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Abstract
The equilibrium between the pro-apoptotic ceramide and pro-vital sphingosine-1-phosphate 
is considered to be decisive for cell death or survival. The different ceramidases thus play key 
roles in cell fate and might offer attractive targets for pharmacological intervention. Although 
until recently only moderately active inhibitors have been described, first in vivo experiments 
suggest activity against cancer cell survival and multi-drug resistance. Here, we provide a brief 
overview on the different ceramidases, and we will review the known inhibitors and current 
strategies for further inhibitor development. 

Introduction

Besides their role as structural components of eukaryotic plasma membranes, 
sphingolipids are involved in cellular signaling. Gangliosides and sphingomyelin are the major 
sphingolipids of plasma membranes. After endocytosis, degradation of these membrane 
components yields ceramide and its further catabolites sphingosine and sphingosine-1-
phosphate (Fig. 1). In addition, ceramide, but not sphingosine or sphingosine-1-phosphate is 
produced during de novo biosynthesis of sphingolipids. Ceramide has been shown to trigger 
inflammation, cell cycle arrest and apoptosis, while sphingosine-1-phosphate is pro-vital 
and triggers proliferation in many cell types. The conversion of ceramide to sphingosine-
1-phosphate has been termed “sphingolipid rheostat”, due to its putative role in cell fate 
and it includes ceramidases and sphingosine kinases [1]. In addition, cellular ceramide 
concentrations are significantly influenced by different sphingomyelinases that are capable 
of rapidly producing ceramide upon stimulation. Inhibition of the sphingomyelinases thus 
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may result in protection from cell death and inflammation.[2, 3] On the other hand, inhibition 
of ceramidases should increase cellular ceramide and might be a strategy to induce cell death 
in cancer cells or in hyper-proliferative tissue. Ceramidases (CDases) are a heterogeneous 
family of ubiquitous N-acylsphingosine amidohydrolases, enzymes that catalyze the cleavage 
of ceramides into sphingosine and fatty acids. To date, five human ceramidases encoded by 
five distinct genes have been cloned. They are generally categorized by their pH optima 
for activity and subcellular localization: the acid ceramidase (ASAH1); neutral ceramidase 
(ASAH2); alkaline ceramidase 1 (ACER1/ASAH3); alkaline ceramidase 2 (ACER2/ASAH3L); 
and alkaline ceramidase 3 (ACER3/APHC/PHCA).

Alkaline ceramidases

Three different AlkCDase genes have been identified. The protein products of these 
genes have a similar molecular weight of approximately 31 kDa, with a pH for optimal activity 
between 8.5 and 9.5. All isoforms localize to the ER-Golgi network [4, 5]. The activity of all three 
AlkCDases is enhanced by the presence of the Ca2+ cation [4]. Recent studies demonstrated 
that AlkCDase is the only ceramidase present in erythrocyte and it is instrumental for the 
generation of sphingosine (SPH) and sphingosine 1-phosphate (S1P). Furthermore, AlkCDase 
has been found to be important for erythroid differentiation in K562 erythroleukaemic cells 
[5]. Alkaline ceramidase 1 (ACER1/ASAH3) is highly expressed in the skin and favors very 
long chain unsaturated ceramides as substrates. ACER1 plays an important role in mediating 
the Ca2+-induced growth arrest and differentiation of epidermal keratinocytes [6, 7]. Alkaline 
ceramidase 2 (ACER2/ASAH3L) is mainly expressed in the placenta and favors long or very 
long chain ceramides over dihydroceramide and phytoceramide as substrates [8, 9]. ACER2 
was found to play a protective role in cell survival during serum-deprivation by mediating 
the balance between SPH and S1P in HeLa cells. ACER2 has also been implicated in the 
regulation of  Bcl-2 protein expression [10] Alkaline ceramidase 3 (ACER3/APHC/PHCA) 
localizes to both the ER and Golgi apparatus and is highly expressed in most tissues, especially 
the placenta [11]. ACER3 favors long-chain (but not very long) unsaturated ceramides as 
substrates [4, 7, 12]. It has been suggested that ACER3 may act as a house-keeping enzyme 
responsible for the catabolism of a specific group of ceramides, in order to maintain basal 
cellular levels of sphingosine (SPH), dihydrosphingosine (DHS) or phytosphingosine (PHS) 
and their phosphates [4]. Interestingly, downregulation of ACER3 decreases the levels of 
other ceramide species and increases the cellular levels of both sphingosine (SPH) and 
sphingosine-1-phosphate (S1P) due to increased expression of ACER2 which hydrolyzes 
most mammalian ceramide species. Additionally, knockdown of ACER3 not only inhibited 
cell proliferation by up-regulation of the cyclin-dependent kinase inhibitor p21, but also 
inhibited serum-deprivation-induced apoptosis [12].

