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We consider certain quartic twists of an elliptic curve. We establish the rank of these curves under the Birch and Swinnerton-Dyer
conjecture and obtain bounds on the size of Shafarevich-Tate group of these curves. We also establish a reduction between the
problem of factoring integers of a certain form and the problem of computing rational points on these twists.

1. Introduction

In this paper, we investigate certain quartic twists of the
elliptic curve𝑦2 = 𝑥3−𝑥 and present some of their interesting
properties. Specifically, we consider the family of elliptic
curves𝐸

𝐷
: 𝑦
2
= 𝑥
3
−𝐷𝑥, where𝐷 = 𝑝𝑞with𝑝 and 𝑞 distinct

prime numbers,𝑝 ≡ 𝑞 ≡ 3 mod 16.These elliptic curves have
complex multiplication by Q(𝑖). The 2-torsion point (0, 0)
generates the torsion subgroup of the Mordell-Weil group
𝐸
𝐷
(Q). Our first result concerns the rank of 𝐸

𝐷
(Q) and an

interesting valuational property of points in 𝐸
𝐷
(Q). More

specifically we obtain the following.

Theorem 1. Let 𝐸
𝐷
: 𝑦
2
= 𝑥
3
− 𝐷𝑥, where 𝐷 = 𝑝𝑞 with 𝑝

and 𝑞 distinct prime numbers and 𝑝 ≡ 𝑞 ≡ 3 mod 16. Then
the rank of the Mordell-Weil group 𝐸

𝐷
(Q) is less than or equal

to 1. If the rank is one, then for every point 𝑅 of 𝐸
𝐷
(Q) which is

not in ⟨(0, 0)⟩ + 2𝐸
𝐷
(Q), the 𝑝-adic and 𝑞-adic valuations of

𝑥(𝑅)must have opposite parity. Moreover, under the Birch and
Swinnerton-Dyer conjecture, the rank of 𝐸

𝐷
(Q) is one.

The situation where𝑝 and 𝑞 do not satisfy the congruence
condition inTheorem 1 is less clear. Recently Li and Zeng [1]
showed, under the Birch and Swinnerton-Dyer conjecture,
that, for𝐷 = 𝑝𝑞 where 𝑝 and 𝑞 are distinct odd primes, there
exists an elliptic curve𝐸

2𝑟𝐷
: 𝑦
2
= 𝑥
3
−2𝑟𝐷𝑥, where 𝑟depends

on the classes of 𝑝 and 𝑞 modulo 8, such that the elliptic
curve has rank 1 and the valuations at 𝑝 and 𝑞 of 𝑥-coordinate

𝑥([𝑘]𝑄) are not equal for odd 𝑘, where𝑄 is a generator of the
Mordell-Weil group 𝐸

2𝑟𝐷
(Q).

By assuming conjectures, in addition to the Birch and
Swinnerton-Dyer conjecture, we also obtain the following.

Theorem 2. Let 𝐸
𝐷
: 𝑦
2
= 𝑥
3
− 𝐷𝑥, where 𝐷 = 𝑝𝑞 with

𝑝 and 𝑞 distinct prime numbers and 𝑝 ≡ 𝑞 ≡ 3 mod 16.
Then the following holds under the Birch and Swinnerton-
Dyer conjecture, the elliptic curve analog of the Brauer-Siegel
theorem, and the Hardy-Littlewood’s F conjecture. For every
𝜖 > 0 there are infinitely many 𝐸

𝐷
with 𝐷 = 𝑝𝑞 and 𝑝 and

𝑞 prime with 𝑝 ≡ 𝑞 ≡ 3 mod 16, such that #III(𝐸
𝐷
) ≫

|Δ(𝐸
𝐷
)|
1/12−𝜖, where III(𝐸

𝐷
) is the Shafarevich-Tate group of

𝐸
𝐷
and Δ(𝐸

𝐷
) is the minimal discriminant of 𝐸

𝐷
.

