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The aim of this present study is firstly to compare significant predictors of mortality for hepatocellular carcinoma (HCC) patients
undergoing resection between artificial neural network (ANN) and logistic regression (LR) models and secondly to evaluate the
predictive accuracy of ANN and LR in different survival year estimation models. We constructed a prognostic model for 434
patients with 21 potential input variables by Cox regression model. Model performance was measured by numbers of significant
predictors and predictive accuracy. The results indicated that ANN had double to triple numbers of significant predictors at 1-, 3-,
and 5-year survival models as compared with LR models. Scores of accuracy, sensitivity, specificity, and area under the receiver
operating characteristic curve (AUROC) of 1-, 3-, and 5-year survival estimation models using ANN were superior to those of LR
in all the training sets and most of the validation sets.The study demonstrated that ANN not only had a great number of predictors
ofmortality variables but also provided accurate prediction, as compared with conventional methods. It is suggested that physicians
consider using data mining methods as supplemental tools for clinical decision-making and prognostic evaluation.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth common cancer
and the third leading cause of death worldwide. According
to the World Health Organization (WHO) statistics in 2000,
it has been estimated that there are at least 564,000 new
cases of HCC per year around the world [1]. Though Asia
and Africa have accounted for 80% of incidence cases of
HCC for years, the incidence rates have been found to be
significantly increasing in the United States [2] and some
European nations [3].

Hepatic resection is one of the most effective treatments
and the standardmodality to achieve a long-term survival for
HCC [4, 5]. However, even with progress in diagnosis and
treatment, the overall mortality inHCCpatients is still higher
than in other types of cancer patients. The factors associated
with mortality have been explored by traditional statistical

methods, such as logistic regression (LR) and Cox regression
[6]. Logistic analysis models hypothesize that as mean values
of a given predictor variable increase, the predicted risk of the
outcome increases. Despite its recognized limitations [7], LR
is still widely used in clinical outcome studies.

Recently, artificial neural networks (ANNs) have proven
effective for nonlinear mapping based on human knowledge
[8]. Like a network of brain neurons, an ANN containing
multiple layers of simple computing nodes can accurately
approximate continuous nonlinear functions and can reveal
previously unknown relationships between given input and
output variables [8–10]. The unique structure of ANNs is
well suited for machine learning methods such as back-
propagation [11] and evolutionary algorithms [8, 12, 13].
Because of their universal approximation capability, potential
applications of ANNs have attracted interest in some fields
[14–18]. The novel application of ANN in this study was
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in predicting postresection prognosis in HCC patients in
order to enhance their clinical management by quantifying
expected risks.

To our knowledge, no study has applied ANN in predict-
ing the prognosis of HCC patients after resection. Addition-
ally, despite the numerous comparisons ofANNandLR in the
literature, no study has convincingly demonstrated which is
superior in terms of predictive accuracy [19]. The objectives
of the study are accordingly, firstly, to construct an ANN
model and predict the input variables associated with the
mortality ofHCCpatients undergoing resection and examine
the differences in significant predictors between theANNand
LRmodels, and secondly, to compare the predictive accuracy
of ANN and LR in different survival year estimation models.

2. Patients and Methods

The inclusion and characteristics of the study population
are the same as those described in the previous report [6].
Briefly, the study population consisted of 608 consecutive
patients with HCC who underwent liver resection at Kaoh-
siung Medical University Hospital and Yuan’s Hospital in
Taiwan. In this study, we first excluded patients who received
or underwent the following treatments or conditions: (i)
received liver resection before (𝑛 = 20); (ii) treatments with
radiofrequency ablation (𝑛 = 24) and microwave ablation
(𝑛 = 15); (iii) histopathological reports indicated benign
tumor and/or nonprimary liver cancer (𝑛 = 27); (iv) had
case history missing and/or was incomplete (𝑛 = 34); (v)
expired within thirty days after surgery (𝑛 = 5); and (vi)
tumor remained after resection (𝑛 = 1). Further, to enhance
data completeness, we excluded patients with missing values
in key explained variables (𝑛 = 30) and patient follow-up days
of less than one year (𝑛 = 18). Finally, 434, 341, and 264 were
included in 1-, 3-, and 5-year survival groups, respectively.

