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Abstract
Aim: The molecular pathways regulating cartilage degradation are unclear. miR-381 was 
identified as a putative regulator of chondrogenesis related genes. Here, we examined its role 
in chondrogenesis and osteoarthritic cartilage degeneration. Methods: miR-381 expression 
was assessed in vitro in response to IL-1β stimulation in primary human (PHC) and mouse 
(PMC) chondrocytes, and ATDC5 derived chondrocytes; and in vivo in mouse embryos and 
human osteoarthritic cartilage. The effects of miR-381 on chondrogenesis and NF-kB signaling 
were assessed using a synthetic RNA mimic or inhibitor and luciferase assay, respectively. 
Upstream regulators of miR381 were probed using siRNA or overexpression plasmids for 
Sox9 and Runx2. Results: miR-381 expression was elevated in chondrogenic and hypertrophic 
ATDC5 cells. miR-381 was induced in vitro by IL-1β in ATDC5 cells, PMCs, and PHCs, and was 
expressed in areas of cartilage degradation or absorption in vivo. Overexpression of Runx2 
or Sox9 increased miR-381 expression in ATDC5 cells. miR-381 suppressed expression of 
collagen, type II, alpha 1, and enhanced expression of metalloproteinase-13 (MMP-13), but 
did not regulate NFKBIA and NKRF activity. Conclusion: miR-381 was highly expressed during 
chondrogenesis and in arthritic cartilage. It may contribute to absorption of the cartilage 
matrix by repressing type II collagen and inducing MMP-13.

Introduction 

Osteoarthritis (OA) is characterized by degeneration of joint cartilage. The prevalence 
of radiographic OA, diagnosed based on the inter-bone distance in the affected joint, ranges 
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from 19-28% in the knee and 7-27% in the hip [1]. However, the frequency of symptomatic 
OA, defined by pain, aching, or stiffness is much less frequent. In general, symptomatic OA 
affects less than 10% of the population, although rates as high as 17% have been reported 
[1]. The risk factors for developing OA include increased age, female gender, race, and genetic 
predispositions [1]. The current treatments for OA can relieve symptoms like pain and 
tenderness, but cannot cure the disease or stop its progression. An incomplete understanding 
of the molecular mechanisms that regulate cartilage formation and degeneration has slowed 
the development of novel OA therapies. 

The pathogenesis of OA is thought to have a major inflammatory component that drives 
cartilage degradation and inhibits cartilage formation. The proinflammatory cytokine, 
interleukin-1β (IL-1β), leads to the upregulation of matrix metalloproteinase (MMP) 
enzymes, which degrade the extracellular cartilage matrix (ECM) [2]. The ECM is secreted by 
chondrocytes and contributes to the mechanical function of cartilage. MMP-13 in particular 
has the capacity to degrade a wide range of matrix molecules, and is thought to be one of 
the major effectors induced by IL-1β in OA [3, 4]. Type II collagen is a major component 
of the ECM, and an MMP-13 target, that is degraded in osteoarthritic cartilage [5-7]. The 
transcription factor SRY-related high mobility group-box-9 (Sox9) initiates type II collagen 
expression, and inhibits the expression and activity of Runx2, a key regulator of collagen 
degradation that upregulates MMP-13 [8, 9]. 

While chondrogenic differentiation is regulated by many different factors, including 
retinoic acid receptor signaling, microRNAs (miRNAs), small non-coding RNAs that post-
transcriptionally regulate gene expression, have been implicated in regulating all stages 
of ossification [10-13]. For example, miR-140 regulates cartilage and bone formation [14, 
15], and miR-365 increases chondrocyte proliferation and differentiation [16]. miRNAs 
have also been implicated in the development of arthritic cartilage [13, 17]. For example, 
IL-1β significantly represses miR-558, which relieves its inhibition of Cyclooxygenase-2 
(Cox2) and increases cartilage catabolism [18]. Another example is miR-194, which inhibits 
expression of Sox5 and thereby inhibits chondrogenic differentiation in adipose stem cells 
[19]. We were the first to describe an approximately 3-fold upregulation in miR-381 when 
human mesenchymal stem cells differentiate to chondrocytes [20]. We also identified 
chondrogenesis related genes that are putative targets of miR-381 including NFKBIA; CEBPβ; 
Runx2; Sox-2, 4, 5, 6, and 9; SMAD-3, 4, and 5; MAPK-1 and 9; BMPR2, and MMP7 [20]. To 
date, there is very little known about miR-381. It has been most thoroughly characterized 
in cancer models where it interacts with cell cycle genes. miR-381 has been reported to 
act as an “oncomir” in glioma progression by enhancing proliferation of glioma cells, and 
to suppress lung adenocarcinoma by inhibiting cell migration and invasion [21-23]. Given 
the role of miRNAs in regulating cartilage homeostasis, and the putative chondrogenesis 
targets of miR-381, we hypothesized that miR-381 might have a role in OA pathogenesis. 
Here we investigated the regulation and molecular mechanism of action for miR-381 in 
chondrogenesis and cartilage degeneration.