Let 𝐸 be an elliptic curve over Q. The näıve height of the
elliptic curve is defined to be

ℎ
∗
(𝐸) =

1

12
log max {󵄨󵄨󵄨󵄨𝑐4 (𝐸)

󵄨󵄨󵄨󵄨

3

,
󵄨󵄨󵄨󵄨𝑐6 (𝐸)

󵄨󵄨󵄨󵄨

2

} , (1)

where 𝑐
4
(𝐸) and 𝑐

6
(𝐸) are the 𝑐-invariants associated to a

minimal model of 𝐸.
Let 𝐹 vary over a family of number fields of a fixed exten-

sion degree over Q. Let Δ
𝐹
, ℎ
𝐹
, and 𝑅

𝐹
denote, respectively,

the discriminant, the class number, and the regulator of 𝐹.
The Brauer-Siegel theorem [2] states that if |Δ

𝐹
| tends to

infinity then log ℎ
𝐹
𝑅
𝐹
∼ log |Δ

𝐹
|
1/2. The elliptic curve analog

of the Brauer-Siegel Theorem [3] asserts that, for a family
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of elliptic curves defined over a fixed number field 𝐾 such
that the height ℎ∗(𝐸) tends to infinity, log(#III(𝐸)Reg(𝐸)) ∼
ℎ
∗
(𝐸).
The Hardy and Littlewood conjecture F [4] concerns

polynomials of the form 𝑎𝑥2+𝑏𝑥+𝑐, where 𝑎, 𝑏, 𝑐 are integers
and 𝑎 is positive. It asserts that if the greatest common divisor
of the coefficients is 1 and 𝑏2 − 4𝑎𝑐 is not a square, and either
𝑎 + 𝑏 or 𝑐 is odd, then asymptotically, the number 𝑃(𝑛) of
primes less than 𝑛 of the form 𝑎𝑥

2
+ 𝑏𝑥 + 𝑐 is given by

𝜆(√𝑛/√𝑎 log 𝑛), where 𝜆 is a constant depending only on
𝑎, 𝑏, 𝑐.

The curve 𝐸
𝐷
has 𝑦2 = 𝑥3 −𝐷𝑥 as a minimal model, with

discriminant Δ = 64𝐷3 and naı̈ve height ℎ∗ = (1/4) log 48𝐷
= (1/12) log |Δ| + (1/4) log 12. The elliptic analog of Brauer-
Siegel implies that #III ≪ |Δ|

1/12+𝜖, and Theorem 2 implies
that the bound is essentially tight.

We remark that a result of deWeger [5] demonstrates that
for every 𝜖 > 0 there exist infinitely many elliptic curves of
rank 0 with

#III (𝐸) ≫ |Δ(𝐸)|1/12−𝜖, (2)

assuming the BSD conjecture in the rank 0 case and a con-
jecture of Shintani and Shimura that the Riemann hypothesis
holds for the Ranking-Selberg zeta function associated to the
weight 3/2 modular form associated to an elliptic curve by
the Shintani-Shimura lift.

The result was improved in [6] where it was shown that,
for every 𝜖 > 0, there are infinitely many elliptic curves 𝐸 of
rank 0 such that

#III (𝐸) ≫ |Δ(𝐸)|(1/2)−𝜖 (3)

assuming the BSD conjecture in the rank 0 case and the
conjecture of Shintani and Shimura.

The proof of Theorem 1 is given in Section 2. The proof
of Theorem 2 is given in Section 3. By Theorem 1, any point
𝑅 of the Mordell-Weil group 𝐸

𝐷
(Q) which is not in ⟨(0, 0)⟩ +

2𝐸
𝐷
(Q) must behave differently with respect to 𝑝-adic and

𝑞-adic valuations. This sets the stage for reductions between
the problem of factoring integers of the form 𝐷 and the
problem of computing nontorsion rational points on𝐸

𝐷
.This

is discussed in Section 4. In one direction, it is shown that
how given a rational nontorsion point 𝑃, the factors 𝑝 and
𝑞 of 𝐷 can be found in time polynomial in the height of 𝑃.
We note that the cases where 𝐸

𝐷
have rational points of small

height are those that give rise to large Shafarevich-Tate groups
(see Section 3).

