The Inverse Variational Problem in Classical Mechanics Downloaded from www.worldscientific.com by 137.108.70.13 on 09/18/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Inverse Variational Problem in Classical Mechanics

This page is intentionally left blank

Inverse Variational Problem in Classical Mechanics

Jan Lopuszanski

Institute of Theoretical Physics University of Wroclaw, Poland

Published by

World Scientific Publishing Co. Pte. Ltd.

P O Box 128, Farrer Road, Singapore 912805

USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

THE INVERSE VARIATIONAL PROBLEM IN CLASSICAL MECHANICS

Copyright © 1999 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 981-02-4178-X

To my friends physicists.

This Page is intentionally left blank

Foreword

This book arose from my informal discussions with P.C. Stichel and J. Cisło in which we tried to probe into the fascinating problem, the inverse variational problem in classical mechanics. It contains mostly our own reflections and ideas developed during studying the vast literature of the subject. The ideas – I am afraid – are not all new and are probably well known to a small circle of experts, as the problem under consideration is over hundred years old.

My notes do not intend to present all results obtained in this domain of research. Their aim is to give a concise picture of present state of affairs, imbued with our own, personal flavor. No advanced methods of contemporary differential geometry were used. All function we are going to use in this lecture notes are assumed to be piecewise continuous and sufficiently many times differentiable. This is meant to make things more simple.

The contents of this book is well suited to be used as lecture notes in a university course for physicists.

Acknowledgement.

I am grateful to Dr. J. Cislo for a careful reading of these notes, for his important critical comments as well as for his deep and fruitful remarks.

I express my warm thanks to Dr. C. Juszczak for the painstaking typing of my manuscript.

This page is intentionally left blank

Contents

Fore	Foreword		
1	Preliminary notions of Kinematics. Translations, proper rota-		
	tions $SO(3)$, Galilei group transformations	1	
2	Preliminary notions of Analytical Dynamics. Newton's Equations.	7	
3.1	Constraints. Work. The Principle of Least Action. Euler-		
	Lagrange Equations	10	
3.2	Constants of motion	14	
4.1	Poincaré Lemma and its converse	16	
4.2	Linear partial differential equations. The method of character-		
	istics	19	
5.1	The Inverse Variational Problem.Helmholtz's Conditions	22	
5.2	Theorem of Henneaux	33	
5.3	The matrix σ . Tr σ^{α} is conserved quantity	39	
6.1	Instructive example of Cisło	44	
6.2	Instructive example of Douglas	50	
6.3	Instructive example of Pardo	51	
7.1	Construction of an autonomous one-particle Lagrange function		
	in (3+1) space-time dimensions yielding rotationally covariant		
	Euler-Lagrange Equations coinciding with the Newton Equations.	52	
7.2	Canonical variables. Equivalence problem of the Lagrange func-		
	tions	66	
8.1	All Lagrange functions, s-equivalent to the Lagrange function		
	$L = \frac{1}{2}\dot{\mathbf{x}}^2 - U(\mathbf{x})$, in (3+1) space-time dimensions	70	
8.2	The case $U(\mathbf{x}) \neq \alpha \mathbf{x}^2 + \beta$, where α, β – constants	75	
8.3	The case $U(\mathbf{x}) = \alpha \mathbf{x}^2 + \beta$	86	

x Contents

8.4	The Hamilton formalism for the model investigated in Subsec-				
	tions $8.1 - 8.3$. Equivalence sets of Lagrange functions	92			
8.5	Examples	97			
	8.5.1 Example of Henneaux and Shepley	98			
	8.5.2 Example of Stichel	101			
	8.5.3 Example of Rañada	104			
	8.5.4 Second example of Ranãda	107			
	8.5.5 Example of Cisło	109			
9	The model of Subsections 8.1 - 8.4 for $n \neq 3$				
10.1					
	(1+1) space-time dimensions				
10.2	All s-equivalent one-particle Lagrange functions for (1+1) space-				
	time dimensions.	120			
11.1	Construction of the most general autonomous one-particle La-				
	grange function in (3+1) space-time dimensions giving rise to				
	rotationally covariant Euler-Lagrange Equations	122			
11.2	Evaluation of the function G_{ij}	124			
11.3	Symmetry of G_{ij} and evaluation of the Lagrange function	137			
	Symmetry properties of the Lagrange function				
12	The largest set of Lagrange functions of one-particle system in a				
	(3+1) dimensional space-time, s-equivalent to a given Lagrange				
	function yielding rotationally forminvariant Equations of Motion				
	(formulation of the problem)	144			
13.1	Construction of the most general two-particle Lagrange function				
	in (1+1) space-time dimensions giving rise to Euler-Lagrange				
	Equations covariant under Galilei transformation	155			
13.2	Galilei forminvariance of the Euler-Lagrange Equations for two				
	particles in $(1+1)$ space-time dimensions	163			
14.1	Construction of the most general two-particle Lagrange function				
	in (3+1) space-time dimensions giving rise to Euler-Lagrange				
	Equations covariant under Galilei transformations	167			
14.2	Galilei forminvariance of the Euler-Lagrange Equations for two				
	particles in $(3+1)$ space-time dimensions	177			
15.1	All two-particle Lagrange functions s -equivalent to a given au-				
	tonomous Lagrange function yielding Galilei forminvariant E-				
	quations of Motion in $(1+1)$ space-time dimensions	180			
15.2	All Euler-Lagrange Equations, forminvariant under the Galilei				
	transformations	181			

e Variational Problem in Classical Mechanics Downloaded from www.worldscientific.com	3 on 09/18/21. Re-use and distribution is strictly not permitted, except for Open Access articles.
The Invers	by 137.108.70.13
	þ

Contents xi

15.2.1 Case $g \neq 0$	184
15.2.2 Case $g = 0$	192
Examples	198
Generalization of the set of Lagrange functions \widetilde{L} (admission of	
Euler-Lagrange Equations not covariant under Galilei transfor-	
mations)	204
Case of Galilei forminvariant Newton's Equations corresponding	
to Euler-Lagrange Equations which are not Galilei covariant.	
(formulation of the problem) $\dots \dots \dots \dots$	208
An Outlook. Application in the Feynman Approach to Quantum	
Mechanics	211
x	220
	Generalization of the set of Lagrange functions \widetilde{L} (admission of Euler-Lagrange Equations not covariant under Galilei transformations)