Materials and Methods

Primary chondrocyte isolation 
This study adhered to the standards of the Ethics Committee on Human Experimentation at the First 

Affiliated Hospital of Sun Yat-Sen University, China and the Declaration of Helsinki (2000). After obtaining 
informed consent, primary human chondrocytes (PHCs) were isolated from three hip or knee joints during 
amputation surgery to treat osteosarcoma at the First Affiliated Hospital of Sun Yat-Sen University. Patients 
with osteoarthritis and local or systemic immunological disorders were excluded based on the clinical 
diagnosis. In a second patient set, degraded joint cartilage was collected from OA hips (n =3) during total 
hip arthroplasty surgery. Cartilage was cut into pieces 1 mm in diameter, and digested with DMEM/F12 
(Hyclone, Logan, UT, USA) supplemented with 2% penicillin and streptomycin (Gibco, Grand Island, NY, 
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USA), 5% FBS (Gibco, 12657), and 0.4% Pronase (Roche, Indianapolis, IN, USA) for 90 min. The tissue pieces 
were then transferred to a second digestion solution consisting of DMEM/12 (Hyclone) supplemented with 
2% penicillin and streptomycin (Gibco), 5% FBS (Gibco), and 0.025% Collagenase P (Roche) for 7 h on a 
37°C stir-plate. The chondrocytes were seeded in flasks with DMEM/F12 plus 5% FBS, 2% penicillin, and 
streptomycin.

Mice were cared for in accordance with guidelines of Animal Center of the First Affiliated Hospital of 
Sun Yat-Sen University. Primary mouse chondrocytes (PMCs) were isolated as described previously [24]. 
Briefly, newborn mice (5 days old) were washed with 70% ethanol and sacrificed under general anesthesia. 
The cartilage was obtained from the femoral head, femoral condyle, and tibial plateau and digested with 
3 mg/mL collagenase D in complete culture medium (M199 (Gibco 11150-059) supplemented with 10% 
FBS and 1% penicillin and streptomycin) for 90 minutes at 37°C with agitation. Then the cartilage was 
digested again in collagenase D overnight at 37°C. The cells were dislodged from the cartilage with agitation, 
filtered through a 48 um nylon mesh, and then seeded in a culture flask at a density of 8,000 cells/cm2. 
Early-passage PMCs, defined as no more than four passages, were used in these experiments. For a second 
set of experiments, pregnant C57BL/6J mice were purchased from the Animal Center of the First Affiliated 
Hospital of Sun Yat-Sen University. Embryos were collected on E10.5 and E14.5 and used to detect miR-381 
expression in areas undergoing active cartilage absorption in the early limb buds.

Cell culture 
ATDC5 mouse cells (Riken Cell Bank; Ibaraki, Japan) were cultured in DMEM/F12 supplemented 

with 5% FBS, and 1% penicillin and streptomycin at 37°C in a humidified 5% CO2 atmosphere. The culture 
medium was changed every 2 days. The cells were split when they reached confluence. All of the experiments 
were completed using cells passaged fewer than 20 times. 