2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Part of
the analysis closely follows Sections X.6 and X.4.9 from
Silverman’s book [7]. First we recall some facts that follow as
the exposition inExampleX.4.8 andPropositionX.4.9 applies
to our situation. We also adopt the notation there.

Let 𝐸
𝐷
overQ be the elliptic curve

𝐸
𝐷
: 𝑦
2
= 𝑥
3
− 𝐷𝑥, (4)

where𝐷 ∈ Z (the subscript𝐷will be dropped when it is clear
from the context). Then 𝐸

𝐷
is isogenous to the elliptic curve

𝐸
󸀠

𝐷
: 𝑌
2
= 𝑋
3
+ 4𝐷𝑋 (5)

via the isogeny 𝜙 : 𝐸
𝐷
→ 𝐸

󸀠

𝐷
, (𝑥, 𝑦) 󳨃→ (𝑦

2
/𝑥
2
, −𝑦(𝐷 +

𝑥
2
)/𝑥
2
). The kernel 𝐸[𝜙] of 𝜙 consists of (0, 0) and 𝑂, the

identity of 𝐸
𝐷
. Let 𝜙 : 𝐸󸀠

𝐷
→ 𝐸
𝐷
be the dual isogeny of 𝜙.

Let 𝑀Q be the set of primes of Z and ∞. Let 𝑆 ⊂ 𝑀Q

that consists of ∞ and all primes dividing 2 or 𝐷. Let Q]
denote the completion ofQwith respect to the absolute value
associated to ] ∈ 𝑆. In particular, Q

∞
denotes R and for

] ∈ 𝑆 \ {∞}, Q] denotes the ]-adic numbers. Let Q(𝑆, 2) be
the subgroup ofQ∗/Q∗2 defined as follows:

Q (𝑆, 2) := {𝑏 ∈
Q∗

Q∗2
| ] (𝑏) ≡ 0 mod 2, ∀] ∉ 𝑆} . (6)

Now let 𝐷 = 𝑝𝑞, where 𝑝 and 𝑞 are odd and distinct
primes, and the group Q(𝑆, 2) is generated by −1, 2, 𝑝 and
𝑞.

Let WC(𝐸) denote the Weil-Châtelet group of 𝐸, the
group of equivalence classes of homogeneous spaces for 𝐸
over Q. For each 𝑑 ∈ Q(𝑆, 2), the corresponding homoge-
neous spaces𝐶

𝑑
∈WC(𝐸) and𝐶󸀠

𝑑
∈WC(𝐸󸀠), also referred to

as quartics, are given by the equations

𝐶
𝑑
: 𝑑𝑤
2
= 𝑑
2
+ 4𝑝𝑞𝑧

4
,

𝐶
󸀠

𝑑
: 𝑑𝑊
2
= 𝑑
2
− 𝑝𝑞𝑍

4
.

(7)

Identifying 𝐸[𝜙] with 𝜇
2
, we have 𝐻1(𝐺Q, 𝐸[𝜙]) ≅

Q∗/Q∗2, under which the 𝜙-Selmer group can be viewed as a
subset ofQ(𝑆, 2) as follows:

𝑆
(𝜙)
(𝐸) ≅ {𝑑 ∈ Q (𝑆, 2) : 𝐶

𝑑
(Q]) ̸= 0, ∀] ∈ 𝑆} . (8)

The 𝜙-Selmer group 𝑆(𝜙)(𝐸󸀠) has an analogous isomorphism
where 𝐶

𝑑
is replaced by 𝐶󸀠

𝑑
.