There were two sources of data examined and used in
our study: patient clinical information and death registry
data. Patients’ clinical information was derived frommedical
charts and review by attending physician from both hospitals
using a constructed questionnaire.The information included
patients’ demographics and hepatic biochemical parameters.
The mortality data bank is established and maintained by the
Statistics Office, Department of Health, Taiwan. Two datasets
were merged by unique identifier. All patients were followed
until death or December 31, 2008, whichever came first.

2.1. Development of the Artificial Neural Network Models.
Waikato Environment for Knowledge Analysis (WEKA)
software V3.6.0 (with backpropagation algorithm) was used
to construct the ANN model. This user-friendly software is
compatible with Microsoft Windows and has been validated
for use in developing new machine learning schemes [20].

The outcome variables in this study were death during
the study period (event) and survival (no event), which were
coded as 1 and 0, respectively. To minimize the effects of
extreme values and to enhance the computing efficiency of
the ANN model, all continuous explanatory variables were
first transformed into categorical variables.The cut-off points

for these variables were based on those used in previous
clinical studies [6, 21–25]. Low and high risk were coded as
0 and 1, respectively. The variables included BUN AST, 𝛼-
fetoprotein, ALT, total bilirubin, and others. Other recoded
items included TNM stage, a common prognostic index of
cancer risk or severity, and ASA, a risk score for surgical
procedures, were also recoded. The TNM stage ranges from
1 to 6, and ASA score ranges from 1 to 4. Two variables were
recoded as 0 for low risk, 1 formedium risk, and 2 for high risk
(Table 1). High riskwas assumed to increase the probability of
death (event).

Model development in this study was performed in two
stages. Firstly, to enhance the calculation efficiency and pre-
diction performance of the ANNmodel construct, a univari-
ate Cox proportional hazard model was used to test variables
for potential associations with survival or death. Variables
with statistically significant (log-rank test) associations with
survival were retained to construct the ANNmodel (Table 1).
Of the 33 input variables, the following 21 statistically signifi-
cant variables were retained for constructing ANN models:
age, comorbidity, liver cirrhosis, 𝛼-Fetoprotein, AST, total
bilirubin, albumin, BUN, platelet, ASA classification, Child-
Pugh classification, TNM stage, tumor number, tumor size,
portal vein invasion, biliary invasion, surgical procedure,
postoperative complication, recurrence, and postoperative
treatment. Additionally, gender was included as a control
variable.

Secondly, Figure 1 shows the numbers of neurons in the
input, hidden, and output layers of theANNmodels of 1-, 3-,
and 5-year survival. In all three models, the input layers
contained 21 neurons. In the hidden layers, the numbers
of neurons were optimized using training and validation
data in a trial-and-error process to maximize predictive
accuracy [26], which resulted in 13, 28, and 17 neurons in
the 1-, 3-, and 5-year models, respectively. The output layer
in all models contained only one neuron, which represented
survival status.

Studies suggest that an ROC plot should present the
trade-off between sensitivity and specificity for all possible
cut-offs [27]. The SPSS Windows version 6.1 software used
for model building in this study automatically generated 110
possible cut-offs for each of the 1-, 3-, and 5-year models. For
each of the three models, the authors then selected the best
cut-off in terms of accuracy, sensitivity, and specificity.

2.2. Training Groups and Validation Groups. The 1-, 3-, and
5-year survival data were randomly divided into training sets
and validation sets. The training data set was used to develop
the model whereas the validation data set was used to assess
its predictive accuracy [28]. In accordance with the literature,
80% of the data were used for training, and the remaining
20% were used for validation [29, 30]. In the 1-year survival
group, for example, data for 347 and 87 patients were used
for training and for validation, respectively. Data validation
is needed to avoid overtraining an ANN to recognize specific
subjects in the training data rather than learning general
predictive values. Additionally, 𝜒2 and Fisher’s exact test
analysis were performed to compare the effects of each
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Table 1: Potential input variables and output variable for prognostic models.