Fig. 1. The ‘sphingolipid rheostat’ and key enzymes that influence cellular ceramide levels (simplified).
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Acid ceramidase

Acid ceramidase activity (ACDase/ASAH1) activity was first reported in the rat brain 
by Shimon Gatt et al. [13]. The enzyme was subsequently purified to homogeneity from 
human urine [14],  the cDNA for the gene was cloned [15] and characterized from other 
tissues [16]. The aCDase is expressed in form of a polypeptide of 395 amino acids in length 
(53-55 kDa) that undergoes proteolytic self-cleavage into two subunits: an α-subunit (13 
kDa) and a β-subunit (40 kDa) [17]. ACDase localizes in the lysosomes from which a portion 
is secreted extracellularly [14, 18].  No cations are required for aCDase activity; however, 
anionic lysosomal lipids and sphingolipid activator proteins are required as cofactors for the 
efficient hydrolysis of ceramide in vivo [14]. The enzyme has an optimal pH of 4.5 [19] and 
favors medium chain unsaturated ceramides as substrates [14]. Some amphiphilic tricyclic 
agents such as desipramine, chlorpromazine and chloroquine can indirectly inhibit lysosomal 
ceramidase activity by down-regulating aCDase protein expression, but do not alter the 
levels of aCDase mRNA. Such inhibitory effects of tricyclic agents have only been observed in 
vivo or in intact cells [20]. Desipramine can induce downregulation of aCDase by activating 
its cathepsin-mediated proteolysis [20]. The major drawback of using tricyclic compounds 
is that they are non-selective, and in addition to inhibiting aCDase, they also inhibit aSMase 
[2, 21] and other lysosomal phospholipases [22]. Genetic mutations within the ASAH1 gene 
can cause a dramatically reduced activity of aCDase leading to a lysosomal storage disorder, 
named Farber disease [23]. Interestingly, the attempt to produce ASAH1 (-/-) mice failed 
[24], and aCDase was subsequently shown to be essential for early embryonic development 
in mice [25]. In contrast, heterozygous knock-out mice had a normal life span but developed 
a lipid storage phenotype in several organs [24]. A recent study with conditional ASAH1 
knock-out mice confirmed an important role of this enzyme in female fertility by promoting 
oocyte survival during maturation of follicles [26]. 

A whole body of evidence suggests that aCDase plays a role in tumor formation or 
progression. The enzyme is up-regulated in different prostate cancer cell lines, which 
subsequently renders tumor cells resistant to chemo- and radiotherapy, resulting in disease 
progression and cancer relapse. Indeed, inhibition of aCDase has been shown to sensitize 
prostate cancer cells to chemo- and radiotherapy, reduce tumor growth and prevent cancer 
relapse [27-30]. Overexpression of aCDase in prostate cancer cells was associated with 
increased lysosomal density and increased levels of autophagy, accompanied by enhanced 
resistance to C6-ceramide [31]. Recently it was demonstrated that in prostate tumors, over-
expressed aCDase results in S1P-mediated activation and nuclear expression of Ets1 [32]. Ets-
1 in turn promoted prostate cancer invasion by triggering the over-expression and secretion 
of cathepsin B. In another study, aCDase has been found to be more highly expressed in 
metastatic than in the non-metastatic prostate cancer cells. Moreover, knockdown of ASAH1 
in the metastatic cells caused an accumulation of ceramides, an inhibition of clonogenic 
potential, an increased requirement for growth factors, and last but not least an inhibition 
of tumorigenesis and lung metastases [33]. The aCDase has also been shown to promote 
the nuclear-cytoplasmic trafficking of PTEN in human prostate tissue, through sphingosine 
1-phosphate-mediated activation of Akt signaling [34]. These events are associated with 
the promotion of tumor formation, cell proliferation, and resistance to therapy. In human 
pancreatic cancer cells, induced de novo biosynthesis of ceramide resulted in pronounced 
cytostatic effects, but not cell death. In such cells, inhibition of aCDase however induced 
cell death, suggesting aCDase as a therapeutic target in pancreatic cancer [35]. ACDase is 
also upregulated in non-small cell lung cancer (NSCLC) patients with acquired resistance 
to choline kinase α (ChoKα) inhibitors. Inhibition of aCDase was found to overcome the 
resistance to choline kinase α inhibition, and to sensitize lung cancer cells to ChoKα inhibitors 
[36]. Furthermore, Akt-2 and aCDase have been shown to cooperate to induce cell invasion 
and confer resistance to apoptosis. Combination of Akt  and aCDase inhibitors synergistically 
inhibit cell viability/proliferation more effectively than single-agent treatments [37]. 
Moreover, aCDase has been described as an estrogen-dependent enzyme that might provide 
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prognostic information in ER-positive breast cancers [38]. In another study, aCDase was 
downregulated in response to tamoxifen, suggesting that aCDase plays a crucial role in 
mediating the anti-estrogen activity of tamoxifen in treatment of breast cancer [39]. 