There is the well-known exact sequence:

0 󳨀→
𝐸
󸀠
(Q)

𝜙 (𝐸 (Q))
󳨀→ 𝑆
(𝜙)
(𝐸) 󳨀→ III( 𝐸

Q
) [𝜙] 󳨀→ 0, (9)

where themap𝐸󸀠(Q)/𝜙(𝐸(Q)) → 𝑆
(𝜙)
(𝐸) is defined through

the connecting homomorphism 𝛿 : 𝐸
󸀠
(Q) → 𝐻

1
(𝐺Q,

𝐸[𝜙]) with 𝛿(𝐸󸀠(Q)) ⊂ 𝑆
(𝜙)
(𝐸). Under the isomorphism

𝐻
1
(𝐺Q, 𝐸[𝜙]) ≅ Q∗/Q∗2 we have 𝛿(0, 0) = 4𝐷 and 𝛿(𝑥, 𝑦) =

𝑥 if 𝑥 ̸= 0,∞.
Similarly there is an injection 𝑓 : 𝐸(Q)/𝜙(𝐸󸀠(Q)) →

𝑆
(𝜙)
(𝐸
󸀠
) sending (0, 0) to −16𝐷 and (𝑥, 𝑦) to 𝑥 if 𝑥 ̸= 0,∞.

Thus, the images of (0, 0), the 2-torsion point of 𝐸󸀠(Q),
and 𝐸(Q) in the Selmer groups are given by

𝑝𝑞 ∈ 𝑆
(𝜙)
(𝐸) , −𝑝𝑞 ∈ 𝑆

(𝜙)
(𝐸
󸀠
) , (10)

respectively.
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We now restrict our attention to

𝐸 = 𝐸
𝐷
: 𝑦
2
= 𝑥
3
− 𝐷𝑥, (11)

where 𝐷 = 𝑝𝑞 and 𝑝 and 𝑞 are distinct primes such that 𝑝 ≡
𝑞 ≡ 3 mod 16. Also swapping 𝑝 and 𝑞 if necessary we have
(𝑝/𝑞) = (−𝑞/𝑝) = 1.

Below is a descent analysis on the 2-isogenous elliptic
curves 𝐸 and 𝐸󸀠. We would like to thank an anonymous
referee for valuable suggestions, which we adopt here. Our
original analysis can be found in [8, Appendix B].

When 𝐾 = Q orQ], we have an injection

𝑓 :
𝐸 (𝐾)

𝜙 (𝐸
󸀠
(𝐾))

󳨀→
𝐾
∗

𝐾
∗2

(12)

induced from the connecting homomorphism 𝛿 : 𝐸󸀠(𝐾) →
𝐻
1
(𝐺
𝐾
, 𝐸[𝜙]) ≅ 𝐾

∗
/𝐾
∗2 sending (0, 0) to −16𝐷 and (𝑥, 𝑦) to

𝑥 if 𝑥 ̸= 0,∞. When 𝐾 = Q], we write 𝑆
(𝜙)
(𝐾) for the actual

image of 𝑓. By virtue of the exact sequence

0 󳨀→
𝐸
󸀠
(𝐾)

𝜙 (𝐸 (𝐾))
󳨀→ 𝐻

1
(𝐺
𝐾
, 𝐸 [𝜙]) 󳨀→WC (𝐸) [𝜙] 󳨀→ 0

(13)

it follows that 𝑆(𝜙)(𝐸󸀠) consists of 𝑎 ∈ Q(𝑆, 2) with localiza-
tions in 𝑆(𝜙)(Q]) for all ].

Suppose 𝑃 ∈ 𝐸(Q]), ] being equal to 2, or a place of good
reduction then 2 | ](𝑥(𝑃)) and we find that 𝑓(𝑃) ∈ Z∗] .

