝑁
sin 𝐿 + ∇

𝑈
cos 𝐿,

𝑓
𝑖


𝑏
= −𝜙
𝑐
𝑔 cos 𝐿 + 𝜙

𝑎
𝑔 sin 𝐿 + 𝑔𝜔

𝑖𝑒
𝑡 cos 𝐿 + 𝑓

𝑑𝑏
+ ∇
𝐸

− ∇
𝑁
𝜔
𝑖𝑒
𝑡 sin 𝐿 + ∇

𝑈
𝜔
𝑖𝑒
𝑡 cos 𝐿,

𝑓
𝑖


𝑐
= 𝜙
𝑏
𝑔 cos 𝐿 − 𝜙

𝑎
𝑔𝜔
𝑖𝑒
𝑡 cos 𝐿 + 𝑔 sin 𝐿 + 𝑓

𝑑𝑐

+ ∇
𝑁
cos 𝐿 + ∇

𝑈
sin 𝐿.

(31)

Substituting (24) into (31), we have

𝑓
𝑖


𝑎
= −

𝑡
2

2

𝑔𝜔
𝑖𝑒
(𝜀
𝑁
+ 𝜀
𝑁
cos2𝐿 + 𝜀

𝑈
sin 𝐿 cos 𝐿)

+ 𝑡 (𝜙
𝑐0
𝑔𝜔
𝑖𝑒
cos 𝐿 + 𝜀

𝐸
𝑔 sin 𝐿 − ∇

𝐸
𝜔
𝑖𝑒
) + (𝑔 cos 𝐿

− 𝜙
𝑏0
𝑔 sin 𝐿 − ∇

𝑁
sin 𝐿 + ∇

𝑈
cos 𝐿 + 𝑓

𝑑𝑎
) ,

𝑓
𝑖


𝑏
=

𝑡
2

2

𝜀
𝐸
𝑔𝜔
𝑖𝑒
sin 𝐿 + 𝑡 (𝑔𝜀

𝑁
+ 𝑔𝜔
𝑖𝑒
cos 𝐿

− ∇
𝑁
𝜔
𝑖𝑒
sin 𝐿 + ∇

𝑈
𝜔
𝑖𝑒
cos 𝐿) + (−𝜙

𝑐0
𝑔 cos 𝐿

+ 𝜙
𝑎0
𝑔 sin 𝐿 + ∇

𝐸
+ 𝑓
𝑑𝑏
) ,

𝑓
𝑖


𝑐
=

𝑡
2

2

𝑔𝜔
𝑖𝑒
cos 𝐿 (−𝜀

𝑁
sin 𝐿 + 𝜀

𝑈
cos 𝐿)

− 𝑡 (𝜙
𝑎0
𝑔𝜔
𝑖𝑒
cos 𝐿 + 𝜀

𝐸
cos 𝐿) + (𝜙

𝑏0
𝑔 cos 𝐿

+ 𝑔 sin 𝐿 + ∇
𝑁
cos 𝐿 + ∇

𝑈
sin 𝐿 + 𝑓

𝑑𝑐
) .

(32)

In order to eliminate the alternating specific force inter-
ference caused by shaking and improve the measurement
accuracy on a rocking base, integrating (32) on both sides
yields

𝑉
𝑖


𝑎
(𝑡) = 𝑡 (𝑔 cos 𝐿 − 𝜙

𝑏0
𝑔 sin 𝐿 − ∇

𝑁
sin 𝐿

+ ∇
𝑈
cos 𝐿) + 𝑡

2

2

(𝜙
𝑐0
𝑔𝜔
𝑖𝑒
cos 𝐿 + 𝜀

𝐸
𝑔 sin 𝐿

− ∇
𝐸
𝜔
𝑖𝑒
) −

𝑡
3

6

𝑔𝜔
𝑖𝑒
(𝜀
𝑁
+ 𝜀
𝑁
cos2𝐿 + 𝜀

𝑈
sin 𝐿 cos 𝐿)