Inducing chondorogeneis in ATDC5, mouse, and human cells 
Chondrogenesis was induced in ATDC5 cells for 14 days. The chondrogenic culture medium was 

changed every day. PMCs were grown in M199 medium (Gibco, 11150-059) supplemented with 10% 
FBS, 1% penicillin and streptomycin, bFGF (Peprotech, Rocky Hill, NJ, USA), EGF (Peprotech), and insulin 
(Sigma, St. Louis, MO, USA) at 37°C in a humidified 5% CO2 atmosphere. PHCs were cultured in DMEM/F12 
supplemented with 5% FBS, 1% penicillin and streptomycin, and ITS (insulin, transferrin, and selenous 
acid) + Premix (BD Biosciences, San Jose, CA, USA catalog: 354352) as previously described [25-29] at 
37°C in a humidified 5% CO2 atmosphere. Chondrogenic ATDC5 cells, PHCs, and PMCs were treated with 
recombinant IL-1β (Peprotech, 200-01B) using various doses and times [30-32]. Where indicated, the cells 
were transfected with an mmu-miR-381 mimic, a synthetic miRNA with the same sequence as mature miR-
381 (micrON™ mmu-miR-381-3p mimic, miR10000746-1-5), an miR-381 inhibitor, synthetic miRNA that 
interferes with miR-381 (micrOFF™ mmu-miR-381-3p inhibitor, miR20000746-1-5), or negative control 
miRNA, synthetic miRNA with a nonsensical sequence (micrON™ miRNA mimic control, miR01201-1-5; 
micrOFF™ miRNA inhibitor control, miR02201-1-5; Ribobio, Guangzhou, China). 

Alcian blue staining 
Cultured cells were fixed in formalin for 4 hours at room temperature and stained with alcian blue 8GX 

(Cyagen) for 20 min at room temperature. 

In situ hybridization 
Tissue from mouse embryos at days E10.5 and E14.5 were harvested and processed with human joint 

cartilage obtained from OA hip patients. The tissues were fixed in DEPC treated with 4% paraformaldehyde 
at 4°C overnight and embedded in paraffin. 5 μm sections were incubated with 40 μg/mL Proteinase K 
(Promega, Madison, WI, USA catalog: V3021) at room temperature overnight. The following day, the 
sections were incubated with 5′-labeled RNA probe (Exiqon, 38188) at 56°C overnight. Endogenous alkaline 
phosphatase was blocked at room temperature for 1 h, followed by incubation with anti-Digoxigenin-AP 
(1:500, Roche, 11093274) at 4°C overnight. The nitroblue tetrazolium (NBT)/BCIP (Sigma, N1911) staining 
reaction was then performed, the sections were counterstained with safrinin O and dehydrated with ethanol. 
Negative control staining was performed using PBS.
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RNA extraction, reverse transcription, and quantitative real-time reverse transcription-polymerase chain 
reaction (qRT- PCR) 
Total RNA was extracted with miRNeasy Mini Kit (QIAGEN, USA) following the manufacture’s 

instruction. The concentration and purity of the extracted RNA was analyzed using the Epoch Multi-Volume 
Spectrophotometer System (BIOTEK, USA). cDNA was generated using the PrimeScript® miRNA cDNA 
Synthesis Kit (Takara, Japan) following the manufacture’s instruction. qRT-PCR was performed using SYBR® 
Premix Ex Taq™ II (Takara, Japan) and the BioRad IQ5 system according to the manufacturer’s instruction. 
The specific primers are listed in Table 1. The reverse primer for miRNA-381 was the Uni-miR qPCR Primer 
(Takara, Japan, Cat: D352). The melting curve was used to monitor the quality of the pRT-PCR reactions. 
The fold change in mRNA expression was calculated using the ΔΔCt method. All samples were measured in 
triplicate.

Transfection 
ATDC5 cells were cultured in DMEM/F12 supplemented with 5% FBS until they reached 60% 

confluence. Lipofectamine® 2000 Transfection Reagent (Invitrogen, 11668) was used to transfect cells 
according to the manufacturer’s instruction. After 6 hours, the transfected ATDC5 cells were differentiated 
to chondrocytes using medium containing ITS+ Premix.

