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Neutrosophic set (NS) is a generalization of fuzzy set (FS) that is designed for some practical situations in which each element
has different truth membership function, indeterminacy membership function, and falsity membership function. In this paper,
we study the multiattribute group decision making (MAGDM) problems under neutrosophic environment with the incompletely
known or completely unknown attribute weight. We first define the single-valued neutrosophic ideal solution (SVNIS) and the
weighted distance measure and establish the program models to derive the attribute weights. Then, we give a practical application
in the framework of SVNS; the result shows that our method is reasonable and effective in dealing with decision making (DM)
problems. Furthermore, we extend the method to interval-valued neutrosophic set (IVNS).

1. Introduction

Fuzzy set was introduced by Zadeh, which has been widely
used inmany aspects [1, 2]. On the basis of Zadeh’s work, sev-
eral high-order fuzzy sets have been proposed as an extension
of fuzzy sets, including interval-valued fuzzy set, type-2 fuzzy
set, type-n fuzzy set, soft set, rough set, intuitionistic fuzzy set,
interval-valued intuitionistic fuzzy set, hesitant fuzzy set, and
neutrosophic set (NS) [2–6]. So far, the proposed high-order
fuzzy sets have been successfully utilized in dealing with dif-
ferent uncertain problems, such as decision making [7], and
pattern recognition [8].

As a generalization of fuzzy set, the NS was proposed by
Smarandache [5] not only to deal with the decision informa-
tion which is often incomplete, indeterminate, and inconsis-
tent but also to include the truth membership degree, the fal-
sity membership degree, and the indeterminacy membership
degree. For simplicity and practical application, Wang pro-
posed the single-valued NS (SVNS) and the interval-valued
NS (IVNS)which are the instances ofNS and gave some oper-
ations on these sets [8, 9]. Since its appearance, many fruitful
results have appeared [10, 11]. On one hand, many researchers

have proposed some aggregation operators of SVNS and INS
and applied them to MADM problems [12–16]. On the other
hand, some researchers have also proposed entropy and sim-
ilarity measure of the SVNS and IVNS and applied them to
MADM and pattern recognition [17, 18].The above problems
that are related to the attribute weights are completely known.
However, with the development of the information society
and internet technology, the socioeconomic environment
gets more complex in many decision areas, such as capital
investment decision making, medical diagnosis, and person-
nel examination. Only one decision maker cannot deal with
the complex problems. Accordingly, it is necessary to gather
multiple decisionmakers with different knowledge structures
and experiences to conduct a group decisionmaking. In some
circumstances, it is difficult for the decisionmakers to give the
information of the attribute weights correctly, which makes
the attribute weights incompletely known or completely
unknown. How to derive the attribute weights from the given
neutrosophic information is an important topic. In intuition-
istic fuzzy environments, many researchers have proposed
some program models to obtain the incompletely known
attribute weights or the completely unknown attribute
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weights, such as Xu proposed the deviation-based method
[19], the ideal solution-based method [20], and the group
consensus-based method [21] and Li et al. proposed the
consistency-based method [22]. Under the neutrosophic
environment, Şahin and Liu proposed the maximizing devi-
ation method [23]. Up to now, we found that there is no
research of the weighted distance measure based method
to neutrosophic multiattribute group decision making. In
this paper, we investigate the MAGDM problems which the
information expressed by SVNS or IVNS, and the attribute
weights are incompletely known or completely unknown.

The rest of the paper is organized as follows. In Section 2,
we recall the concept of NS, SVNS, INS and their distance
measures. In Section 3,we give theweighted distancemeasure
based method to single-valued neutrosophic set (SVNS).
Furthermore, we extend the method to interval-valued
neutrosophic set (IVNS). Finally, a conclusion is given in
Section 4.

2. Preliminaries

Definition 1 (see [5]). Assume that𝑋 is a universe of discourse
with a generic element in 𝑋 denoted by 𝑥. A NS 𝐴 on
𝑋 is defined by a truth membership function 𝑇

𝐴
(𝑥), an

indeterminacy membership function 𝐼
𝐴
(𝑥), and a falsity

membership function 𝐹
𝐴
(𝑥). 𝑇

𝐴
(𝑥), 𝐼

𝐴
(𝑥), and 𝐹

𝐴
(𝑥) are

defined by

𝑇
𝐴 (𝑥) : 𝑋 󳨀→ ]0

−
, 1
+
[ ,

𝐼
𝐴 (𝑥) : 𝑋 󳨀→ ]0

−
, 1
+
[ ,

𝐹
𝐴 (𝑥) : 𝑋 󳨀→ ]0

−
, 1
+
[ ,

(1)

where 0
−
≤ sup𝑇

𝐴
(𝑥) + sup 𝐼

𝐴
(𝑥) + sup𝐹

𝐴
(𝑥) ≤ 3

+.

For similarity and practical application, Wang proposed
the SVNS and IVNS which are the subclasses of NS and
preserve all the operations on NS. In the following part, we
recall SVNS, IVNS, and their distance measure, respectively.