+ 𝑉
𝑑𝑎
,
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𝑉
𝑖


𝑏
(𝑡) = 𝑡 (−𝜙

𝑐0
𝑔 cos 𝐿 + 𝜙

𝑎0
𝑔 sin 𝐿 + ∇

𝐸
) +

𝑡
2

2

(𝑔𝜀
𝑁

+ 𝑔𝜔
𝑖𝑒
cos 𝐿 − ∇

𝑁
𝜔
𝑖𝑒
sin 𝐿 + ∇

𝑈
𝜔
𝑖𝑒
cos 𝐿) + 𝑡

3

6

⋅ 𝜀
𝐸
𝑔𝜔
𝑖𝑒
sin 𝐿 + 𝑉

𝑑𝑏
,

𝑉
𝑖


𝑐
(𝑡) = 𝑡 (𝜙

𝑏0
𝑔 cos 𝐿 + 𝑔 sin 𝐿 + ∇

𝑁
cos 𝐿

+ ∇
𝑈
sin 𝐿) − 𝑡

2

2

𝑔 cos 𝐿 (𝜙
𝑎0
𝜔
𝑖𝑒
+ 𝜀
𝐸
) +

𝑡
3

6

𝑔𝜔
𝑖𝑒

⋅ cos 𝐿 (−𝜀
𝑁
sin 𝐿 + 𝜀

𝑈
cos 𝐿) + 𝑉

𝑑𝑐
.

(33)

From (33), it can be observed that initial misalignment
angle 𝜙

𝑏0
can be directly estimated according to the first-

order terms of 𝑉
𝑖


𝑎
(𝑡) and 𝑉

𝑖


𝑐
(𝑡), and 𝜙

𝑐0
and 𝜙

𝑎0
can

be obtained by the quadratic terms of 𝑉
𝑖


𝑎
(𝑡) and 𝑉

𝑖


𝑐
(𝑡),

respectively, so the convergence speed of 𝜙
𝑏0

is faster than
the convergence speed of 𝜙

𝑐0
and 𝜙

𝑎0
. 𝜀
𝐸
, 𝜀
𝑁
, and 𝜀

𝑈
can

be estimated according to the third-order terms of 𝑉𝑖


𝑎
(𝑡),

𝑉
𝑖


𝑏
(𝑡), and 𝑉

𝑖


𝑐
(𝑡); because cubic curve only exhibits a linear

characteristic in a short time, the convergence speed of the
three initial misalignment angles is faster than the conver-
gence speed of the three gyroscope’s equivalent constant
drifts. Therefore, the alignment time with drift measurement
and alignment accuracy cannot be taken into account, and
alignment time cannot be shortened infinitely.

The discrete form of (33) can be formulated as

𝑉
𝑖


𝑎
(𝑘) = 𝑙

1𝑎
(𝑘𝑇
𝑠
) + 𝑙
2𝑎
(𝑘𝑇
𝑠
)
2

+ 𝑙
3𝑎
(𝑘𝑇
𝑠
)
3

+ 𝑉
𝑑𝑎
,

𝑉
𝑖


𝑏
(𝑘) = 𝑙

1𝑏
(𝑘𝑇
𝑠
) + 𝑙
2𝑏
(𝑘𝑇
𝑠
)
2

+ 𝑙
3𝑏
(𝑘𝑇
𝑠
)
3

+ 𝑉
𝑑𝑏
,

𝑉
𝑖


𝑐
(𝑘) = 𝑙

1𝑐
(𝑘𝑇
𝑠
) + 𝑙
2𝑐
(𝑘𝑇
𝑠
)
2

+ 𝑙
3𝑐
(𝑘𝑇
𝑠
)
3

+ 𝑉
𝑑𝑏
,

(34)