Construction of eukaryotic expression plasmids 
Eukaryotic expression GV230 plasmids were purchased from Genechem (Shanghai, China). The 

plasmids were constructed using standard DNA techniques. Runx2 was cloned using the following primers: 
5′ -TAC CGG ACT CAG ATC TCG AGA TGG CGT CAA ACA GCC TCT TC-3′, 5′ - GAT CCC GGG CCC GCG GTA CCG 
TAT ATG GCC GCC AAA CAG ACT C-3′. Sox9 was closed using the primers: 5′-TCC GCT CGA GAT GAA TCT 
CCT GGA CCC CTT C-3′, 5′-ATG GGG TAC CGT GGG TCT GGT GAG CTG TGT GTAG-3′. The amplified DNA was 
inserted into the XhoI/KpnI restriction sites of GV230. The final plasmids were verified by sequencing. 

Table 1. Primer sequences for qPCR
Target prediction, construction 
of luciferase reporter vector, 
and luciferase reporter assay. 
The potential binding sites 

of miR-381 were predicted using 
miRanda, miRDB, and TargetScan 
software. The DNA sequences 
containing predicted seed sequences 
of NFKBIA and NKRF 3′ -UTR were 
amplified by PCR using the primers: 
m-NFKBIA-3UTR-F: CCG ACT CGA 
GGT GGA AAG TGG CAA AAA G; 
m-NFKBIA-3UTR-R: ATT GCG GCC 
GCC TGT CTG TAA AAA TCT GTT; 
m-NKRF-F: CCG CCT CGA GGA TTT 
TAC TAA GTT GTC; and m-NKRF-R: 
ATT GCG GCC GCTT TTG ATC 
AAC TTT GG. The seed sequences 
were mutated using standard PCR 
techniques with the following 
primers: m-NFKBIA-mut-F:ATG TGG 
AGA ACA TAT TTT GTA CAA ATA GAG 
TT; m-NFKBIA-mut-R:GTA CAA AAT 
ATG TTC TCC ACA TTC TTT TTG C; 
m-NKRF-mut-F:CTG TCC AGA ACA 
TAA CTT AGC TTA ATC CAG CAG; 
and m-NKRF-mut-R: AAG CTA AGT 
TAT GTT CTG GAC AGA ATT CTC TAG. 
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The amplified DNA sequences were inserted into pmiR-RB-REPORTTM Vector to generate wild type (WT) or 
mutated (MUT) NFKBIA/NKRF 3′ -UTR luciferase vectors. To generate mutant NFKBIA and NKRF 3′ -UTR 
vectors, we switched the predicted seed sequences CTTGTATA and CTTGTATT to GAACATAT and GAACATAA, 
respectively. All vectors were verified by sequencing. 

For the reporter assay, 1.2×104 cells were cultured in a 96-well plates with 100 μL of culture medium 
for 24 h. The mmu-miR-381 mimic (5 pmol) and vector (100 ng) were cotransfected into each well. The 
transfected cells were cultured in fresh culture medium for an additional 48 h. The luciferase reporter assay 
was carried out following the manufacturer’s instructions (Dual-Glo® Luciferase Assay System, Promega). 
Luminescence was measured using the Veritas 9100-002 luminometer.

Statistical analysis 
All of the experiments were performed at least three times. The results are expressed as the mean and 

standard deviation (mean ± SD). Both parametric and non-parametric inferential statistics were utilized 
in this study depending on whether the data was normally distributed. The independent t-test and Mann-
Whitney U test were used to compare between two groups as appropriate. For multiple group comparisons, 
the one-way ANOVA and Kruskal-Wallis tests were utilized. A p value less than 0.05 was considered 
statistically significant. All analyses were performed using IBM SPSS Version 20 (SPSS Statistics V20, IBM 
Corporation, Somers, New York).

Results

miR-381 was highly expressed in vitro during late stage chondrogenesis in ATDC5 cells and 
IL-1β induced chondrocytes 
We have previously shown that stem cells derived from human adipose tissue express 