In contrast to the concept of aCDase as a promoter of cancer progression, it also was 
reported that low expression of aCDase can be associated with tumor progression in ovarian 
cancer, suggesting a role of sphingosine as a tumor suppressor [40]. 

Neutral ceramidase

Neutral ceramidase (NCDase/ASAH2) activity was first described in the human 
duodenum by Nilsson et al. [41]. NCDase has been cloned from bacteria [42], Drosophila 
[43], human [44], mouse [45], rat [46] Zebra fish [47] and several other species. NCDase was 
recently reviewed by Ito M. et al. [48]. NCDase confers 782 amino acids [49]. Although being 
highly glycosylated, deglycosylation does not affect nCDase activity [50, 51]. NCDase localizes 
to the outer leaflet of the plasma membrane (PM) [52] or it is secreted into the intestinal 
lumen [53]. Northern blotting demonstrated that nCDase is ubiquitously expressed [44], 
with high levels observed in the intestine, kidney, liver and heart and low levels in the brain, 
lungs, spleen, skeletal muscle and testis [45, 54]. Interestingly, both secreted intestinal and 
intracellular nCDase are identical enzymes [55]. NCDase has a broad optimal pH, ranging 
from 7-9, and no cations are required for activity [44]. The activity of nCDase purified from 
the rat or human intestine is not affected by Ca2+, Mg2+or Mn2+, but is inhibited by Zn2+, Fe2+ 
and Cu2+ [53]. NCDase favors the natural D-erthro-ceramide isomer as a substrate over 
other isomers of ceramide, and has low or no affinity for the hydrolysis of dihydroceramide, 
phytoceramide, methylated ceramide and shorter ceramides [44]. Galadari et al. identified 
a nCDase motif comprised of a six amino acids (GDVSPN), and found that the serine residue 
(Ser 354) of this hexapeptide acts as the nucleophile to attack the amide bond of ceramide 
bound to the catalytic site [56]. 

A recent study identified a putative promoter region of 200 bp in the 5'-UTR of the human 
nCDase gene. Single mutation of an individual site within the putative promoter decreased 
reporter activity by up to 50% [57]. Overexpression of nCDase was found to inhibit apoptosis 
in response to TNF-α stress stimuli in rat primary hepatocytes, by regulation of ceramide and 
S1P in these cells [58]. In INS-1 cells, a chronic activation of nCDase is probably providing 
protection from cytokine-induced cell death and toxicity [59]. In addition, inflammatory 
stimuli (IL-1β) led to early sphingomyelinase activation and elevated ceramide in mesangial 
cells, followed by a later increase in nCDase, counteracting the sphingomyelinase-mediated 
ceramide production [60]. Other studies showed that overexpression of nCDase also results 
in increased generation of SPH and S1P by mediating the hydrolysis of ceramides in the 
plasma membrane and in extracellular space. However, in these reports it remained unclear 
whether, besides decreased ceramide, increased generation of SPH and S1P by nCDase has 
any effects on cell survival or apoptosis [61, 62]. Indeed, nCDase knock-out mice have a 
normal life span and do not have any obvious abnormalities, but are deficient in intestinal 
ceramide degradation [63]. Snider, A. et al. recently reported that loss of nCDase results in 
an unexpected increase in S1P generation in inflammatory bowel disease, and suggests that 
nCDase may actually protect against inflammation [64]. Furthermore, it has been shown that 
retinoic acid induces down-regulation of nCDase and accumulation of ceramide in SH-SY5Y 
cells, leading to cell-growth arrest and differentiation, while sphingosine or sphingosine 
1-phosphate are unaffected [65]. Gemcitabine-treatment of polyoma cells has been shown 
to down-regulate nCDase expression leading to cell cycle arrest, through elevating the levels 
of ceramide [66]. 

As detailed above, ceramidases play a crucial role for final cellular response, cell 
homeostasis, and normal cell development through controlling the ceramide/sphingosine-1-
phosphate (S1P) rheostat, and may also confer resistance to drugs and radiation. Therefore, 
ceramidase inhibitors have excellent potential for development as new anticancer drugs. 
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Herein, we review ceramide-derived inhibitors and other structurally unrelated inhibitors 
of different ceramidases (Fig. 2). 