where 𝑇
𝑠
is the interval of the SINS update which is rather

small and 𝑘 denotes 𝑘th time-step and

𝑙
1𝑎

= 𝑔 cos 𝐿 − 𝜙
𝑏0
𝑔 sin 𝐿 − ∇

𝑁
sin 𝐿 + ∇

𝑈
cos 𝐿,

𝑙
2𝑎

=

1

2

(𝜙
𝑐0
𝑔𝜔
𝑖𝑒
cos 𝐿 + 𝜀

𝐸
𝑔 sin 𝐿 − ∇

𝐸
𝜔
𝑖𝑒
) ,

𝑙
3𝑎

= −

1

6

𝑔𝜔
𝑖𝑒
(𝜀
𝑁
+ 𝜀
𝑁
cos2𝐿 + 𝜀

𝑈
sin 𝐿 cos 𝐿) ,

𝑙
1𝑏

= −𝜙
𝑐0
𝑔 cos 𝐿 + 𝜙

𝑎0
𝑔 sin 𝐿 + ∇

𝐸
,

𝑙
2𝑏

=

1

2

𝑔 (𝑔𝜀
𝑁
+ 𝑔𝜔
𝑖𝑒
cos 𝐿 − ∇

𝑁
𝜔
𝑖𝑒
sin 𝐿

+ ∇
𝑈
𝜔
𝑖𝑒
cos 𝐿) ,

𝑙
3𝑏

=

1

6

𝜀
𝐸
𝑔𝜔
𝑖𝑒
sin 𝐿,

𝑙
1𝑐
= 𝜙
𝑏0
𝑔 cos 𝐿 + 𝑔 sin 𝐿 + ∇

𝑁
cos 𝐿 + ∇

𝑈
sin 𝐿,

𝑙
2𝑐
= −

1

2

𝑔 cos 𝐿 (𝜙
𝑎0
𝜔
𝑖𝑒
+ 𝜀
𝐸
) ,

𝑙
3𝑐
=

1

6

𝑔𝜔
𝑖𝑒
cos 𝐿 (−𝜀

𝑁
sin 𝐿 + 𝜀

𝑈
cos 𝐿) .

(35)

Because the time of alignment is very short, 𝑙
𝑖𝑗
(𝑖 =

1, 2, 3; 𝑗 = 𝑎, 𝑏, 𝑐) can be nearly a constant value and (34)
is the measurement equation, so 𝑙

𝑖𝑗
(𝑖 = 1, 2, 3; 𝑗 = 𝑎, 𝑏, 𝑐)

can be derived from the measured values (i.e., 𝑉𝑖


𝑎
(𝑘), 𝑉𝑖



𝑏
(𝑘),

and𝑉𝑖


𝑐
(𝑘)) by using parameter identificationmethod. Define

Θ
𝑎
=
[

[

[

𝑙
1𝑎

𝑙
2𝑎

𝑙
3𝑎

]

]

]

,

Θ
𝑏
=
[

[

[

𝑙
1𝑏

𝑙
2𝑏

𝑙
3𝑏

]

]

]

,

Θ
𝑐
=
[

[

[

𝑙
1𝑐

𝑙
2𝑐

𝑙
3𝑐

]

]

]

.

(36)

Then, the state equation models of Θ
𝑎
, Θ
𝑏
, and Θ

𝑐
can be,

respectively, expressed as follows:

Θ
𝑎
(𝑘 + 1) = Θ

𝑎
(𝑘) ,

𝑉
𝑎
(𝑘) = H (𝑘)Θ

𝑎
(𝑘) + 𝑉

𝑑𝑎
(𝑘) ,

(37)

Θ
𝑏
(𝑘 + 1) = Θ

𝑏
(𝑘) ,

𝑉
𝑏
(𝑘) = H (𝑘)Θ

𝑏
(𝑘) + 𝑉

𝑑𝑏
(𝑘) ,

(38)

Θ
𝑐
(𝑘 + 1) = Θ

𝑐
(𝑘) ,

𝑉
𝑐
(𝑘) = H (𝑘)Θ

𝑐
(𝑘) + 𝑉

𝑑𝑐
(𝑘) ,

(39)

whereH(𝑘) = [𝑘𝑇
𝑠
(𝑘𝑇
𝑠
)
2

(𝑘𝑇
𝑠
)
3
].

Given initial guess of state Θ̂
𝑖
(0) and associate covariance

P
𝑖
(0), an adaptive recursive weighted least squares algorithm

computes a posteriori estimate Θ̂
𝑖
(𝑘 + 1), gain matrix K

𝑖
(𝑘),

and a posteriori covariance P
𝑖
(𝑘 + 1) as follows [28]:

Θ̂
𝑖
(𝑘 + 1) = Θ̂

𝑖
(𝑘) + K

𝑖
(𝑘) [𝑉

𝑖
(𝑘) −H (𝑘) Θ̂

𝑖
(𝑘)] ,

K
𝑖
(𝑘)

= P
𝑖
(𝑘)H𝑇 (𝑘) [H (𝑘)P

𝑖
(𝑘)H𝑇 (𝑘) + Λ̂

𝑖
(𝑘 + 1)]

−1

,

P
𝑖
(𝑘 + 1) = P

𝑖
(𝑘) − K

𝑖
(𝑘)H (𝑘)P

𝑖
(𝑘) ,

Λ̂
𝑖
(𝑘 + 1) = Λ̂

𝑖
(𝑘) +

e
𝑖
(𝑘) e𝑇
𝑖
(𝑘) + Λ̂

𝑖
(𝑘)

𝑘 + 1

,

e
𝑖
(𝑘) = 𝑉

𝑖
(𝑘) −H (𝑘) Θ̂

𝑖
(𝑘) ,

𝑖 = 𝑎, 𝑏, 𝑐; 𝑘 = 1, 2, . . . ,

(40)
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where e
𝑖
(𝑘) is called innovation vector. In general, Θ̂

𝑖
(0) = 0,

Λ̂
𝑖
(0) = 0.1, P

𝑖
(0) = I𝛼 and 𝛼 is a large scalar.