Definition 2 (see [8]). Assume that 𝑋 is a universe of
discourse with a generic element in𝑋 denoted by 𝑥. A single-
valued neutrosophic set (SVNS) 𝐴 on𝑋 is defined by a truth
membership function 𝑇

𝐴
(𝑥), an indeterminacy membership

function 𝐼
𝐴
(𝑥), and a falsity membership function 𝐹

𝐴
(𝑥).

𝑇
𝐴
(𝑥), 𝐼
𝐴
(𝑥), and 𝐹

𝐴
(𝑥) are defined by

𝑇
𝐴 (𝑥) : 𝑋 󳨀→ [0, 1] ,

𝐼
𝐴 (𝑥) : 𝑋 󳨀→ [0, 1] ,

𝐹
𝐴 (𝑥) : 𝑋 󳨀→ [0, 1] ,

(2)

where 𝑇
𝐴
(𝑥), 𝐼
𝐴
(𝑥), and 𝐹

𝐴
(𝑥) are subsets of [0, 1] and satisfy

0 ≤ 𝑇
𝐴
(𝑥) + 𝐼

𝐴
(𝑥) + 𝐹

𝐴
(𝑥) ≤ 3.

For similarity, we utilize 𝐴 = {𝑇
𝐴
(𝑥), 𝐼
𝐴
(𝑥), 𝐹
𝐴
(𝑥)} to

denote a SVNS𝐴 in the following part. If𝑋 has only one ele-
ment, for convenience, we call𝐴 a single-valued neutrosophic
number (SVNN) and denoted by 𝐴 = {𝑇

𝐴
, 𝐼
𝐴
, 𝐹
𝐴
}.

Definition 3 (see [24]). Let 𝐴
1
= {𝑇
1
, 𝐼
1
, 𝐹
1
}, 𝐴
2
= {𝑇
2
, 𝐼
2
, 𝐹
2
}

be two SVNNs; the normalized Hamming distance measure
between 𝐴

1
and 𝐴

2
is defined by

𝑑 (𝐴
1
, 𝐴
2
) =

1

3
(
󵄨󵄨󵄨󵄨𝑇1 − 𝑇

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐼1 − 𝐼

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐹1 − 𝐹

2

󵄨󵄨󵄨󵄨) .
(3)

Definition 4 (see [9]). Assume that 𝑋 is a universe of dis-
course with a generic element in𝑋 denoted by 𝑥, and int[0, 1]
is the set of all closed subsets of [0, 1]. An interval-valued neu-
trosophic set (IVNS) 𝐴 on 𝑋 is defined by a truth member-
ship function𝑇

𝐴
(𝑥), an indeterminacymembership function

𝐼
𝐴
(𝑥), and a falsitymembership function𝐹

𝐴
(𝑥).𝑇
𝐴
(𝑥), 𝐼
𝐴
(𝑥),

and 𝐹
𝐴
(𝑥) are defined by

𝑇
𝐴 (𝑥) : 𝑋 󳨀→ int [0, 1] ,

𝐼
𝐴 (𝑥) : 𝑋 󳨀→ int [0, 1] ,

𝐹
𝐴 (𝑥) : 𝑋 󳨀→ int [0, 1]

(4)

with the condition 0 ≤ sup𝑇
𝐴
(𝑥)+sup 𝐼

𝐴
(𝑥)+sup𝐹

𝐴
(𝑥) ≤ 3.

Here, we denote 𝑇
𝐴
(𝑥) = [𝑇

−

𝐴
(𝑥), 𝑇

+

𝐴
(𝑥)], 𝐼

𝐴
(𝑥) =

[𝐼
−

𝐴
(𝑥), 𝐼
+

𝐴
(𝑥)], 𝐹

𝐴
(𝑥) = [𝐹

−

𝐴
(𝑥), 𝐹

+

𝐴
(𝑥)]. For convenience, we

call 𝐴 an interval-valued neutrosophic number (IVNN) and
it is denoted by 𝐴 = {[𝑇

−

𝐴
, 𝑇
+

𝐴
], [𝐼
−

𝐴
, 𝐼
+

𝐴
], [𝐹
−

𝐴
, 𝐹
+

𝐴
]}.

Definition 5 (see [18]). Let 𝐴
1
= {[𝑇
−

1
, 𝑇
+

1
], [𝐼−
1
, 𝐼
+

1
], [𝐹−
1
, 𝐹
+

1
]},

𝐴
2
= {[𝑇

−

2
, 𝑇
+

2
], [𝐼−
2
, 𝐼
+

2
], [𝐹−
2
, 𝐹
+

2
]} be two IVNNs; the nor-

malized Hamming distance measure between 𝐴
1
and 𝐴

2
is

defined by

𝑑 (𝐴
1
, 𝐴
2
) =

1

6
(
󵄨󵄨󵄨󵄨𝑇
−

1
− 𝑇
−

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑇
+

1
− 𝑇
+

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐼
−

1
− 𝐼
−

2

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝐼
+

1
− 𝐼
+

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐹
−

1
− 𝐹
−

2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐹
+

1
− 𝐹
+

2

󵄨󵄨󵄨󵄨) .