Structural analogues of ceramides as ceramidase inhibitors

NOE (N-oleoyl-ethanol amine) was the first ceramide-mimicking CDase inhibitor to be 
described [67]. The compound increases cellular levels of ceramide and induces apoptosis 
in different cell lines. However, in some studies NOE was shown to not only inhibit aCDase 
but also the glucosylation of ceramide in CHP-100 neuroepithelioma cells [68]. Moreover, it 
has been reported that both acidic and alkaline ceramidases in keratinocytes are inhibited 
by NOE [69]. Subsequently, NOE was defined as a weak and unselective aCDase inhibitor 
(with a Ki of 500 µM) and its ability to inhibit aCDase in vitro and in vivo was not always 
reproducible [70]. Nevertheless, the endocannabinoid-related molecule NOE served as 
a scaffold for the design of other aCDase inhibitors. Fabrias and co-workers developed a 
series of several amides of differently 2-substituted aminoethanols in order to improve the 
selectivity and inhibitory potency of NOE [70-72]. Detailed structure activity relationship 
(SAR) studies revealed that the inhibitory efficacy of NOE in vitro and in intact cells was 
enhanced by suitable modifications of the functional groups. DM102, one of the NOE 
analogues developed, was found to dose dependently inhibit aCDase activity in intact cells 
with an IC50 value of approximately 15µM, and to exert a cytotoxic effect in A549 cells with a 
LD50 value of about 40 µM. Moreover, 50 µM DM102 elevated the levels of ceramide, resulting 
in induction of cell cycle arrest and apoptosis [72]. In light of these results, DM102 was 
further biochemically investigated. Inhibition of aCDase using DM102 was found to sensitize 
DU-145 prostate cancer cells to N-[4-hydroxyphenyl]-retinide (4-HPR), a potent (dihydro) 
ceramide-generating anticancer agent. Indeed, combined exposure to DM102 and 4-HPR 
synergistically improved the therapeutic efficacy of 4-HPR, by enhancing caspase activity, 

Fig. 2. Selection of previously described ceramidase inhibitors. Bottom row: compounds un-related to 
ceramide. 
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and increasing the levels of (dihydro)-ceramide and reactive oxygen species (ROS) by 6- and 
30- fold, respectively [73].

The ceramide analogue -D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (D-e-
MAPP)  was developed by Bielawska et al. in 1992 as a lipophilic aromatic ceramide analogue, 
and was found to elevate the endogenous cellular levels of ceramide by up to 3-fold, inhibit 
cell growth and induce apoptosis in HL-60 cells [74]. In further investigations, D-MAPP was 
reported to selectively inhibit alkCDase isolated from HL-60 human promyelocytic leukemia 
cells extract with an IC50 of approximately 1-5 µM. The compound resulted in concentration- 
and time-dependent growth suppression accompanied by G0/G1 phase cell cycle arrest. On 
the other hand, L-MAPP, the enantiomer of D-e-MAPP had no effect on alkCDase. Instead, 
L-e-MAPP has been shown to be a substrate for alkaline ceramidase and is metabolized 
in a manner similar to C16-ceramide via N-deacylation [75]. D-MAPP was also reported to 
function as a moderate inhibitor of acid ceramidase (IC50 of 500 µM) in human melanoma 
and HaCat keratinocytes, in which D-MAPP induces apoptosis by increasing the endogenous 
levels of ceramide [76]. 

Further investigation in active lipophilic aromatic ceramide analogues led to the 
discovery of the more water soluble ceramidase inhibitor B13 [74, 76]. B13 was found to 
be a potent and selective aCDase inhibitor with an IC50 of 10 µM in human melanoma and 
HaCat keratinocytes in which it led to elevation of the endogenous ceramide levels and 
induced apoptosis [76, 77]. We recently found that B13 exhibited an inhibitory activity 
towards purified recombinant human nCDase with a similar potency [78]. Our results may 
offer an explanation for the previous study by Bai et al., who reported that B13 significantly 
increased the cellular ceramide levels but did not affect aCDase activity under the conditions 
tested, probably due to inefficient delivery to the lysosomes [79]. Nonetheless, B13 has 
been shown to prevent growth of different human metastatic colorectal cancer cell lines. 
These effects were accompanied by increased levels of ceramide, activation of various 
pro-apoptotic molecules, such as caspases and with release of cytochrome c [80]. B13 also 
induced apoptotic cell death in different cultured prostate cancer cells and increased the 
sensitivity of androgen-insensitive prostate cancer xenografts tumors to radiation, which  
finally led to a significant reduction in tumor size [81]. 