We can find that the measurement noise is not used
directly in the above algorithm but merged into e

𝑘
. The

advantage is that we do not have to know the statistical
properties caused by speed disturbance and the gain can be
adaptively weighted calculated by the innovation vector. So it
will speed up the convergence of the algorithm.

After gaining the estimate value of 𝑙
𝑖𝑗
(𝑖 = 1, 2, 3; 𝑗 =

𝑎, 𝑏, 𝑐), substituting them into (35), we have

𝜀
𝐸
=

6𝑙
3𝑏

𝑔𝜔
𝑖𝑒
sin 𝐿

,

𝜀
𝑁
= −

3

𝑔𝜔
𝑖𝑒

(𝑙
3𝑎

+ 𝑙
3𝑐
tan𝐿) ,

𝜀
𝑈
=

3

𝑔𝜔
𝑖𝑒
cos2𝐿

(2𝑙
3𝑐
− 𝑙
3𝑐
sin2𝐿 − 𝑙

3𝑎
sin 𝐿 cos 𝐿) ,

𝜙
𝑎0

=

−2𝑙
2𝑐

𝑔𝜔
𝑖𝑒
cos 𝐿

−

𝜀
𝐸

𝜔
𝑖𝑒

,

𝜙
𝑏0

=

𝑙
1𝑎

− 𝑔 cos 𝐿
−𝑔 sin 𝐿

,

𝜙
𝑐0
=

2𝑙
2𝑎

− 𝜀
𝐸
𝑔 sin 𝐿

𝑔𝜔
𝑖𝑒
cos 𝐿

.

(41)

If the gyroscope’s equivalent east constant drift (i.e., 𝜀
𝐸
) is

notmeasured, 𝜙
𝑎0
, 𝜙
𝑏0
, and 𝜙

𝑐0
can be, respectively, expressed

as follows:

𝜙
𝑎0

≈

−2𝑙
2𝑐

𝑔𝜔
𝑖𝑒
cos 𝐿

,

𝜙
𝑏0

=

𝑙
1𝑎

− 𝑔 cos 𝐿
−𝑔 sin 𝐿

,

𝜙
𝑐0
≈

2𝑙
2𝑎

𝑔𝜔
𝑖𝑒
cos 𝐿

.

(42)

And the calculation errors of misalignment angles are formu-
lated as follows:

𝛿𝜙
𝑎0

= −

𝜀
𝐸

𝜔
𝑖𝑒

,

𝛿𝜙
𝑏0

=

−∇
𝑁
sin 𝐿 + ∇

𝑈
cos 𝐿

𝑔 sin 𝐿
,

𝛿𝜙
𝑐0
= −

𝜀
𝐸

𝜔
𝑖𝑒

tan 𝐿 +

∇
𝐸

𝑔 cos 𝐿
.

(43)

After gaining initialmisalignment angles𝜙
𝑎0
,𝜙
𝑏0
, and𝜙

𝑐0
,

substituting them into (25), we can obtain the misalignment
angles in real time. Then, complete the initial alignment
according to (11), and the gyrodrifts can be calculated as
follows:

[

[

[

𝜀
𝑥

𝜀
𝑦

𝜀
𝑧

]

]

]

= C𝑏
𝑛

[

[

[

𝜀
𝐸

𝜀
𝑁

𝜀
𝑈

]

]

]

, (44)

Table 1: Statistics for coarse alignment simulation results.

Pitch error (∘) Roll error (∘) Heading error (∘)
Mean −0.0189 −0.2011 −0.3048
Max. 0.0045 −0.1015 1.4320
Min. −0.0429 −0.3348 −1.1483
Std. 0.0136 0.0491 0.5902

where C𝑏
𝑛
is transformation matrix from 𝑛 frame to 𝑏 frame

and C𝑏
𝑛
= (C𝑛
𝑏
)
𝑇.

4. Simulation and Analysis

The parameters of the simulation are set as follows.
The carrier is rocked by the wind. Pitch 𝜃, roll 𝛾, and

heading 𝜓 resulting from the carrier rocking are changed
periodically and can be described as follows:

𝜃 = 1
∘ cos(2𝜋

5

𝑡 +

𝜋

4

) ,

𝛾 = 1
∘ cos(2𝜋

6

𝑡 +

𝜋

7

) ,

𝜓 = 30
∘
+ 30
 cos(2𝜋

7

𝑡 +

𝜋

3

) .