Variables Value 𝑃 value
Input variable:

Demographic
Age (years)∗ 0: ≦65, 1: >65 (mean = 57.7) 0.04
Gender 0: male, 1: female 0.37

Clinical features
Comorbidity∗ 0: no, 1: yes 0.04
Liver cirrhosis∗ 0: no, 1: yes <0.001
Chronic hepatitis 0: no, 1: HBV, 2: HCV, 3: HBCV 0.68, 0.12, 0.48
𝛼-Fetoprotein (ng/mL)∗ 0: ≦100, 1: >100 <0.001
AST (U/L)∗ 0: ≦80, 1: >80 <0.001
ALT (U/L) 0: ≦80, 1: >80 0.07
Total bilirubin (mg/dL)∗ 0: ≦1.0, 1: >1.0 0.01
Albumin (g/dL)∗ 0: >3.5, 1: ≦3.5 <0.001
BUN (mg/dL)∗ 0: ≦21, 1: >21 0.01
Creatinine (mg/dL) 0: ≦1.4, 1: >1.4 0.24
Platelet (103/𝜇L)∗ 0: >150, 1: ≦150 0.02
Prothrombin time (%) 0: ≦80, 1: >80 0.43
ICGR15 (%) 0: ≦15, 1: >15 0.30
ASA classification∗ 0: ASA = 1, 1: ASA = 2, 2: ASA = 3 0.01, 0.94
Child-Pugh classification∗ 0: A, 1: B, C <0.001
TNM Stage∗ 0: I, 1: II, 2: IIIa, IIIb, IIIc, IV <0.001, <0.001
Tumor number∗ 0: single, 1: multiple <0.001
Tumor size (cm)∗ 0: ≦5, 1: >5 <0.001
Portal vein invasion∗ 0: no, 1: yes <0.001
Biliary invasion∗ 0: no, 1: yes 0.01

Surgical process and outcome
Surgical procedure∗ 0: laparoscopic, 1: open surgery 0.02
Extent of resection 0: minor, 1: major 0.12
Resection margin (mm) 0: >10, 1: ≦10 0.08
Surgical time (minutes) 0: ≦180, 1: >180 0.75
Blood loss (mL) 0: ≦1000, 1: >1000 0.29
Blood transfusion 0: no, 1: yes 0.55
Blood transfusion (mL) 0: ≦1000, 1: >1000 0.07
Postoperative complication∗ 0: no, 1: yes <0.001

Prognostic
Recurrence∗ 0: no, 1: yes <0.001
Preoperative treatment 0: no, 1: yes 0.08
Postoperative treatment∗ 0: no, 1: yes <0.001

Output variable:
Status 0: survival, 1: dead

∗Significant input variables.

input variable in terms of training and validation. Table 2
shows that the effects of all input variables in all three
survival models did not significantly differ between training
and validation, which confirmed the reliability of the data
selection.

In accordance with the criteria used for performance
comparisons reported in the literature, the ANN and LR
models were compared in terms of overall accuracy (sum of
correct predictions divided by total predictions), sensitivity,
specificity, and area under the receiver operating character-
istic curve (AUROC) [9, 14]. Higher scores were considered

better for validation. In the WEKA program, ANN model
parameters for learning rate, momentum, and training time
were set to 0.3, 0.2, and 500, respectively.

3. Results

In this section, the significant predictors were selected
according to predictive error ratio (greater than one) for 1-, 3-,
and 5-year survival models using ANN and LR in the order
of features of demographic, clinical, surgical outcome, and
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Figure 1: (a) Artificial neural network model for 1-year survival. (b) Artificial neural network model for 3-year survival. (c) Artificial neural
network model for 5-year survival.

prognosis. Overall, ANN models had more significant input
variables at 1-, 3-, and 5-year survival models than that of
LR models. More specially, ANN had 15, 13, and 9 significant
predictors at 1-, 3-, and 5-year survival models, whereas LR
only had 8, 4, and 4 variables accordingly.