(5)

3. The Weighted Distance Measure Based
Method to Neutrosophic Set

3.1. The Weighted Distance Measure Based Method to Single-
Valued Neutrosophic Set. Let 𝑋 = {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
} be a set

of alternatives, let 𝐶 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
} be a set of attributes,

let and 𝑤 = {𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
} be the weight vector of the

attribute with 𝑤
𝑗

∈ [0, 1] and ∑
𝑛

𝑗=1
𝑤
𝑗

= 1. Suppose that
there are 𝑠 decision makers 𝐷 = {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑠
}, whose

corresponding weighted vector is 𝜆 = {𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑠
}. Let

𝐴
𝑘
= (𝑟
𝑘

𝑖𝑗
)
𝑚×𝑛

(𝑘 = 1, 2, . . . , 𝑠) be single-valued neutrosophic
decision matrix, where 𝑟

𝑘

𝑖𝑗
= {𝑇
𝑘

𝑖𝑗
, 𝐼
𝑘

𝑖𝑗
, 𝐹
𝑘

𝑖𝑗
} is the value of the

attribute, expressed by SVNNs.
In MADM environments, the ideal point is used to help

the identification of the best alternative in the decision set.
Although the ideal point does not exist in real world, it does
provide an effective way to evaluate the best alternative. Now,
we suppose that the ideal SVNN is 𝛼

∗

𝑗
= {𝑡
∗
, 𝑖
∗
, 𝑓
∗
} =

{1, 0, 0}. Based on the ideal SVNN, we define the single-
valued neutrosophic positive ideal solution (SVNPIS).
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Definition 6. Let 𝛼
∗

𝑗
= {1, 0, 0} (𝑗 = 1, 2, . . . , 𝑛) be 𝑛 ideal

SVNNs; then, a SVNPIS is defined by

𝐴
∗
= {𝛼
∗

1
, 𝛼
∗

2
, . . . , 𝛼

∗

𝑛
} . (6)

Definition 7. Let𝐴𝑘
𝑖
= {𝑟
𝑘

𝑖1
, 𝑟
𝑘

𝑖2
, . . . , 𝑟

𝑘

𝑖𝑛
} (𝑖 = 1, 2, . . . , 𝑚) be the

𝑖th alternative of the 𝑘th decisionmakers (𝑘 = 1, 2, . . . , 𝑠), and
let 𝐴∗ = {𝛼

∗

1
, 𝛼
∗

2
, . . . , 𝛼

∗

𝑛
} be the SVNPIS; then, the weighted

Hamming distance measure (WHDM) between𝐴
𝑖
and𝐴

∗ is
defined by

𝑑 (𝐴
𝑖
, 𝐴
∗
) =

𝑠

∑

𝑘=1

𝜆
𝑘

𝑛

∑

𝑗=1

𝑤
𝑗
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛼
∗

𝑗
) . (7)

3.1.1. Incompletely Known Attribute Weights. In the decision
making process, the incomplete information of the attribute
weight provided by the decision makers can usually be
constructed using several basic ranking forms [25]. Let 𝐻 be
the set of information about the incompletely known attribute
weights, which may be constructed in the following forms
[26], for 𝑖 ̸= 𝑗:

(a) A weak ranking: {𝑤
𝑖
≥ 𝑤
𝑗
}.

(b) A strict ranking: {𝑤
𝑖
− 𝑤
𝑗
≥ 𝛿
𝑖
(> 0)}.

(c) A ranking with multiples: {𝑤
𝑖
≥ 𝛿
𝑖
𝑤
𝑗
}, 0 ≤ 𝛿

𝑖
≤ 1.

(d) An interval form: {𝛿
𝑖
≤ 𝑤
𝑖
≤ 𝛿
𝑖
+ 𝜀
𝑖
}, 0 ≤ 𝛿

𝑖
≤ 𝛿
𝑖
+ 𝜀
𝑖
.

(e) A ranking of differences: {𝑤
𝑖
− 𝑤
𝑗

≥ 𝑤
𝑘
− 𝑤
𝑙
}, for

𝑗 ̸= 𝑘 ̸= 𝑙.

We now establish the following single-objective program-
mingmodel based on theweighted distancemeasuremethod:

min 𝑓 (𝑤) =

𝑠

∑

𝑘=1

𝜆
𝑘

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤
𝑗
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛼
∗

𝑗
)

s.t. 𝑤
𝑗
∈ 𝐻,

𝑛

∑

𝑗=1

𝑤
𝑗
= 1,

𝑤
𝑗
≥ 0,

𝑗 = 1, 2, . . . , 𝑛,

(M1)

where 𝜆
𝑘
is the weight of the decision maker 𝐷

𝑘
(𝑘 =

1, 2, . . . , 𝑠) and

𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛼
∗

𝑗
) =

1

3
(
󵄨󵄨󵄨󵄨󵄨
𝑇
𝑘

𝑖𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
+ 𝐼
𝑘

𝑖𝑗
+ 𝐹
𝑘

𝑖𝑗
) , (8)

where 𝑑(𝑟
𝑘

𝑖𝑗
, 𝛼
∗

𝑗
) represents the weighted distance measure

between the attribute value 𝑟
𝑘

𝑖𝑗
and the SVNPIS 𝛼

∗

𝑗
. The

desirable weight vector 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) should make

the sum of all weighted distance measures (7) small. So we
construct this model to make the overall distance small.