miR-381 when they are induced to differentiate to chondrocytes in vitro [20]. Here, ATDC5 
cells were induced to differentiate to chondrocytes in vitro using ITS + Premix. miR-381 was 
significantly upregulated in chondrogeneic ATDC5 cells compared to control cells at 14 (3.07 
± 0.34 vs. 14.58 ± 1.7; p < 0.001), 21 (2.23 ± 0.23 vs. 8.50 ± 1.38;  p=0.002), and 28 (2.86 ± 
0.26 vs. 240.60 ± 11.41; p=0.001) days (Fig. 1A). Expression of miR-381 generally increased 
over time in the ATDC5 cells, although a slight decrease was observed at day 20 (Fig. 1A). 
Chondrocyte differentiation was verified through significantly increased expression of the 
chondrogenic markers collagen, type II, alpha 1 (Col2a1), Sox9, Collagen, type X, alpha 1 
(Col10a1), and Runx2 (Fig. 1A). Sox9 and Col2a1 expression were noticeably increased at 
day 14 while Runx2 and Col10a1 peaked late at day 28 (Fig. 1A). Representative images 
of alcian blue staining in ITS + premix treated ATDC5 cells from 0-35 days are shown in 
Fig. 1B. Cartilage staining became stronger with prolonged chondrogenesis, indicating the 
accumulation of matrix, and peaked after 14 days.

To establish whether miR-381 expression was regulated by inflammation, we assessed 
the expression of miR-381 in IL-1β treated chondrogenic ATDC5 cells and primary 
chondrocytes. In the PHCs, IL-1β significantly increased the expression of miR-381 1.6 ± 
0.2-fold (p< 0.001; Fig. 2A). MMP-13 mRNA was undetectable in PHCs in the absence of 
IL-1β after 40 cycles, but became detectable (0.00060 ± 0.0001-fold; p< 0.001) after 24 h 
of stimulation with IL-1β (data not shown). Similarly, in PMCs (Fig. 2B) and ATDC5 cells 
(Fig. 2C) miR-381 was significantly upregulated in response to IL-1β after 24 h in culture 
by 1.44 ± 0.42-fold (p =0.031) and 14.28 ± 0.93-fold (p <0.001), respectively. Similar to the 
PHCs, in PMCs and ATDC5 cells MMP-13 was significantly upregulated by 7.76 ± 2.20-fold 
(p <0.001) and 16.74 ± 3.55-fold (p <0.001), respectively after 24 h. In the ATDC5 cells, 
MMP-13 expression remained elevated (19.06 ± 2.23-fold; p <0.001) up to 7 d in culture. 
IL-1β treatment also increased the expression of TNF-α (31.5 ± 5.62-fold; p <0.001), another 
inflammatory cytokine, in PMCs at 24 h. In ATDC5 cells, Col2a1 expression was significantly 
reduced after 24 h with IL-1β (0.81 ± 0.08-fold; p = 0.002) and was further reduced at 7 
d (0.30 ± 0.08-fold; p <0.001). Interestingly, across the in vitro models, expression of miR-
381, MMP-13, and Col2a1 expression were altered in response to IL-1β in a time dependent 
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manner. Taken together, these results suggested that inflammation might contribute to 
regulating miR-381 mediated chondrogenesis.

miR-381 is expressed in in vivo models of late stage of chondrogenesis and arthritis 
To confirm our in vitro findings in a more physiologically relevant in vivo model, we 

stained mouse embryos and arthritic cartilage from OA patients by in situ hybridization to 
determine whether miR-381 was present. The negative control and Safrinin O counterstain 
for each representative image is shown. miR-381 was observed in the early cartilage tissues 
of the embryonic mouse limb bud, especially in the areas of the toe webs that were being 
absorbed (Fig. 3A). miR-381 was also evident in areas of endochondral ossification in the toe 

Fig. 1. Elevated expression of miR-381 during chondrogenesis. ATDC5 cells were induced to chondrogene-
sisby incubating withmedia containing insulin, transferrin, and selenous acid (ITS) + Premix for the indica-
ted amount of time. (A) Gene expression and collagen deposition in treated cells was compared to untreated 
cells by qPCR. The expression levels of miR-381,chondrogenic markers(Col2a1 and Sox9) and hypertrophic 
markers (Col10a1and Runx2) were measured. Untreated ATDC5 cells (F) or ATDC5 cells treated for 14 (G), 
21 (H), 28 (I), or 35 days (J) were fixed with formalin and stained with alcian blue to detect collagen depo-
sition. * p< 0.05.The data are representative of an average of 6 independent assays, each with 3 samples per 
group.
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Fig. 2. miR-381 expression is elevated in chondrocytes following treatment with IL-1β.Primary human 
chondrocytes (PHCs; A) and primary mouse chondrocytes (PMCs; B) were treated with 1 ng/mL of IL-1β for 
4 h. ATDC5 cells were induced to become chondrocytes insulin, transferrin, and selenous acid (ITS) + Pre-
mix for 14 days prior to treatment with 1 ng/mL IL-1β for the indicated amount of time (C). The expression 
levels of miR-381, TNF-α, MMP-13, and Col2a1 expression were measured by qPCR and shown in fold in-
duction relative to unstimulated cells.* p< 0.05. The data are representative of an average of 3 independent 
assays, each with 5 samples per group. 