(45)

The velocity caused by surge, sway, and heave is as follows:

𝑉
𝑖
= 𝐴
𝐷𝑖

2𝜋

𝑇
𝐷𝑖

cos( 2𝜋

𝑇
𝐷𝑖

𝑡 + 𝜑
𝐷𝑖
) , 𝑖 = 𝑥, 𝑦, 𝑧, (46)

where subscript 𝑥, 𝑦, 𝑧 are the three axes of 𝑏 frame,
respectively. 𝐴

𝐷𝑥
= 0.02m, 𝐴

𝐷𝑦
= 0.03m, and 𝐴

𝐷𝑧
=

0.04m. 𝑇
𝐷𝑥

= 7 s, 𝑇
𝐷𝑦

= 6 s, and 𝑇
𝐷𝑧

= 5 s. 𝜑
𝐷𝑖

obeys the
uniform distribution on interval [0, 2𝜋].

The inertial measurement unit (IMU) is composed of
medium precision sensors and the errors are set as follows:
the gyroconstant drift is 0.01∘/h; the gyrorandom noise is
0.01∘/h; the accelerator bias is 1 × 10−4 g; and the accelerator
measurement noise is 1 × 10−4 g. SINS location is as follows:
north latitude is 40∘ and east longitude is 118∘.

Simulation 1. The coarse alignment lasts 120 s. The values of
𝑡
1
and 𝑡
2
in (10) are set to 60 s and 120 s, respectively. The

simulation for the coarse alignment runs 50 times.The pitch,
roll, and heading errors at the end of the coarse alignments
are shown in Figure 2 and the statistics for coarse alignment
simulation result are shown in Table 1.

From Figure 2 and Table 1, it is obvious that the level atti-
tude errors of the coarse alignment are less than 0.4 degrees
and the heading attitude error is less than 1.5 degrees. The
attitude errors calculated by the proposed coarse alignment
algorithm can fulfill the requirement for the fine alignment.
Next, the maximum of misalignment angles in Table 1 is used
as input for fine alignment to validate the proposed parameter
identification under inertial frame in Simulation 2.
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Figure 2: The simulation results for coarse alignment.

Table 2: Statistics for fine alignment simulation results.

Number 𝛿𝜙
𝑎
() 𝛿𝜙

𝑏
() 𝛿𝜙

𝑐
()

1 1.863 0.471 1.535
2 1.781 0.325 1.774
3 1.818 0.453 2.024
4 1.870 0.337 2.251
5 1.752 0.301 1.663
6 1.774 0.374 1.486
Mean 1.810 0.377 1.789
Std. 0.0489 0.0703 0.2970

Simulation 2. Thesimulation for fine alignment by parameter
identification under inertial frame lasts 600 s and runs 6
times. The statistics for fine alignment simulation result are
shown in Table 2 and the estimate errors of misalignment
angles (one of them) are shown in Figure 3.

According to Figure 3 and Table 2, it is clear that 𝛿𝜙
𝑏
con-

verges almost instantaneously with a high-precision (better
than 0.5 arcmin). Specifically, 𝛿𝜙

𝑎
and 𝛿𝜙

𝑐
take longer time

than 𝛿𝜙
𝑏
to converge; they stabilize at 2 arcmin in 200 seconds

and the results confirm the former analysis in Section 3.2.

Simulation 3. In this simulation, the gyrodrifts are estimated
in real time and the simulation lasts for 1500 s. The simu-
lation results are shown in Figure 4. The simulation results
demonstrate that all the three gyrodrifts are observable and
they converge with good results at the time of 300 s.

5. Conclusions

The accuracy and applicability of SINS largely depended on
the precision and swiftness of the alignment. This paper
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Figure 3: Estimate errors of misalignment angles by parameter
identification under inertial frame.
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Figure 4: Estimation of gyrodrifts.

proposed a novel self-alignment algorithm by parameter
identification under inertial frame for SINS. Firstly, the coarse
alignment method by using the gravity information in the
inertial frame is introduced. Secondly, the fine alignment
method by parameter identification under inertial frame is
formulated. The theoretical analysis results show that the
fine alignment model is fully self-aligned with no external
reference information and the gyrodrifts can be estimated in
real time. Simulation results proved the accuracy and validity
of the proposed method for SINS self-alignment, and the
estimation results of the misalignment angles and gyrodrifts
can approach the theoretical analysis results.
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