Notably, six variables in the clinical features dimension
were significant predictors in all three survival models con-
structed by ANN: comorbidity, liver cirrhosis, 𝛼-Fetoprotein,
platelet, ASA classification, and TNM stage. Among these
variables, liver cirrhosis, 𝛼-Fetoprotein, and TNM stage were

significant predictors for the LR model at 1-year survival
model but were consistently significant for ANN at 1-, 3-, and
5-year models.

Table 4 shows the accuracy, sensitivity, and specificity of
the 1-, 3-, and 5-year survival estimation models using ANN
and LR of the training groups. All three performance criteria
were superior in the models using ANN to those using LR
in any survival estimation models. For the 1-year survival
ANN model, the accuracy was 99.1% in contrast with the 1-
year survival model using LR, whose accuracy was 89.0%.
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Table 2: Comparison of clinical features between training data and validation data.

Variables Definitions

1-year (𝑁 = 434) 3-year (𝑁 = 341) 5-year (𝑁 = 264)
Training Validation Training Validation Training Validation
(𝑁 = 347) (𝑁 = 87) 𝑃 (𝑁 = 273) (𝑁 = 68) 𝑃 (𝑁 = 211) (𝑁 = 53) 𝑃
𝑁 % 𝑁 % 𝑁 % 𝑁 % 𝑁 % 𝑁 %

Age ≦65 251 72.3 62 71.3 0.842 197 72.2 53 77.9 0.335 157 74.4 37 69.8 0.498
>65 96 27.7 25 28.7 76 27.8 15 22.1 54 25.6 16 30.2

Gender Male 262 75.5 68 78.2 0.604 209 76.6 54 79.4 0.616 162 76.8 38 71.7 0.440
Female 85 24.5 19 21.8 64 23.4 14 20.6 49 23.2 15 28.3

Comorbidity No 170 49.0 39 44.8 0.487 144 52.7 35 51.5 0.850 112 53.1 31 58.5 0.480
Yes 177 51.0 48 55.2 129 47.3 33 48.5 99 46.9 22 41.5

Liver cirrhosis No 118 34.0 30 34.5 0.933 91 33.3 19 27.9 0.395 63 29.9 11 20.8 0.187
Yes 229 66.0 57 65.5 182 66.7 49 72.1 148 70.1 42 79.2

𝛼-Fetoprotein (ng/mL) ≦100 243 70.0 62 71.3 0.822 192 70.3 43 63.2 0.258 135 64.0 38 71.7 0.291
>100 104 30.0 25 28.7 81 29.7 25 36.8 76 36.0 15 28.3

AST ≦80 283 81.6 72 82.8 0.795 222 81.3 53 77.9 0.528 169 80.1 40 75.5 0.459
>80 64 18.4 15 17.2 51 18.7 15 22.1 42 19.9 13 24.5

Total bilirubin ≦1.0 255 73.5 57 65.5 0.139 200 73.3 52 76.5 0.590 152 72.0 41 77.4 0.435
>1.0 92 26.5 30 34.5 73 26.7 16 23.5 59 28.0 12 22.6

Albumin >3.5 270 77.8 68 78.2 0.944 210 76.9 52 76.5 0.937 153 72.5 39 73.6 0.875
≦3.5 77 22.2 19 21.8 63 23.1 16 23.5 58 27.5 14 26.4

BUN ≦21 293 84.4 75 86.2 0.681 231 84.6 57 83.8 0.872 174 82.5 46 86.8 0.450
>21 54 15.6 12 13.8 42 15.4 11 16.2 37 17.5 7 13.2

Platelet >150 170 49.0 48 55.2 0.303 133 48.7 36 52.9 0.533 99 46.9 23 43.4 0.646
≦150 177 51.0 39 44.8 140 51.3 32 47.1 112 53.1 30 56.6