By solving the model (M1) with Matlab software, we get
the optimal solution𝑤

∗
= (𝑤
∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑛
), which is consid-

ered as the weight of the attributes 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
. Then, we

utilize 𝑑(𝐴
𝑖
, 𝐴
∗
) to rank all the alternatives. The smaller the

weighted distance measure, the better the alternative.

3.1.2. Completely Unknown AttributeWeights. If the informa-
tion about the attribute weight is completely unknown, we
establish the following programming model:

min 𝑓 (𝑤) =

𝑠

∑

𝑘=1

𝜆
𝑘

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤
𝑗
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛼
∗

𝑗
)

s.t.
𝑛

∑

𝑗=1

𝑤
2

𝑗
= 1,

𝑤
𝑗
≥ 0,

𝑗 = 1, 2, . . . , 𝑛.

(M2)

To solve this model, we construct the Lagrange function as
follows:

𝐿 (𝑤, 𝜆) =

𝑠

∑

𝑘=1

𝜆
𝑘

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤
𝑗
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛼
∗

𝑗
) +

𝜆

2
(

𝑛

∑

𝑗=1

𝑤
2

𝑗
− 1) , (9)

where 𝜆 is the Lagrange multiplier.
Differentiating (9) with respect to𝑤

𝑗
(𝑗 = 1, 2, . . . , 𝑛) and

𝜆, setting these partial derivatives equal to zero, the following
set of the equations are obtained:

𝜕𝐿

𝜕𝑤
𝑗

=

𝑠

∑

𝑘=1

𝜆
𝑘

𝑚

∑

𝑖=1

𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛼
∗

𝑗
) + 𝑤
𝑗
𝜆 = 0,

𝜕𝐿

𝜕𝜆
=

𝑛

∑

𝑗=1

𝑤
2

𝑗
= 1.

(10)

By solving (10), we obtain the weight𝑤
𝑗
and normalize it with

𝑤
∗

𝑗
= 𝑤
𝑗
/∑
𝑛

𝑗=1
𝑤
𝑗
; then, we get

𝑤
∗

𝑗
=

∑
𝑠

𝑘=1
𝜆
𝑘
∑
𝑚

𝑖=1
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛼
∗

𝑗
)

∑
𝑛

𝑗=1
∑
𝑠

𝑘=1
𝜆
𝑘
∑
𝑚

𝑖=1
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛼
∗

𝑗
)

. (11)

We get the optimal solution 𝑤
∗

= (𝑤
∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑛
), which

is considered as the weight of the attributes 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
.

Later, we calculate the distance measure (7) and get the most
desirable one.

3.1.3. Illustrative Example

Example 1. Here, we choose the decision making problem
adapted from [23]. An automotive company is desired to
select the most appropriate supplier for one of the key
elements in its manufacturing process. After preevaluation,
four suppliers have remained as alternatives for further eval-
uation. In order to evaluate alternative suppliers, a committee
composed of four decision makers has been formed. The
committee selects four attributes to evaluate the alternatives:
(1) 𝐶
1
: product quality, (2) 𝐶

2
: relationship closeness, (3) 𝐶

3
:

delivery performance, and (4) 𝐶
4
: price. Suppose that there

are four decision makers, denoted by 𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
, whose

corresponding weight vector is 𝜆 = (0.25, 0.25, 0.25, 0.25).
The four possible alternatives are to be evaluated under these
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four attributes and are in the formof SVNNs for each decision
maker, as shown in the following single-valued neutrosophic
decision matrix:

𝐷
1

=

[
[
[
[
[

[

{0.4, 0.2, 0.3} {0.4, 0.2, 0.3} {0.2, 0.2, 0.5} {0.7, 0.2, 0.3}

{0.6, 0.1, 0.2} {0.6, 0.1, 0.2} {0.5, 0.2, 0.3} {0.5, 0.1, 0.2}

{0.3, 0.2, 0.3} {0.5, 0.2, 0.3} {0.1, 0.5, 0.2} {0.1, 0.4, 0.5}

{0.7, 0.2, 0.1} {0.6, 0.1, 0.2} {0.4, 0.3, 0.2} {0.4, 0.5, 0.1}

]
]
]
]
]

]

,

𝐷
2

=

[
[
[
[
[

[

{0.1, 0.3, 0.5} {0.5, 0.1, 0.5} {0.3, 0.1, 0.6} {0.4, 0.1, 0.4}

{0.2, 0.5, 0.4} {0.3, 0.4, 0.3} {0.2, 0.3, 0.1} {0.2, 0.3, 0.5}

{0.5, 0.2, 0.6} {0.2, 0.4, 0.3} {0.5, 0.2, 0.5} {0.1, 0.5, 0.3}

{0.2, 0.4, 0.2} {0.1, 0.1, 0.3} {0.1, 0.5, 0.4} {0.5, 0.3, 0.1}

]
]
]
]
]