In first attempts to improve the inhibitory potency of B13, the amide group was 
isosterically replaced with urea or an N-alkylamine group, which increased both the inhibitory 
effect against ceramidase and also cytotoxicity [82]. The obvious poor penetration of the 
lysosomes by B13 prompted Bielawska and co-workers to developed different series of B13 
and D-e-MAPP analogues that are modified to localize in different cellular compartments. 
Several novel lysosome- and mitochondrium-directed analogues (LCL-analogues) showed 
enhanced rates of subcellular enrichment and a generally higher in situ CDase inhibition 
than the parent compounds [77, 79, 83]. Another series of cationic ceramide analogs were 
synthesized that preferentially targeted the mitochondria [84-86]. Noteworthy, some similar 
compounds have been previously described as inhibitors for sphingolipid biosynthesis by 
Gatt and co-workers [87]. Among the LCL-series, LCL204, LCL385 and LCL85 have been 
investigated further in detail. LCL85 an analogue of D-MAPP directed to mitochondria, 
displayed a more potent growth inhibitory effect (IC50 = 2.3 µM), more promising anticancer 
activity (GI50 -5.30) and lower toxicity in MCF7 breast carcinoma cells compared to the 
parent compound D-MAPP [77, 83]. Short-term exposure of LCL85 in combination with 
photodynamic therapy (PDT) in mouse squamous carcinoma cells led to distinct effects on 
the sphingolipid profile, enhanced autophagy, and induced activation of caspase-3 without 
leading to cell death. In contrast, long-term exposure to LCL85/ PDT enhanced overall cell 
death [88]. Very recently, LCL85 was shown to induce proteasomal degradation of the cIAP1 
and xIAP proteins and to sensitize metastatic human breast and colon cancer cells to Fas-
mediated apoptosis, which suppressed metastasis in vivo [89].

LCL204 (also known as AD 2646) has been shown to increase the sensitivity of head 
and neck squamous cancer cells (HNSCC) cells to FAS-induced apoptosis both in vitro and in 
vivo in a xenograft mouse model [90]. Additionally, LCL204 decreased the cellular levels of 
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sphingosine and selectively increased C14-, C16-, and C18-ceramide levels in DU-145 prostate 
cancer cells [91]. LCL204 also dose- and time-dependently reduced the viability of Jurkat 
leukemic cells, accompanied by accumulation of endogenous ceramide and caspase activation 
[92]. Another analogue of B13, LCL385, was found to inhibit aCDase in vivo and sensitized 
PPC-1 prostate cancer cells to radiation and to significantly reduced xenograft tumor growth 
in nude mice [93]. However, further biochemical investigation revealed that LCL204 and 
probably LCL385 induced lysosomal permeabilization and proteolytic degradation of aCDase 
in a cathepsin-dependent manner [79] and also inhibited aSMase [91]. 

Based on these observations and in an attempt to develop novel aCDase inhibitors 
without lysosomal permeabilization activity, a second generation of novel lysosomotropic 
ω-N-amino analogues of the B13 scaffold was developed and their aCDase inhibitory 
potentials were demonstrated to be high in vitro and in intact cells.  LCL464, a representative 
second generation analog, was found to inhibit aCDase activity in vitro (IC50 ≈ 50 µM) with 
significant lower potency than B13; however, LCL464 exhibited a significantly more potent 
inhibitory towards lysosomal aCDase than B13 in MCF-7 cells. These observations suggest 
that the structural modification in LCL464 is at the cost of per se inhibitory potency, which 
is however over-compensated by lysosomal enrichment. LCL464 induced a potent and early 
inhibition of cellular aCDase which was associated with a decreased level of sphingosine, 
a specific increase in the contents of C14- and C16-ceramide and induction of apoptosis 
via activation of executioner caspases. LCL464 also promoted higher levels of caspase-
dependent apoptotic cell death in a wide range of different cancer cell lines. In contrast to 
LCL204, LCL464 was shown to target lysosomal aCDase without destabilizing or degrading 
the enzyme [79]. In an effort by our group to improve the inhibitory potency of B13 in vivo, 
we identified alternative sites for introduction of basic moieties into B13 scaffold without 
interfering with the aCDase-inhibitory effect in vitro. Indeed, we found that the introduction of 
a weakly basic isostere (pyridine group) in the aromatic region of the B13 scaffold generated 
a new analogue (DP24c) with a higher inhibitory effect against recombinant human aCDase 
compared to B13. However, it remains unclear whether the pyridine group, a weakly basic 
group, is  indeed ensuring lysosomal targeting [94]. 