ASA classification
1 87 25.1 19 21.8 0.616 75 27.5 21 30.9 0.599 63 29.9 23 43.4 0.149
2 179 51.6 50 57.5 147 53.8 32 47.1 106 50.2 23 43.4
3, 4 81 23.3 18 20.7 51 18.7 15 22.1 42 19.9 7 13.2

Child-Pugh classification A 335 96.5 85 97.7 0.584 263 96.3 67 98.5 0.360 201 95.3 52 98.1 0.353
B, C 12 3.5 2 2.3 10 3.7 1 1.5 10 4.7 1 1.9

TNM stage
I 190 54.8 49 56.3 0.444 142 52.0 29 42.6 0.374 93 44.1 26 49.1 0.095
II 119 34.3 25 28.7 95 34.8 29 42.6 86 40.8 14 26.4

IIIa, IIIb, IIIc, IV 38 11.0 13 14.9 36 13.2 10 14.7 32 15.2 13 24.5

Tumor no. Single 238 68.6 63 72.4 0.489 190 69.6 39 57.4 0.054 127 60.2 38 71.7 0.122
Multiple 109 31.4 24 27.6 83 30.4 29 42.6 84 39.8 15 28.3

Tumor size (cm) ≦5 268 77.2 67 77.0 0.965 204 74.7 50 73.5 0.840 154 73.0 37 69.8 0.644
>5 79 22.8 20 23.0 69 25.3 18 26.5 57 27.0 16 30.2

Vascular invasion No 275 79.3 65 74.7 0.358 206 75.5 54 79.4 0.493 156 73.9 40 75.5 0.819
Yes 72 20.7 22 25.3 67 24.5 14 20.6 55 26.1 13 24.5

Portal vein invasion No 335 96.5 87 100 0.079 265 97.1 66 97.1 0.996 203 96.2 51 96.2 0.995
Yes 12 3.5 0 0.0 8 2.9 2 2.9 8 3.8 2 3.8

Surgical procedure Laparoscopic 69 19.9 15 17.2 0.577 51 18.7 16 23.5 0.368 51 24.2 10 18.9 0.413
Open surgery 278 80.1 72 82.8 222 81.3 52 76.5 160 75.8 43 81.1

Postoperative complication No 310 89.3 78 89.7 0.931 240 87.9 59 86.8 0.797 182 86.3 45 84.9 0.800
Yes 37 10.7 9 10.3 33 12.1 9 13.2 29 13.7 8 15.1

Recurrence No 158 45.5 37 42.5 0.614 115 42.1 23 33.8 0.212 71 33.6 17 32.1 0.828
Yes 189 54.5 50 57.5 158 57.9 45 66.2 140 66.4 36 67.9

Postoperative treatment No 156 45.0 35 40.2 0.427 104 38.1 27 39.7 0.807 67 31.8 19 35.8 0.570
yes 191 55.0 52 59.8 169 61.9 41 60.3 144 68.2 34 64.2

Status Survived 295 85 79 90.8 0.162 165 60.4 37 54.4 0.365 80 37.9 14 26.4 0.118
Expired 52 15 8 9.2 108 39.6 31 45.6 131 62.1 39 73.6
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Sensitivity for ANN was 100% at the 5-year survival model
compared to 67.5% for LR. Specificity for ANN was 96.2% at
the 1-year model whereas it was 34.6% for LR.

Table 5 shows the accuracy, sensitivity, and specificity
of the 1-, 3-, and 5-year survival estimation models using
ANN and LR for validation groups. Although the results
were mixed in scores of accuracy, sensitivity, and specificity
between ANN and LR, most performance criteria were
superior in themodels by usingANN to those using LR in any
survival models. Take the 5-year survival model, for example,
the accuracy was 79.2% for ANN, whereas LR was 70.6%. LR
had a relatively higher score (94.9%) in specificity measure at
1-year survival model, but poor value in specificity (25.0%).
In contrast, ANN had relatively higher values at both scores
in sensitivity (88.6%) and specificity (50.0%).