]

,

𝐷
3

=

[
[
[
[
[

[

{0.3, 0.2, 0.1} {0.3, 0.1, 0.3} {0.1, 0.4, 0.5} {0.2, 0.3, 0.5}

{0.6, 0.1, 0.4} {0.6, 0.4, 0.2} {0.5, 0.4, 0.1} {0.5, 0.2, 0.4}

{0.3, 0.3, 0.6} {0.4, 0.2, 0.4} {0.2, 0.3, 0.2} {0.3, 0.5, 0.1}

{0.3, 0.6, 0.1} {0.5, 0.3, 0.2} {0.3, 0.3, 0.6} {0.4, 0.3, 0.2}

]
]
]
]
]

]

,

𝐷
4

=

[
[
[
[
[

[

{0.2, 0.2, 0.3} {0.3, 0.2, 0.3} {0.2, 0.3, 0.5} {0.4, 0.2, 0.5}

{0.4, 0.1, 0.2} {0.6, 0.3, 0.5} {0.1, 0.2, 0.2} {0.5, 0.1, 0.2}

{0.3, 0.5, 0.1} {0.2, 0.2, 0.3} {0.5, 0.4, 0.3} {0.5, 0.3, 0.2}

{0.3, 0.1, 0.1} {0.2, 0.1, 0.4} {0.2, 0.3, 0.2} {0.3, 0.1, 0.6}

]
]
]
]
]

]

.

(12)

Case 1 (incompletely known attribute weights). Suppose that
the incompletely known information of the attribute weight
is given as follows:

𝐻 =

{

{

{

0.18 ≤ 𝑤
1
≤ 0.2, 0.15 ≤ 𝑤

2
≤ 0.25, 0.30 ≤ 𝑤

3

≤ 0.35, 0.3 ≤ 𝑤
4
≤ 0.4,

4

∑

𝑗=1

𝑤
𝑗
= 1

}

}

}

.

(13)

Step 1. By model (M1), we establish the following model:

min 𝑓 (𝑤)

= 1.5833𝑤
1
+ 1.5038𝑤

2
+ 1.825𝑤

3
+ 1.625𝑤

4

s.t. 𝑤 ∈ 𝐻.

(14)

Step 2. By solving thismodel withMatlab software, we get the
weight vector:

𝑤
1
= 0.18,

𝑤
2
= 0.22,

𝑤
3
= 0.30,

𝑤
4
= 0.30.

(15)

Step 3. Using the distance measure (7), we have

𝑑 (𝐴
1
, 𝐴
∗
) = 0.4365,

𝑑 (𝐴
2
, 𝐴
∗
) = 0.3618,

𝑑 (𝐴
3
, 𝐴
∗
) = 0.4502,

𝑑 (𝐴
4
, 𝐴
∗
) = 0.4033.

(16)

Step 4 (rank the alternatives). Since 𝑑(𝐴
3
, 𝐴
∗
) is the biggest,

and 𝑑(𝐴
2
, 𝐴
∗
) is the smallest, we rank the alternatives as

follows:

𝐴
2
≻ 𝐴
4
≻ 𝐴
1
≻ 𝐴
3
, (17)

and 𝐴
2
is the best alternative.

Case 2 (completely unknown attribute weights).

Step 1. By model (M2), we establish the following model:

min 𝑓 (𝑤)

= 1.5833𝑤
1
+ 1.5038𝑤

2
+ 1.825𝑤

3
+ 1.625𝑤

4

s.t.
4

∑

𝑗=1

𝑤
2

𝑗
= 1,

𝑤
𝑗
≥ 0,

𝑗 = 1, 2, 3, 4.

(18)

Step 2. Use (11) to obtain the weight vector of attributes:

𝑤
∗

1
= 0.18,

𝑤
∗

2
= 0.22,

𝑤
∗

3
= 0.30,

𝑤
∗

4
= 0.30.

(19)

Step 3. Using the distance measure (8) and (9), we have

𝑑 (𝐴
1
, 𝐴
∗
) = 0.4352,

𝑑 (𝐴
2
, 𝐴
∗
) = 0.3613,

𝑑 (𝐴
3
, 𝐴
∗
) = 0.4482,

𝑑 (𝐴
4
, 𝐴
∗
) = 0.3984.

(20)

Step 4. Rank the alternatives. Since 𝑑(𝐴
3
, 𝐴
∗
) is the biggest,

and 𝑑(𝐴
2
, 𝐴
∗
) is the smallest, we rank the alternatives as

follows:

𝐴
2
≻ 𝐴
4
≻ 𝐴
1
≻ 𝐴
3
, (21)

and 𝐴
2
is the best alternative.
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3.2.TheWeighted DistanceMeasure BasedMethod to Interval-
Valued Neutrosophic Set. Let𝑋 = {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑚
} be a set of

alternatives, let𝐶 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
} be a set of attributes, and

let 𝑤 = {𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
} be the weight vector of the attribute

with 𝑤
𝑗

∈ [0, 1] and ∑
𝑛

𝑗=1
𝑤
𝑗

= 1. Suppose that there are 𝑠

decision makers 𝐷 = {𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑠
}, whose corresponding

weighted vector is 𝜆 = {𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑠
}. Let𝐴