Fig. 3. miR-381 is evi-
dent in mouse embryos 
and cartilage from os-
teoarthritic patients. 
miR-381expression in 
vivo was assessed using 
in situ hybridization 
with nitroblue tetrazoli-
um (NBT)/BCIP-labeled 
probes (blue). Tissues 
were counterstained 
with nuclear Safrinin O 
(red). Representative 
staining is shown for 
miR-381 in limb buds 
(A) and claws (B) of 
E10.5 mouse embryos. 
Endochondral ossifica-
tion is highlighted in the 
toe webs and metacar-
pal bones (black arrows). (C) miR-381 was present in chondrocytes isolated from osteoarthritic patients. 
The cartilage was cut and spread to provide a full depth view, and the bottom of the photo was the cartilage 
surface. Black arrows designate strongly stained chondrocytes in deeper layers of the cartilage.
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and metacarpal bones (Fig. 3B). In the OA patients, miR-381 was expressed in chondrocytes 
from joint cartilage (Fig. 3C). The anti-miR-381 probe stained chondrocytes in the deep layer 
of the articular cartilage, which are primarily hypertrophic chondrocytes [33-35]. These 
data suggested that miR-381 is involved in late stage chondrogenesis and endochondral 
ossification, and is present in osteoarthritic joints in vivo.

miR-381 repressed type II collagen expression and enhanced MMP-13 expression 
To establish a mechanistic link between miR-381 and chondrogenesis and cartilage 

degradation, we either inhibited miR-381 or over expressed an miR-381 mimic in ATDC5 
cells. The ATDC5 cells were induced to differentiate into chondrocytes and transfected with 
either the inhibitor for 7 days (Fig. 4A) or the mimic for 3 days (Fig. 4B). The expression of 
MMP-13 and Col2a1 was assessed by qRT-PCR and compared to negative control ATDC5 
cells. The miR-381 mimic induced a dose dependent decrease in the expression of Col2a1 
(50nM: 0.26 ± 0.06-fold, p= 0.004; 100nM: 0.11 ± 0.04-fold, p= 0.003), and a dose dependent 
increase in the expression of MMP-13 (50nM: 23.04 ± 4.37-fold, p= 0.019; 100nM: 117.82 ± 
19.43-fold, p <0.001). In contrast, the miR-381 inhibitor induced a dose dependent increase 
in Col2a1 expression (50nM: 3.19 ± 0.32-fold, p= 0.008; 100nM: 4.69 ± 2.05-fold, p= 0.02) 
and dose dependent decrease in MMP-13 expression (50nM: 0.06 ± 0.07-fold, p <0.001; 
100nM: 0.01 ± 0.01-fold, p <0.001). Neither the miR-381 mimic nor the inhibitor affected 
expression of Sox9, Runx2, or Col10a1 (data not shown).

Runx2 and Sox9 upregulated expression of miR-381 
Given the roles of Sox9 and Runx2 in regulating Col2a1 and MMP-13 expression, we 

next investigated whether Runx2 and Sox9 also regulated miR-381 expression during ATDC5 
chondrogenesis. The expression levels of Runx2 and Sox9 were increased or decreased 
using targeted siRNA or plasmids that overexpressed Runx2 (Fig. 5A) or Sox9 (Fig. 5B). 
Targeted siRNA significantly reduced the expression of Runx2 (0.77 ± 0.13-fold, p <0.05) and 
significantly reduced the expression of miR-381 (0.17 ± 0.03-fold, p <0.05; Fig. 5A). However, 
transfecting a plasmid containing the Runx2 gene significantly increased expression of both 
Runx2 (1.95 ± 0.64-fold, p <0.01) and miR-381 (2.79 ± 0.75-fold, p <0.05). Similar results were 
observed for Sox9, although the reduction in miR-381 expression when Sox9 was knocked 
down was not significant (Fig. 5B). Thus, its likely that both Runx2 and Sox9 contributed to 
regulating the expression of miR-381 in vitro.