AUROCs for training data and validation data (Figures 2
and 3, resp.) were significantly higher in ANN models than
in LR models. For training data, 1-, 3-, and 5-year survival
AUROCs were 0.980, 0.989, and 0.993 in ANN models
and 0.845, 0.844, and 0.847 in LR models, respectively. For
validation data, the 1-, 3-, and 5-year survival AUROCs were
0.875, 0.798, and 0.810 in ANN models and 0.799, 0.783, and
0.743 in LR models, respectively.

4. Discussion

We have created models for prediction of outcome of
HCC patients undergoing resection using ANN with input
variables which were found to be significantly associated
at univariate analysis. Clinical factors such as comorbidity,
liver cirrhosis,𝛼-Fetoprotein, platelet, ASA classification, and
TNM stage were significant for 1-, 3-, and 5-year survival
in ANN models as shown in Table 3. Among those, only
liver cirrhosis, 𝛼-fetoprotein, and TNM stage were also
found significant for LR at the 1-year prediction model. The
consistently significant variables inmortality are suggested to
be reviewed by clinicians to examine both short- and long-
term clinical outcomes for HCC patients.

The appropriate selection of input variables is vital to
the success of ANN construction. The process improves
efficiency of the ANN model’s appropriate complexity (by
using the most predictive variables) and low redundancy. We
first employed traditional statistics to select those variables
statistically significant as input variables to make equal com-
parative analysis.The crude hazard ratio has beenwidely used
by biostatisticians and clinicians to explore the difference
between crude and adjusted hazard ratio.

Our study found that ANN had double to triple num-
bers of significant predictors at 1-, 3-, and 5-year survival
models as compared with LR models. A previous study
also found such a gap between models derived from ANN
and traditional statistical methods [17]. The reason for the
difference might be owing to the fact that models derived
from logistic regression usually employ variables that are
statistically significant predictors of the outcome, and ANN
utilizes all possible interactions between all input variables
and the outcome, regardless of their statistical significance.
ANN can be developed using a number of different training

Table 3: Comparison of predictors for 1-, 3-, and 5-year survival
using ANN and LR.

Predictive variables
1-year 3-year 5-year
survival survival survival

ANN LR ANN LR ANN LR
Age ⊚

Gender ⊚ ⊚

Comorbidity ⊚ ⊚ ⊚ ⊚

Liver cirrhosis ⊚ ⊚ ⊚ ⊚

𝛼-Fetoprotein ⊚ ⊚ ⊚ ⊚

AST ⊚

Total bilirubin ⊚ ⊚ ⊚

Albumin ⊚ ⊚ ⊚

BUN
Platelet ⊚ ⊚ ⊚

ASA classification ⊚ ⊚ ⊚

Child-Pugh
classification ⊚ ⊚ ⊚

TNM stage ⊚ ⊚ ⊚ ⊚

Tumor number ⊚ ⊚

Tumor size ⊚

Portal vein invasion ⊚ ⊚ ⊚

Biliary invasion ⊚ ⊚

Surgical procedure ⊚ ⊚

Postoperative
complication ⊚ ⊚ ⊚

Recurrence ⊚ ⊚ ⊚ ⊚

Postoperative
treatment ⊚

Total 15 8 13 4 9 4

Table 4: Comparison of predictive models for 1-, 3-, and 5-year
survival using ANN and LR: training data.

1-year survival 3-year survival 5-year survival
(𝑁 = 347) (𝑁 = 273) (𝑁 = 211)

ANN LR ANN LR ANN LR
Accuracy 0.991 0.890 0.985 0.791 0.995 0.801
Sensitivity 0.997 0.986 0.988 0.879 1.000 0.675
Specificity 0.962 0.346 0.981 0.657 0.992 0.878

algorithms, many of which are continually being developed
and may offer improved prediction accuracy. On the other
hand, ANN cannot provide detailed information such as
the hazard ratio, which generally provides direction and
magnitude of individual variables on outcome variables.