Furthermore, our group has carried out several detailed SAR studies on existing 
CDase inhibitors (B13, D-e-MAPP, LCL464 and NOE) in order to determine which structural 
features are critical for ceramidase inhibition and also preferential enzyme selectivity.  In 
order to investigate the effect of different electronic substituents in the phenyl ring on the 
inhibitory potency and enzyme selectivity, a detailed SAR study was performed using two 
sets of amide- and sulfonamide-based inhibitors that partially resemble the structure of 
B-13 or D-e-MAPP.  Our in vitro experiments revealed that while the electronic contribution 
of different substituents in the phenyl ring had negligible effects on inhibitory potency or 
enzyme selectivity, the hydrophobicity or steric effects of longer alkyl chains (Me, n-Pr, n-Bu 
or t-Bu groups) at the phenyl ring were found to be important for enhancing the selectivity 
towards aCDase over nCDase. In addition, replacement of the amide group with a sulfonamide 
group further enhanced the inhibitory effects of B13 and D-MAPP analogues [78]. Indeed, 
the sulfonamide analogue of B13 (KPB-70) was significantly more potent than B13 over the 
entire range of concentrations tested, with an IC50 value for the inhibition of nCDase less than 
half of that of B13. In another report, we developed a second series of compounds based on 
structural modifications of the known ceramidase inhibitors B13 and LCL464. Replacement 
of the p-nitro group of the B13 scaffold with a primary amino group created a molecule (KPB-
67) which potently elevated the endogenous levels of ceramide and consequently induced 
apoptotic cell death in MDA-MB-231 breast cancer cells. Noteworthy, this modification did 
not negatively affect the inhibitory potency towards aCDase and nCDase in vitro [95].

A family of structural analogues of ceramide and sphingosine were developed by Usta et 
al., in order to investigate the structural features essential for nCDase inhibition in vitro. The 
primary and secondary hydroxyl groups, the C4-C5 double bond, the trans-configuration of 
the C4-C5 double bond, and the NH-protons from either the amide of ceramide or the amine 
of sphingosine were found to be important features for nCDase inhibition in vitro. Moreover, 

http://dx.doi.org/10.1159%2F000362995


Cell Physiol Biochem 2014;34:197-212
DOI: 10.1159/000362995
Published online: June 16, 2014

© 2014 S. Karger AG, Basel
www.karger.com/cpb 204

Saied/Arenz: Ceramidase Inhibitors 

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

urea-ceramide (C16-urea-Cer) and ceramine (C18-ceramine) were identified as competitive 
inhibitors of nCDase [82].

Moreover, in a recent study, Camacho and co-workers identified novel potent, specific 
inhibitors of aCDase from a series of small ceramide analogs modified at the amide linkage 
with thiol reactive functions (an α-halocarbonyl unit or an α,β-double-bond Michael acceptor 
moiety). Among the ceramide analogues developed, the compounds RBM1-12, RBM1-13, 
and SABRAC were the most potent aCDase inhibitors in intact FD10X cells (ranging from 50 
to 70% inhibition) and also in the in vitro assay (with IC50 values 0.53 µM, 11.2 µM and 52 
nM, respectively). These compounds were found to also time-dependently inhibit aCDase 
activity, suggesting a covalent modification of the enzyme. In contrast, cysteine proteases 
like papain were not affected.  Both SABRAC and RBM1-12 were potent inhibitors of aCDase 
in intact PC-3/Mc cells and also elevated the levels of ceramide, and reduced the growth and 
clonogenic ability of these highly metastatic cells, however, the levels of sphingosine were 
unaffected. Surprisingly, in contrast, RBM1-13, which inhibited ACDase in FD10X cells, failed 
to inhibit aCDase in PC-3/Mc cells [96]. 

Ceramidase inhibitors that are not structural analogues of ceramide

Inoue et al. identified ceramidastin, which is structurally related to the rubratoxins, 
isolated from Penicillium sp. Mer-f17067, as a novel bacterial ceramidase inhibitor (with 
an IC50 value of approximately 12 μM). Interestingly, ceramidastin had no effect on human 
ceramidase, and does not possess anti-microbial or antifungal activity. These properties 
suggest that ceramidastin may have potential for treating atopic dermatitis exacerbated 
by bacterial infection, with a low possibility of inducing drug resistance [97]. Draper et al. 
screened a compound library and identified a new class of quinolinone-based compounds 
(cerenib-1 and cerenib-2) as novel inhibitors of human ceramidase activity. Both cerenib-1 
and cerenib-2 dose-dependently inhibited ceramidase activity in cell-based assays (with 
an IC50 of 28 µM and 55 µM, respectively), and led to an accumulation of ceramides and a 
reduction in the levels of sphingosine and sphingosine-1-phosphate (S1P). Cerenib-1 and 
cerenib-2, both alone and in combination with paclitaxel, also inhibited cell proliferation and 
induced cell cycle arrest and cell death in a human ovarian cancer cell line[98]. 