Fig. 4. Effect of miR-381 on Col2a1 and MMP-13. ATDC5 cells transfected with a synthetic RNA miR-381 
inhibitor (A) or synthetic RNA mimic(B) were treated with insulin, transferrin, and selenous acid (ITS) + 
Premix to induce chondrogenesis. ATDC5 cells were treated with a non-sense synthetic RNA as the negative 
control. The expression levels of MMP-13 and Col2a1 were determined with qPCR. * p< 0.05.The data are 
representative of an average of 3 independent assays, each with 6 samples per group.
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miR-381 does not target NFKBIA or NKRF 
NF-kB has been reported to enhance MMP-13 expression and repress type II collagen 

expression [36, 37]. Based on our previous work [20], we hypothesized that miR-381 might 

Fig. 5. Regulation of miR-381 by Runx2 and Sox9. ATDC5 cells were cotransfected with negative control 
siRNA (siNC), Runx2 (A) or Sox9 (B) siRNA and empty vector (GV230; plNC) or a GV230 plasmid containing 
Runx2 (A) or Sox9 (B). Chondrogenesis of ATDC5 was induced using insulin, transferrin, and selenous acid 
(ITS) + Premix and the expression levels of miR-381, Sox9, and Runx2 were measured with qPCR. * p< 0.05. 
The data are representative of an average of 4 independent assays, each with 6 samples per group.

Fig. 6. NFKBIA and NKRF regulation by miR-381. (A) Wild type 3′-UTR and mutant of NFKBIA (Nfkbia-WT; 
Nfkbia-Mut) or (B) Wild-type and mutant 3′-UTR of NKRF (NKRF-WT; NKRF-Mut) were inserted into lu-
ciferase reporter vectors. The constructed vectors and miR-381 mimic (mmu-miR-381-3p) or non-sense 
negative control (NC) were cotransfected into cells. The fluorescence intensity was measured. * p< 0.05.The 
data are representative of an average of 4 independent assays, each with 3 samples per group.
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affect the expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells 
inhibitor, alpha (NFKBIA) and NFKB repressing factor (NKRF), which are NF-kB inhibitors 
[38]. The putative miR-381 binding sites for NFKBIA (Fig. 6A) and NKRF (Fig. 6B) are shown. 
Luciferase reporter assays with the wildtype or mutant 3′ UTR of NFKBIA and NKRF were 
performed in the presence or absence of the overexpressed miR-381 mimic. The mutant 3′ 
UTR sequence prevented the binding of the miR-381 mimic. Transfection of the miR-381 
mimic slightly increased transcription from the wildtype 3′ UTR of NFKBIA (1.1 ± 0.02-fold, 
p= 0.006), suggesting that NFKBIA is not a target of miR-381 mediated repression (Fig. 6C). 
Surprisingly, when the NFKBIA seed sequence was mutated, the miR-381 mimic slightly 
reduced luciferase expression from the mutant 3′ UTR (0.88 ± 0.01-fold, p= 0.0008), however 
this was not considered to be biologically relevant as the mutant seed sequence is not found 
in vivo. Similar results were observed from NKRF (Fig. 6D), indicating that neither NF-kB 
inhibitors were likely to be targets for miR-381 mediated repression. 

Discussion

We hypothesized that miR-381 might play a role in cartilage degeneration and 
chondrogenesis. To test this hypothesis, we used in vitro models (PHCs, PMCs, and ATDC5 cells) 
and examined miR-381 expression in two different in vivo models of cartilage degeneration/
adsorption, cartilage from arthritic joints and from mouse limb buds during embryogenesis. 
We demonstrated that miR-381 was expressed in the in vitro systems during differentiation 
to chondrocytes and in vivo in areas of active cartilage degeneration. Furthermore, miR-381 
expression is induced by IL-1β, which is consistent with the inflammatory milieu commonly 
seen in OA [39], and regulated by Runx2 and Sox9. Finally, miR-381 increased the expression 
of MMP-13 and decreased Col2a1 expression. Together these data suggest that miR-381 
plays an active role in regulating cartilage degeneration.