𝑘
= (𝑟
𝑘

𝑖𝑗
)
𝑚×𝑛

(𝑘 =

1, 2, . . . , 𝑠) be interval-valued neutrosophic decision matrix,
where 𝑟

𝑘

𝑖𝑗
= {𝑇
𝑘

𝑖𝑗
, 𝐼
𝑘

𝑖𝑗
, 𝐹
𝑘

𝑖𝑗
} is the value of the attribute, expressed

by IVNNs.
Now, we suppose that the ideal IVNN is 𝛽

∗

𝑗
=

{𝑡
∗
, 𝑖
∗
, 𝑓
∗
} = {[1, 1], [0, 0], [0, 0]}. Based on the ideal IVNN,

we define the interval-valued neutrosophic positive ideal
solution (IVNPIS).

Definition 8. Let 𝛽
∗

𝑗
= {[1, 1], [0, 0], [0, 0]} (𝑗 = 1, 2, . . . , 𝑛)

be 𝑛 ideal IVNNs; then, a IVNPIS is defined by

𝐴
∗
= {𝛽
∗

1
, 𝛽
∗

2
, . . . , 𝛽

∗

𝑛
} . (22)

Definition 9. Let𝐴
𝑖
= {𝑟
𝑖1
, 𝑟
𝑖2
, . . . , 𝑟

𝑖𝑛
} (𝑖 = 1, 2, . . . , 𝑚) be the

𝑖th alternative, and let 𝐴∗ = {𝛽
∗

1
, 𝛽
∗

2
, . . . , 𝛽

∗

𝑛
} be the IVNPIS;

then, the weighted Hamming distance measure (WHDM)
between 𝐴

𝑖
and 𝐴

∗ is defined by

𝑑 (𝐴
𝑖
, 𝐴
∗
) =

𝑠

∑

𝑘=1

𝜆
𝑘

𝑛

∑

𝑗=1

𝑤
𝑗
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛽
∗

𝑗
) . (23)

3.2.1. Incompletely Known Attribute Weights. We now estab-
lish the following single-objective programmingmodel based
on the weighted distance measure method:

min 𝑓 (𝑤) =

𝑠

∑

𝑘=1

𝜆
𝑘

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤
𝑗
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛽
∗

𝑗
)

s.t. 𝑤
𝑗
∈ 𝐻,

𝑛

∑

𝑗=1

𝑤
𝑗
= 1,

𝑤
𝑗
≥ 0,

𝑗 = 1, 2, . . . , 𝑛,

(M3)

where 𝜆
𝑘
is the weight of the decision maker 𝐷

𝑘
(𝑘 =

1, 2, . . . , 𝑠) and

𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛽
∗

𝑗
) =

1

6
(
󵄨󵄨󵄨󵄨󵄨
𝑇
−𝑘

𝑖𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑇
+𝑘

𝑖𝑗
− 1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐼
−𝑘

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐼
+𝑘

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐹
−𝑘

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐹
+𝑘

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) ,

(24)

where 𝑑(𝑟
𝑘

𝑖𝑗
, 𝛽
∗

𝑗
) represents the distance measure between the

attribute value 𝑟
𝑘

𝑖𝑗
and the IVNPIS 𝛽

∗

𝑗
. The desirable weight

vector 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
) should make the sum of all

weighted distances (23) small. So we construct this model to
make the overall distances small. The smaller the WHD, the
better the alternative. We use (23) to rank the alternative.

By solving the model (M3) with Matlab software, we
get the optimal solution 𝑤

∗
= (𝑤

∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑛
), which

is considered as the weight of the attributes 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
.

Then, we utilize 𝑑(𝐴
𝑖
, 𝐴
∗
) to rank all the alternatives. The

smaller the distance, the better the alternative.

3.2.2. Completely UnknownAttributeWeights. If the informa-
tion about the attribute weight is completely unknown, we
establish the following programming model:

min 𝑓 (𝑤) =

𝑠

∑

𝑘=1

𝜆
𝑘

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑤
𝑗
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛽
∗

𝑗
)

s.t.
𝑛

∑

𝑗=1

𝑤
2

𝑗
= 1,

𝑤
𝑗
≥ 0,

𝑗 = 1, 2, . . . , 𝑛.

(M4)

By Lagrange multiple method, we get the completely
unknown weight 𝑤

𝑗
and normalize it with 𝑤

∗

𝑗
= 𝑤
𝑗
/∑
𝑛

𝑗=1
𝑤
𝑗

as follows:

𝑤
∗

𝑗
=

∑
𝑠

𝑘=1
𝜆
𝑘
∑
𝑚

𝑖=1
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛽
∗

𝑗
)

∑
𝑛

𝑗=1
∑
𝑠

𝑘=1
𝜆
𝑘
∑
𝑚

𝑖=1
𝑑 (𝑟
𝑘

𝑖𝑗
, 𝛽
∗

𝑗
)

, (25)

which is considered as the weight of the attributes 𝐶
𝑗
. Later,

we calculate the distance measure 𝑑(𝐴
𝑖
, 𝐴
∗
) and then get the

most desirable one.