In a very interesting study, Piomelli et al. identified a new class of substituted 
2,4-dioxopyrimidine-1-carboxamides like 25a as highly potent non-competitive inhibitors 
of aCDase during screening of a commercial chemical library[99]. Indeed, preliminary 
studies by the same group identified carmofur, an anti-neoplastic drug currently used in 
the clinic to treat colorectal cancer, as the first nanomolar inhibitor of intracellular aCDase 
activity (IC50= 29 nM, for rat recombinant aCDase). Interestingly, this inhibitory effect has 
been demonstrated to be an essential component of the anti-proliferation effect of carmofur 
and is independent of the ability of carmofur to generate 5-fluorouracil (5-FU). Consistent 
with these results, structural modifications to the carmofur scaffold produced a set of 
novel aCDase inhibitors that act synergistically with standard anti-cancer drugs to inhibit 
cancer cell proliferation. Later on, a detailed SAR study was performed by the same group 
to investigate the structural features of the uracil scaffold that are essential for aCDase 
inhibition in vitro [100]. Substitution at position N3, a 1-carboxiamide alkyl chain of six to 
eight methylene units, and an electron withdrawing group at position 5 of the uracil ring 
identified to be beneficial to achieve potent aCDase inhibition. Moreover, the C5-C6 double 
bond of the uracil ring and the unsubstituted nitrogen in the 1-carboxiamide moiety are 
mandatory structural features for aCDase inhibitory activity. Accordingly, the same study 
identified the first single-digit nanomolar inhibitors of recombinant rat aCDase (e.g., 25a, 
IC50 of approximately 4 nM). However, the inhibitory potencies of these novel inhibitors have 
not yet been investigated in intact cells [100]. 

Elyahu et al. investigated the effect cystatins on aCDase activity, which led to 
identification of cystatin SA (cysSA) as a novel physiological peptide-based inhibitor of 
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aCDase. Interestingly, cysSA was found to affect activity of aCDase without affecting the 
cleavage of aCDase precursor. In vitro kinetic analysis of purified, recombinant aCDase and 
cysSA suggested a non-competitive type of inhibition with a Ki of approximately 5 µM. Co-
transfection of the full-length cDNAs encoding cysSA with the aCDase cDNA into cells inhibited 
endogenous aCDase activity and increased the levels of ceramide, while transfection of cells 
with siRNA targeting cysSA elevated aCDase activity and reduced the levels of ceramide. 
Subsequently, two short peptides were developed and also were shown to inhibit aCDase 
activity in vitro [101]. 

Ceramidase Assays

For the development and identification of novel ceramidase inhibitors, powerful assays 
will be of utmost importance. Several methods have been developed to evaluate ceramidase 
activity both in vitro and in situ. The first ceramidase assays were based on the hydrolysis 
of ceramide substrates labeled with [3H] or [14C] in the fatty acid and required separation 
of the non-hydrolyzed ceramide from the fatty acid in the reaction product by extraction 
and/or thin layer chromatography (TLC) [102, 103]. Since ceramide is very hydrophobic, 
high concentrations of detergent are required for delivery of the radioactive substrate. The 
drawback of time-consuming separation is accompanied by the advantage of using the 
natural substrate and the high validity of thus-performed assays.

A number of fluorescent spectroscopic ceramidase assays have been developed to 
avoid the use of radioactive substrates (Fig. 3). Such assays mostly make use of ceramide 
analogues with fluorophores attached to either the fatty acid or the sphingosine part. The 
ceramidase activity can be measured by monitoring the release of the fluorescent molecule 
from the substrate by TLC separation and fluorimetry or by HPLC coupled with fluorescence 
detection. The fluorophores 7-nitro-2-1,3-benzoxadiazol (NBD), 4,4-difluoro-4-bora-3a,4a-
diaza-s-indacene (BODIPY), coumarin and diphenylhexatriene  are most commonly used. 

Initially, Cer-C6-NBD was used for the determination of both acid and alkaline ceramidase 
activity in vitro and in situ. However, further investigations demonstrated that Cer-C12-NBD 
was hydrolyzed at a higher rate by both neutral ceramidase and alkaline ceramidase from 
B16 melanoma cells than Cer-C6-NBD in both in vitro and in vivo assays [104, 105]. Moreover, 
Cer-C12-NBD was also found to be hydrolyzed at a higher rate than radioactive [14C]-labeled 
ceramide by alkaline neutral ceramidase, while it was relatively resistant to acid ceramidase.

He X. et al. reported a novel method for determination of acid ceramidase activity in 
different cell lysates using (Cer- C12-BODIPY) as a substrate.  This assay was found to be more 
sensitive than the radioactive substrate assays, as it enabled determination of femtomole 
quantities of the product and accurate measurement of acid ceramidase activity [106]. 
An alternative approach for determination of ceramidase activity is the evaluation of the 
produced sphingosine by post-reaction derivatization with fluorescent compounds and 
its determination by HPLC and fluorescence detection. Two derivatizing agents have been 
reported for this approach: O-phthalic aldehyde (OPA) and naphthalene-2,3-dialdehyde 
(NDA) [14, 107]. The advantage of this approach is the use of un-modified natural ceramide 
as a substrate. 