For ] = 𝑝 or ] = 𝑞, 𝐸 has bad, type III reduction. The
group 𝐸(Q]) is generated by 𝐸

0
(Q]) and the point 𝑇 = (0, 0)

[7, Table 15.1]. Since both 𝐸
1
(Q]) ≅ Z] and 𝐸0(Q])/𝐸1(Q]) ≅

𝐸
𝑛𝑠
(F]) ≅ F] (the last isomorphism due to the type of

reduction being additive) are divisible by 2, so is the group
𝐸
0
(Q]). It follows that 𝑆

(𝜙)
(Q]) = ⟨−𝑝𝑞⟩. We recall that it is

assumed that 𝑝 ≡ 𝑞 ≡ 3 mod 16, labeled so that (𝑝/𝑞) =
(−𝑞/𝑝) = 1. Since𝑝 and−𝑞 are squaresmodulo 𝑞 andmodulo
𝑝, respectively, we have illustrated that 𝑆(𝜙)(Q

𝑝
) = ⟨𝑝⟩ and

𝑆
(𝜙)
(Q
𝑞
) = ⟨−𝑞⟩.

For 𝑑 ∈ Q(𝑆, 2) to be an element of 𝑆(𝜙)(𝐸󸀠), it is necessary
and sufficient that when localized it maps to a unit in 𝑆(𝜙)(QV)

when ] is 2 and when ] is a place of good reduction and to
an element of 𝑆(𝜙)(QV) when ] is 𝑝 and 𝑞. It follows that the
Selmer group 𝑆(𝜙)(𝐸󸀠) is ⟨𝑝, −𝑞⟩.

Next, we consider the group 𝑆(𝜙)(𝐸). If 𝑃 ∈ 𝐸󸀠(R) then
𝑥(𝑃) ≥ 0. This fact coupled with reasoning similar to the
preceding paragraphs shows that 𝑆(𝜙)(𝐸) = ⟨𝑝𝑞⟩.

From the exact sequences

0 󳨀→
𝐸
󸀠
(Q)

𝜙 (𝐸 (Q))
󳨀→ 𝑆
(𝜙)
(𝐸)

󳨀→ III( 𝐸
Q
) [𝜙] 󳨀→ 0

0 󳨀→
𝐸 (Q)

𝜙 (𝐸
󸀠
(Q))

󳨀→ 𝑆
(𝜙)
(𝐸
󸀠
)

󳨀→ III(𝐸
󸀠

Q
) [𝜙] 󳨀→ 0,

0 󳨀→

𝐸
󸀠
(Q) [𝜙]

𝜙 (𝐸 (Q) [2])
󳨀→

𝐸
󸀠
(Q)

𝜙 (𝐸 (Q))

󳨀→
𝐸 (Q)

2𝐸 (Q)
󳨀→

𝐸 (Q)

𝜙 (𝐸
󸀠
(Q))

󳨀→ 0

(14)

following an analysis similar to that used in proving Proposi-
tion X.6.2(c) [7], we obtain

𝑟
𝐸
+ dim

2
III( 𝐸

Q
) [2] = dim

2
𝑆
(𝜙)
(𝐸) + dim

2
𝑆
(𝜙)
(𝐸
󸀠
) − 2

= 1,

(15)

where 𝑟
𝐸
denotes the rank of 𝐸(Q) and dim

2
is the dimension

as a Z/2Z-vector space. In particular, 𝑟
𝐸
≤ 1.

When 𝑟
𝐸
= 1, then dim

2
III(𝐸Q)[2] = 0. Since

dim
2
III( 𝐸

Q
) [2] = dim

2
III(𝐸

󸀠

Q
) [𝜙] + dim

2
III( 𝐸

Q
) [𝜙]

(16)

it follows that III(𝐸󸀠/Q)[𝜙] is trivial, so 𝑓 gives an isomor-
phism 𝐸(Q)/𝜙(𝐸󸀠(Q)) → 𝑆

(𝜙)
(𝐸
󸀠
). So the points on 𝐸(Q)

map onto 𝑆(𝜙)(𝐸󸀠) = ⟨𝑝, −𝑞⟩. Since the image of (0, 0) is −𝑝𝑞,
we find that, for any point 𝑅 in 𝐸(Q) but not in ⟨(0, 0)⟩ +
2𝐸(Q), ]

𝑝
(𝑥(𝑅)) and ]

𝑞
(𝑥(𝑅)) have opposite parity.