3.2.3. Illustrative Example

Example 2. The decision making problem is adapted from
[23]. Suppose that an organization plans to implement ERP
system.The first step is to form a project team that consists of
CIO and two senior representatives from user departments.
By collecting all information about ERP vendors and systems,
project team chooses four potential ERP systems 𝐴

𝑖
(𝑖 =

1, 2, 3, 4) as candidates. The company employs some external
professional organizations (experts) to aid this decision
making. The project team selects four attributes to evaluate
the alternatives: (1) 𝐶

1
: function and technology, (2) 𝐶

2
:

strategic fitness, (3) 𝐶
3
: vendors ability, and (4) 𝐶

4
: vendors

reputation. Suppose that there are three decision makers,
denoted by 𝐷

1
, 𝐷
2
, 𝐷
3
, whose corresponding weight vector

is 𝜆 = (1/3, 1/3, 1/3). The four possible alternatives are to be
evaluated under these four attributes and are in the form of
IVNNs for each decision maker, as shown in the following
interval-valued neutrosophic decision matrix:
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𝐷
1

=

[
[
[
[
[

[

{{[0.4, 0.5] , [0.2, 0.3] , [0.3, 0.5]} {[0.3, 0.4] , [0.3, 0.6] , [0.2, 0.4]} {[0.2, 0.5] , [0.2, 0.6] , [0.3, 0.5]} {[0.5, 0.6] , [0.3, 0.5] , [0.2, 0.5]}}

{{[0.6, 0.7] , [0.1, 0.2] , [0.2, 0.3]} {[0.1, 0.3] , [0.1, 0.4] , [0.2, 0.5]} {[0.4, 0.5] , [0.2, 0.5] , [0.3, 0.7]} {[0.2, 0.4] , [0.1, 0.4] , [0.3, 0.3]}}

{{[0.3, 0.4] , [0.2, 0.3] , [0.3, 0.4]} {[0.3, 0.6] , [0.2, 0.3] , [0.2, 0.5]} {[0.2, 0.7] , [0.2, 0.4] , [0.3, 0.6]} {[0.2, 0.6] , [0.4, 0.7] , [0.2, 0.7]}}

{{[0.2, 0.6] , [0.1, 0.2] , [0.1, 0.2]} {[0.2, 0.5] , [0.4, 0.5] , [0.1, 0.6]} {[0.3, 0.5] , [0.1, 0.3] , [0.2, 0.2]} {[0.4, 0.4] , [0.1, 0.6] , [0.1, 0.5]}}

]
]
]
]
]

]

,

𝐷
2

=

[
[
[
[
[

[

{{[0.4, 0.6] , [0.1, 0.3] , [0.2, 0.4]} {[0.3, 0.5] , [0.1, 0.4] , [0.3, 0.4]} {[0.4, 0.5] , [0.2, 0.4] , [0.1, 0.3]} {[0.3, 0.6] , [0.3, 0.6] , [0.3, 0.6]}}

{{[0.3, 0.5] , [0.1, 0.2] , [0.2, 0.3]} {[0.3, 0.4] , [0.2, 0.2] , [0.1, 0.3]} {[0.2, 0.7] , [0.3, 0.5] , [0.3, 0.6]} {[0.2, 0.5] , [0.2, 0.7] , [0.1, 0.2]}}

{{[0.5, 0.6] , [0.2, 0.3] , [0.3, 0.4]} {[0.1, 0.4] , [0.1, 0.3] , [0.3, 0.5]} {[0.5, 0.5] , [0.4, 0.6] , [0.3, 0.4]} {[0.1, 0.2] , [0.1, 0.4] , [0.5, 0.6]}}

{{[0.3, 0.4] , [0.1, 0.2] , [0.1, 0.3]} {[0.3, 0.3] , [0.1, 0.5] , [0.2, 0.4]} {[0.2, 0.3] , [0.4, 0.5] , [0.5, 0.6]} {[0.3, 0.3] , [0.2, 0.3] , [0.1, 0.4]}}

]
]
]
]
]

]

,

𝐷
3

=

[
[
[
[
[

[

{{[0.1, 0.3] , [0.2, 0.3] , [0.4, 0.5]} {[0.3, 0.3] , [0.1, 0.3] , [0.3, 0.4]} {[0.2, 0.6] , [0.3, 0.5] , [0.3, 0.5]} {[0.4, 0.6] , [0.3, 0.4] , [0.2, 0.3]}}

{{[0.3, 0.6] , [0.3, 0.5] , [0.3, 0.5]} {[0.3, 0.4] , [0.3, 0.4] , [0.3, 0.5]} {[0.3, 0.5] , [0.2, 0.4] , [0.1, 0.5]} {[0.1, 0.2] , [0.3, 0.5] , [0.3, 0.4]}}

{{[0.4, 0.5] , [0.2, 0.4] , [0.2, 0.4]} {[0.2, 0.3] , [0.1, 0.1] , [0.3, 0.4]} {[0.1, 0.4] , [0.2, 0.6] , [0.3, 0.6]} {[0.4, 0.5] , [0.2, 0.6] , [0.1, 0.3]}}

{{[0.2, 0.4] , [0.3, 0.4] , [0.1, 0.3]} {[0.1, 0.4] , [0.2, 0.5] , [0.1, 0.5]} {[0.3, 0.6] , [0.2, 0.4] , [0.2, 0.2]} {[0.2, 0.4] , [0.3, 0.3] , [0.2, 0.6]}}

]
]
]
]
]

]

.