As comparedwith the 1-yearmortalitymodel, numbers of
predictors at both ANN and LR models decreased at 3- and
5-year survival models, though the ANN model appeared to
have lower decreased rates. This suggested that relationship
between input variables and survival status may be correlated
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Figure 2: ROC curves and AUROCs for ANN and LR models of 1-, 3-, and 5-year survival when using training data.

rather than simply for the prediction of short-term outcome,
and that 3- and 5-year survival status may be confounded by
factors that are more complex. The change in health status
over time should be examined to have better knowledge on
long-term survival estimation.

In all training sets and in most validation sets, accuracy,
sensitivity, specificity, and AUROC were higher in the 1-, 3-,
and 5-year survivalmodels constructed byANN than in those
constructed by LR, which is consistent with other reports
that ANN outperforms LR in both training [15, 31–35] and
validation [14, 36, 37].

Although the ANNmodels in the current study generally
had higher sensitivity and specificity compared to LRmodels

when using both training data and validation data, a notable
exception was specificity when using validation data in the 1-
year LRmodel (Table 5). Compared to the 1-yearANNmodel,
the 1-year LR model had higher sensitivity (94.9%), higher
accuracy (88.5%) but lower specificity (25.0%) when using
validation data. The literature [38] suggests that specificity
and sensitivity values lower than 40% should be considered
poor. Sensitivity and specificity are important when testing
the capability of a model to recognize positive and negative
outcomes. Sensitivity and specificity must also be measured
to determine the proportion of false negatives or false
positives produced by amodel [39]. Comparing false positive
and false negative rates explains the tendency of a model
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Figure 3: ROC curves and AUROCs for ANN and LR models of 1-, 3-, and 5-year survival when using validation data.

to misclassify positive patients as negative patients and vice
versa [40]. Ideally, both sensitivity and specificity should be
high [40]. According to comparisons of ANN and LRmodels
reported in the literature as well as the experimental results
in this study, ANN models have fewer prediction errors.

Although the proposed ANN-based models generally
outperformed LR models in this study, the findings of this
study should be interpreted cautiously. First, the WEKA
program cannot be used if the ANN is constructed with
numerous input variables, which can cause “insufficient
computer memory” error messages. However, the number
of input variables used in the present study was 21 suitable
for the program used. Second, an ROC plot should be

constructed for all possible cut-offs for a clear representation
of the trade-off between specificity and sensitivity. Since the
cut-offs used for each of the 1-, 3-, and 5-year survival models
in this study were selected by the authors from possible cut-
offs generated by a statistical software package, bias could
not be ruled out. Third, although previous works adopted
a 20% validation group [29, 30], this study adopted 25%
and 30% validation groups to detect the sample difference.
Therefore, the potential treat from the sample should be
noted. Fourth, since the HCC patient sample in the current
study was derived from only two hospitals, the ability to gen-
eralize the findings is limited. For a stronger methodological
conclusion, future studies should test external validity such
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Table 5: Comparison of predictive models for 1-, 3- and 5-year
survival using ANN and LR: validation data.

1-year survival 3-year survival 5-year survival
(𝑁 = 87) (𝑁 = 68) (𝑁 = 53)

ANN LR ANN LR ANN LR
Accuracy 0.851 0.885 0.721 0.706 0.792 0.706
Sensitivity 0.886 0.949 0.730 0.757 0.714 0.613
Specificity 0.500 0.250 0.710 0.645 0.821 0.763

as by analyzing hepatic resection outcomes in HCC patients
treated in different medical institutions.

5. Conclusions

In conclusion, survival estimation models at 1-, 3-, and 5-
year intervals for HCC patients undergoing hepatic resection
could be constructed by ANN, a data mining method as
compared with conventional logistic regression. Arguably
more significant predictors of mortality were identified by
ANN at 1-, 3-, and 5-year models as compared with LR.
The values in accuracy, sensitivity, specificity, and AUROC of
ANNmodels were generally higher than those of LR models.

The study supported previous studies that ANN had
better performance in prediction as compared with LR. The
study suggested that ANN could become one tool for predict-
ing clinical short- and long-term outcomes. It is suggested
that physicians consider using data mining methods as a
supplemental tool to make clinical decision-making and
prognostic evaluation.
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