To finish the proof of Theorem 1, we need to argue, on
BSD, that the elliptic curves 𝐸

𝐷
have Mordell-Weil rank 1.

To this end we investigate the zeros of the 𝐿-series of 𝐸 at
𝑠 = 1. For the curves of interest the global root number 𝑤(𝐸)
can be computed from the formulae in [9] and it equals −1.
Evaluating the functional equation Λ

𝐸
(𝑠) at 𝑠 = 1, we have

Λ
𝐸
(1) = −Λ

𝐸
(1) and hence Λ

𝐸
(1) = 0. This implies that

𝐿
𝐸
(1) = 0; in other words, the analytic rank 𝑟𝑎𝑛

𝐸
> 0.

If 𝑟𝑎𝑛
𝐸
= 1; that is, 𝐿(1)

𝐸
(1) ̸= 0, then 𝑟

𝐸
= 1, by a result of

Kolyvagin [10]. Alternatively, since 𝑟
𝐸
≤ 1 and 𝑟𝑎𝑛

𝐸
> 0, it

follows from the BSD conjecture that 𝑟
𝐸
= 𝑟
𝑎𝑛

𝐸
= 1.

This completes the proof of Theorem 1.

3. Proof of Theorem 2

The curve 𝐸
𝐷
has 𝑦2 = 𝑥3 − 𝐷𝑥 as a minimal model, with

discriminant Δ = 64𝐷
3 and height (1/4) log 48𝐷. The 2-

torsion point (0, 0) generates the torsion subgroup of the
Mordell-Weil group 𝐸

𝐷
(Q).

Let 𝐸󸀠
𝐷
denote 𝑦2 = 𝑥3 + 4𝐷𝑥 the isogenous curve of 𝐸

𝐷
,

and let 𝐶󸀠
𝑑
represent the homogeneous spaces 𝑑𝑊2 = 𝑑2 −

𝐷𝑍
4 of 𝐸󸀠

𝐷
.
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One way to compute a rational point of 𝐸
𝐷
is to search

for a rational point on the homogeneous spaces: 𝐶󸀠
𝑝
: 𝑊
2
=

𝑝 − 𝑞𝑍
4
, 𝐶
󸀠

−𝑞
: −𝑊
2
= 𝑞 − 𝑝𝑍

4 (assuming (𝑝/𝑞) = 1) and
this gives us a rational point of 𝐸

𝐷
via the map 𝜓 : 𝐶󸀠

𝑑
→

𝐸, 𝜓(𝑍,𝑊) = (𝑑/𝑍
2
, 𝑑𝑊/𝑍

3
). For example if 𝐶󸀠

𝑝
: 𝑊
2
=

𝑝 − 𝑞𝑍
4 has a rational point (𝑧, 𝑤), where the numerator

and denominator of 𝑧 are polynomially bounded in 𝐷, then
a rational point on 𝐸

𝐷
can be found of canonical height

𝑂(log𝐷).
We note that in the special case where 𝑝−𝑞 is a square the

curve𝐸
𝐷
does have a small rational point (−𝑞, 𝑞√𝑝 − 𝑞).Thus

if there are infinitely many such pairs of primes 𝑝 and 𝑞, then
there are infinitelymany𝐸

𝐷
with𝐷 = 𝑝𝑞with a rational point

of height bounded by 𝑂(log𝐷). In the simplest case taking
𝑞 = 3, the question boils down to whether there are infinitely
many primes 𝑝 of the form 3+16𝑛2.The answer is affirmative
under Hardy-Littlewood’s F conjecture [4].