As an alternative to HPLC-based assays, Nieuwenhuizen and co-workers reported 
the first homogenous assay for alkaline ceramidase from Pseudomonas aeruginosa. This 
assay uses the fluorescence-quenched ceramide analogue Cer-C10-pyrene, in which the 
fatty acid is labeled with a fluorescent pyrene group, while the sphingoid part is coupled 
to a Dinitrobenzoic acid quencher.  The non-fluorescent probe (Cer-C10-pyrene) becomes 
fluorescent upon hydrolysis of its N-acyl bond, and ceramidase activity can be assayed by 
detecting the release of fluorescent pyrene using a fluorimeter [108]. 

Recently, Bedia et al. developed a ceramidase probe in which a cumarin dye is conjugated 
to the aminodiol moiety of a dihydroceramide derivative (Cer-C16-coumarine). This probe 
was found to be efficiently hydrolyzed by ceramidases both in vitro and in cultured cells in a 
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microtiter plate layout, and releases an aminodiol group which is then chemically oxidized 
by periodate to release umbelliferone (7-hydroxycoumarin), which can be easily detected 
by fluorimetry and thus be used for homogenous high-throughput assays (HTS) [109, 
110]. Since a post-reaction treatment with periodate is necessary for the liberation of the 
fluorescent hydroxycoumarin, it is incompatible with real-time assays and does not provide 
spatial information [111]. 

We recently developed a set of singly-labeled fluorescent ceramide analogues, in which 
instead of the polar NBD-dye the more lipophilic Nile red (NR)-dye is attached to the fatty 
acid or sphingosine part, respectively. We investigated these analogues as substrates for 
recombinant acid and neutral ceramidases in micellar assays. Our kinetic studies revealed 
that for acid ceramidase there was no preference for NR-substitution at either the acyl- or 
the sphingosyl-part; however, for neutral ceramidase the ceramide molecules with acyl-
substituted NBD (Cer-C12-NBD) or Sph-substituted NR dyes (NR-Cer-C16) were the better 
substrates, respectively [112]. In a subsequent step, we used the observed preferences to 
develop doubly-labeled fluorescent ceramide analogues as FRET probes to enable real-time 
determination of ceramidase activity. In these FRET probes, a NBD-dye (donor) and NR-dye 
(acceptor) are used as a donor-acceptor fluorescent pair to create a FRET effect. Hydrolysis 
of the FRET probe separates the donor-acceptor pair at the cost of the FRET effect. As a 
result, the NBD-fluorescence increases, while the NR fluorescence is decreasing. In contrast 
to simple turn-on probes, such a setup allows for ratio-imaging and thus should enable time- 
and spatially-resolved assays of ceramidase activities. The NR-Cer-C12-NBD, was found to be 
efficiently hydrolyzed by recombinant acid and neutral ceramidases. However, in cultured 
cells the probe was rapidly enriching to Golgi apparatus and no cleavage was observed  [113]. 
This limitation may be overcome in future by the development of a liposomal transporter. 
For a more detailed review on labeled chemical biology tools for sphingolipid research see 
also [114].

Conclusion

There is ample evidence for a role of different ceramidases in regulation of cell fate 
and for a therapeutic potential of ceramidase inhibitors in the treatment of human cancers. 
Very recently, the field experienced a significant boost by the development and identification 
of highly potent ceramidase inhibitors. Ceramide is a rather simple but very hydrophobic 
molecule with not more than four heteroatoms. Therefore, it seems almost impossible 
to develop ceramide analogues with high inhibitory potency and selectivity for a distinct 
enzyme at the same time. In our opinion, future potent ceramidase inhibitors will be 
allosteric compounds that do not structurally resemble ceramide. It is clear that presently 

Fig. 3. Modified ceramides as probes for measuring ceramidase activities.
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such compounds cannot be rationally designed. Therefore, the quest for such compounds 
will have to rely on high throughput screening. Very recently, a number of steps into such 
direction have been made. In contrast to ceramide-derived inhibitors, the novel ceramidase 
inhibitors like Carmofur and Ceranib appear to be more drug-like and thus have the 
potential to act more specifically. Carmofur (HCFU) has been used as inhibitor of thymidylate 
synthetase in the treatment of human cancers for many years and therefore appears to be an 
invaluable tool for in vitro and in vivo studies on the role of aCDase, provided that controls 
for thymidylate synthase inhibition are made. However, a more detailed characterization of 
the new compounds seems necessary and may provide further support to the concept of 
inhibiting ceramidases for medical purpose. 
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