Kawai et al. proposed that condrogenesis in ATDC5 cells progresses in stages based 
on the kinetics of TGF-β2 and fibronectin expression [40]. He proposed that TGF-β2 and 
fibronectin were active during the early (7-12 days) stages of chondrogenesis. In contrast, we 
observed that miR-381 expression was elevated particularly during late-stage (after day 28 
in ATDC5 cells) of endochondral ossification. Sox9 and Runx2 play central roles in the early- 
and late-stages of endochondral ossification. Runx2 has also been reported to participate 
in cartilage degradation and ossification under inflammatory conditions [41]. Regarding 
the slight decrease in miR-381, Col2a1, and Sox9 expression levels at day 21, the decrease 
and subsequent rebound are consistent with the expression patterns of proteoglycan in 
previous studies [42, 43], and likely reflects an intrinsic characteristic of ATDC5 cells as 
they transition from the early to late stage of chondrogenesis. Our data suggested that the 
expression levels of Sox9 and Runx2 are positively correlated with transcription of miR-381, 
indicating they may regulate expression of miR-381. The mechanism of regulation remains 
to be fully elucidated and warrants further study. 

MMP-13 is a key regulator of OA and collagen degradation that has been shown to 
participate in late-stage endochondral ossification [8, 44]. It is induced by CEBPβ and Runx2, 
both putative targets of miR-381 [9], and constitutive activation of Runx2 enhances MMP-13 
expression [45-48]. miR-381 increased the expression of MMP-13 in ATDC5 chondrocytes 
and was associated with reduced collagen deposition and Col2a1 expression. MMP-13 has 
been shown to be regulated by other miRNAs including miR-27a, miR-27b, miR-146, and 
miR-9 [49-52]. In the case of miR-27b, the regulation is direct through the interaction of 
the miRNA and the MMP-13 3′ UTR [49]. However, miRNA regulation can also be indirect 
as in the case of miR-146, which regulated MMP-13 through Irak1 and Traf6 [50]. Our data 
suggest that miR-381 may be a signaling intermediate between Runx2 and MMP-13 during 
cartilage degradation. In the context of inflammation, as would be expected in OA patients, 
IL-1β stimulation increased the expression of MMP-13 in PHCs, PMCs, and ATDC5 cells, and 
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concurrently upregulated miR-381 in all three systems. These data strongly suggest a role 
for miR-381 in OA pathogenesis via MMP-13 regulation.

The NF-kB pathway has also been reported to enhance MMP-13 expression and repress 
type II collagen expression [36, 53]. Two key inhibitory components of the NF-kB signaling 
pathway, NFKBIA and NKRF, were predicted to be targets of miR-381. However, neither 
NFKBIA nor NKRF were targeted by miR-381 in chondrogenesis. A comprehensive literature 
search did not identify any published studies that have used agomir/antagomir, or similar 
RNA-based, strategies in clinical trials or pre-clinical animal models to treat OA. In vitro 
work has suggested that other promising candidates for RNA-based OA therapy include 
miR-140, miR-27a/b, and miR-22 [30, 49, 51, 54]. However, MMP-13 inhibitors have already 
been developed to treat OA [55] and targeting miR-381 may be another viable therapeutic 
strategy to treat OA. 

In this study, we are the first to characterize the role of miR-381 in chondrogenesis and 
cartilage degeneration. The mechanistic insights we were able to offer into miR-381 function 
in chondrocytes were limited, as the luciferase assay did not conclusively show that miR-381 
bound to the 3′ UTR of NFKBIA and NKFR. This leaves open the possibility that miR-381 
acts on chondrocytes through other mechanisms. Overall, our data suggest that miR-381 
is a viable therapeutic target for preventing cartilage degradation. Therapeutic strategies 
incorporating microRNA have been applied in several disease states, including cancer, 
diabetes, and cardiovascular disease [56-58]. miR-155 has also been targeted recently as a 
therapeutic in inflammatory diseases including rheumatoid arthritis [59]. The strategies fall 
broadly into two categories: (1) inhibitory anti-sense RNA and (2) exogenous miRNA like 
molecules [56]. In the case of miR-381, an inhibitory anti-sense RNA therapeutic could be a 
candidate for OA treatment.
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