Thus assumingHardy-Littlewood’s F conjecture andBSD,
there is a subfamily of infinitely many 𝐸

𝐷
such that 𝐷 = 𝑝𝑞

with 𝑝 and 𝑞 prime and 𝑝 ≡ 𝑞 ≡ 3 mod 16 such that, for
any 𝜖, 0 < 𝜖 < 1, Reg(𝐸

𝐷
) < 𝐷

𝜖 for sufficiently large 𝐷.
Theorem 2 now follows from the elliptic analog of the Brauer-
Siegel theorem and the fact that𝐸

𝐷
hasminimal discriminant

Δ = 64𝐷
3 and height (1/4) log 48𝐷.

4. Implications on Computational Complexity

In Theorem 1 we argue that any point 𝑅 of the Mordell-Weil
group 𝐸

𝐷
(Q) which is not in ⟨(0, 0)⟩ + 2𝐸

𝐷
(Q) must behave

differently with respect to 𝑝-adic and 𝑞-adic valuations. This
sets the stage for reductions between the problem of factoring
integers of the form 𝐷 and the problem of computing
nontorsion rational points on 𝐸

𝐷
.

We discuss below that how given a rational nontorsion
point 𝑃, the factors 𝑝 and 𝑞 of 𝐷 can be found in time
polynomial in the height of 𝑃.

Let den(𝑟) and num(𝑟) be the numerator and denomi-
nator of 𝑟 ∈ Q, respectively. Let ℎ(𝑟) = log

2
max(|num(𝑟)|,

|den(𝑟)|), the näıve logarithmic height of 𝑟 ∈ Q \ {0}. And let
ℎ(𝑆) be the näıve logarithmic height of 𝑆 ∈ {𝐸

𝐷
(Q) \ ⟨(0, 0)⟩}

which is log
2
max(ℎ(𝑥(𝑆)), ℎ(𝑦(𝑆))).

Suppose we are given 𝑃, a nontorsion rational point
on 𝐸
𝐷
. A point 𝑅 ∈ 𝐸

𝐷
(Q) \ (𝐸

𝐷
[𝜙] + 2𝐸

𝐷
(Q)) can be

constructed by “halving” 𝑃 using the duplication formula [7,
Algorithm 2.3 (d)]. We note that the canonical height of 𝑅 is
not greater than that of 𝑃. From the reasoning above we have
V
𝑝
(𝑥(𝑅)) ̸= V

𝑞
(𝑥(𝑅)). Below we describe how 𝑝 and 𝑞 can be

recovered from 𝑅.
Clearing the denominators of point 𝑅, we consider 𝑢 ⋅

𝑥(𝑅), where 𝑢 = den(𝑥(𝑅)) ⋅ den(𝑦(𝑅)). (Taking 𝑢 to be
lcm(den(𝑥(𝑅)), den(𝑦(𝑅))) will also suffice for our argument
but might lead to trickier analysis). We note that the integer
𝑢 ⋅ 𝑥(𝑅) can be viewed as the 𝑥-coordinate of a point on the
projective curve 𝑦2 ⋅ 𝑧 = 𝑥3 − 𝐷 ⋅ 𝑥 ⋅ 𝑧2.

Since V
𝑝
(𝑢 ⋅ 𝑥(𝑅)) ̸= V

𝑞
(𝑢 ⋅ 𝑥(𝑅)), it follows that computing

gcd(𝑢 ⋅ 𝑥(𝑅)/𝐷𝑘, 𝐷) gives us either 𝑝 or 𝑞 but neither 1 nor
𝐷, where 𝑘 ∈ Z

≥0
such that 𝐷𝑘 | 𝑢 ⋅ 𝑥(𝑅) but 𝐷𝑘+1 does not.