(26)

Case 1 (incompletely known attribute weights). Suppose that
the incompletely known information of the attribute weight
is given as follows:

𝐻 =

{

{

{

0.18 ≤ 𝑤
1
≤ 0.2, 0.15 ≤ 𝑤

2
≤ 0.25, 0.30 ≤ 𝑤

3

≤ 0.35, 0.3 ≤ 𝑤
4
≤ 0.4,

4

∑

𝑗=1

𝑤
𝑗
= 1

}

}

}

.

(27)

Step 1. By model (M3), we establish the following model:

min 𝑓 (𝑤)

= 1.4278𝑤
1
+ 1.7278𝑤

2
+ 1.8278𝑤

3

+ 1.7667𝑤
4

s.t. 𝑤 ∈ 𝐻.

(28)

Step 2. By solving thismodel withMatlab software, we get the
weight vector:

𝑤
1
= 0.18,

𝑤
2
= 0.25,

𝑤
3
= 0.20,

𝑤
4
= 0.37.

(29)

Step 3. Using the distance measure (24) and (25), we have

𝑑 (𝐴
1
, 𝐴
∗
) = 0.4204,

𝑑 (𝐴
2
, 𝐴
∗
) = 0.4182,

𝑑 (𝐴
3
, 𝐴
∗
) = 0.4471,

𝑑 (𝐴
4
, 𝐴
∗
) = 0.41.

(30)

Step 4 (rank the alternatives). Since 𝑑(𝐴
3
, 𝐴
∗
) is the biggest,

and 𝑑(𝐴
4
, 𝐴
∗
) is the smallest, we rank the alternatives as

follows:

𝐴
4
≻ 𝐴
2
≻ 𝐴
1
≻ 𝐴
3
, (31)

and 𝐴
4
is the best alternative.

Case 2 (completely unknown attribute weights).

Step 1. By model (M4), we establish the following model:

min 𝑓 (𝑤)

= 1.4278𝑤
1
+ 1.7278𝑤

2
+ 1.8278𝑤

3

+ 1.7667𝑤
4

s.t.
4

∑

𝑗=1

𝑤
2

𝑗
= 1,

𝑤
𝑗
≥ 0,

𝑗 = 1, 2, 3, 4.

(32)
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Step 2. Use (25) to obtain the weight vector of attributes:

𝑤
∗

1
= 0.2115,

𝑤
∗

2
= 0.2560,

𝑤
∗

3
= 0.2708,

𝑤
∗

4
= 0.2617.

(33)

Step 3. Using the distance measure (24) and (25), we have

𝑑 (𝐴
1
, 𝐴
∗
) = 0.4200,

𝑑 (𝐴
2
, 𝐴
∗
) = 0.3776,

𝑑 (𝐴
3
, 𝐴
∗
) = 0.4421,

𝑑 (𝐴
4
, 𝐴
∗
) = 0.4054.

(34)

Step 4 (rank the alternatives). Since 𝑑(𝐴
3
, 𝐴
∗
) is the biggest,

and 𝑑(𝐴
2
, 𝐴
∗
) is the smallest, we rank the alternatives as

follows:

𝐴
2
≻ 𝐴
4
≻ 𝐴
1
≻ 𝐴
3
, (35)

and 𝐴
2
is the best alternative.

3.3. Comparative Analysis. Considering the proposed
method and the maximizing deviation method proposed
by Şahin, there exsit some differences. In Şahin’s method,
they calculated the distance measure of all the attributes
and assign a small weight to the attribute which has a
similar effect among the alternatives; then, they used the
weighted aggregation operators and the score functions to
rank the alternatives; while, the proposed method calculates
the distance measure between the attributes and the ideal
solution and obtains the weight that make the weighted
distance measure small, we then use the weighted distance
measure to rank the alternatives which avoid the complex
calculation of aggregation operators processing. The two
methods are all effective to deal with the incompletely known
or completely unknown attributeweight by solve the program
models. The advantage of the proposed method is that
calculation is simple and convenient, which can deal with
the MAGDM problem effectively.

4. Conclusion

In this paper, we investigate themultiattribute group decision
making problems expressed with neutrosophic set and the
attribute weights are incompletely known or completely
unknown. We first define the single-valued neutrosophic
ideal solution (SVNIS) and then establish the optimalmodels
to derive the attribute weight. Furthermore, an approach to
MAGDM within the framework of SVNS is developed, and
the result shows that our approach is reasonable and effective
in dealing with decisionmaking problems. Finally, we extend
the method to IVNS.
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