Moreover, ℎ(𝑢 ⋅ 𝑥(𝑅)) ≤ 3 ⋅ ℎ(𝑅). Suppose 𝑢 ⋅ 𝑥(𝑅) = 𝑐 ⋅𝐷𝑘, for
𝑐 ∈ Z; then ℎ(𝑢 ⋅ 𝑥(𝑅)) = ℎ(𝑐) + 𝑘 ⋅ ℎ(𝐷) ≤ 3 ⋅ ℎ(𝑅). The fact
that ℎ(𝑐) > 0 implies 𝑘 ⋅ ℎ(𝐷) ≤ 3 ⋅ ℎ(𝑅) − ℎ(𝑐) < 3 ⋅ ℎ(𝑅) and
hence 𝑘 < 3 ⋅ ℎ(𝑅)/ℎ(𝐷). The integer 𝑘 can be found using
the usual doubling trick in 𝑂(log

2
𝑘) bits operations. And the

running time of the reduction is

𝑂 (log
2
𝑘) ⋅ 𝑀 (3 ⋅ ℎ (𝑅)) , (17)

where𝑀(𝑏) is the bit operations to multiply two 𝑏-bits num-
bers. Therefore the overall time complexity of the reduction
is softly linear in the height of the point 𝑅 for fixed𝐷.

Further, suppose that height of the point𝑃 is a polynomial
in the height of the elliptic curve𝐸

𝐷
; then the time complexity

of the reduction is polynomial in log
2
𝐷.

We note that in the special case where 𝑝 − 𝑞 is a square
the curve 𝐸

𝐷
does have a small rational point (−𝑞, 𝑞√𝑝 − 𝑞),

and finding such a point is easily reduced to factoring 𝐷.
Therefore in this case finding a rational point on 𝐸

𝐷
and

factoring𝐷 are polynomial time equivalent.
More generally we remark that one of the procedures to

compute a rational point of 𝐸
𝐷
is to search for a rational

point on the homogeneous spaces: 𝐶󸀠
𝑝
: 𝑊
2
= 𝑝 − 𝑞𝑍

4,
𝐶
󸀠

−𝑞
: −𝑊
2
= 𝑞 − 𝑝𝑍

4 (assuming (𝑝/𝑞) = 1) and this gives us
a rational point of 𝐸

𝐷
via the map 𝜓 : 𝐶󸀠

𝑑
→ 𝐸,𝜓(𝑍,𝑊) =

(𝑑/𝑍
2
, 𝑑𝑊/𝑍

3
). The knowledge of the two factors 𝑝 and 𝑞

allows us to write down the equation of the homogeneous
spaces.Moreover suppose either one of the twohomogeneous
spaces has a small rational point, say𝐶󸀠

𝑝
: 𝑊
2
= 𝑝−𝑞𝑍

4 has a
rational point (𝑤, 𝑧) where the numerator and denominator
of 𝑧 are polynomially bounded in log𝐷.Then a rational point
(𝑤, 𝑧) can be found by exhaustive search (since 𝑧 is so small),
and a rational point of 𝐸

𝐷
can be obtained from such (𝑤, 𝑧).

Consequently in such cases finding a rational point on𝐸
𝐷
and

factoring 𝐷 are polynomial time equivalent. Note that these
are also cases that give rise to large III groups inTheorem 2.

In general it is an interesting open question to determine
to what extent finding a rational point on 𝐸

𝐷
and factoring𝐷

are polynomial time equivalent.
In light of the question of finding a rational point on

𝐸
𝐷
, it may be interesting to investigate the efficiency of

Heegner point computation when restricted to these elliptic
curves 𝐸

𝐷
. Assuming BSD we observe the dependence of the

Heegner index on #III(𝐸
𝐷
), which may be big (for instance

under the Brauer-Siegel Analogue for elliptic curves). It
follows that factoring numbers of the form 𝐷 by computing
a point in 𝐸

𝐷
(Q) via the Heegner point method would be

computationally expensive. We refer to [8] for a detailed
discussion.
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