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A large vector-angular region and margin (LARM) approach is presented for novelty detection based on imbalanced data. The
key idea is to construct the largest vector-angular region in the feature space to separate normal training patterns; meanwhile,
maximize the vector-angular margin between the surface of this optimal vector-angular region and abnormal training patterns. In
order to improve the generalization performance of LARM, the vector-angular distribution is optimized bymaximizing the vector-
angular mean and minimizing the vector-angular variance, which separates the normal and abnormal examples well. However,
the inherent computation of quadratic programming (QP) solver takes 𝑂(𝑛3) training time and at least 𝑂(𝑛2) space, which might
be computational prohibitive for large scale problems. By (1 + 𝜀) and (1 − 𝜀)-approximation algorithm, the core set based LARM
algorithm is proposed for fast training LARM problem. Experimental results based on imbalanced datasets have validated the
favorable efficiency of the proposed approach in novelty detection.

1. Introduction

The task of novelty detection is to learn a model from normal
examples in training patterns and hence can classify the
test patterns. In real-world novelty detection applications,
it is usually assumed that normal training patterns can be
well sampled, while abnormal training patterns are severely
undersampled, which is due to expensive measurement cost
or infrequency of abnormal events. Therefore, only normal
training patterns are used to build detection model in most
novelty detection algorithms. Generally, novelty detection
may be seen as one-class classification problem. Recently,
novelty detection has gained much research attention in real-
world applications such as network intrusion detection [1], jet
engine health monitoring [2], medical data [3], and aviation
safety [4, 5].

In this paper, the kernel-based novelty detection algo-
rithm is studied in-depth, which is very popular and has
been proved to be successful recently. Various kernel-based
novelty detection approaches have been proposed, such as
one-class support vector machine (OCSVM) [6] and support
vector data description (SVDD) [7]. OCSVM was proposed
by Schölkopf et al. [6], in which, to improve generalization

ability, novelty detection boundary is constructed to separate
the origin from the input samples with the maximal margin.
The performance of OCSVM is very sensitive to the parame-
ters, making it difficult to be generalized to other applications
[8].

SVDD was proposed by Tax and Duin [7], in which the
minimal ball is constructed to enclose most of the training
samples. Novelty point is assessed by determining whether
a test point lies within the minimal ball or not. The margin
between the closed boundary surrounding the positive data
and that surrounding the negative data is zero, which makes
the method of poor generalization ability. A small sphere
and large margin (SSLM) approach was proposed by Wu
and Ye [9], in which the smallest hypersphere is constructed
to surround the normal data; meanwhile, the margin from
any outlier to this hypersphere is as large as possible. An
incremental weighted one-class support vector machine for
mining streaming data was proposed by Krawczyk and
Wózniak [10, 11], in which the weights to each object are
modified according to its level of significance, and the
shape of the decision boundary is influenced only by new
objects that carry new and useful knowledge extending the
competence of the classifier.
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Support vector machine (SVM) can be solved through
figuring out quadratic programming (QP) problem, which
has the important computational advantage of avoiding the
problem of local minima. However, solving the correspond-
ing SVM problems using the naive implementation of QP
solver takes𝑂(𝑛3) computational time complexity and at least
𝑂(𝑛
2
) space complexity if the number of training patterns is 𝑛.

Obviously, the naive implementation of QP solver is difficult
to meet the practical application of novelty detection in large
scale datasets. Tsang et al. proposed the core vector machine
(CVM) [12, 13] as the approximation algorithm of minimum
enclosing ball (MEB) for large scale problems.The key idea is
that the implementation ofQP solver for corresponding SVM
problems could be equivalently viewed as MEB problems. By
utilizing an approximation algorithm for theMEBproblem in
computational geometry, the time complexity of CVM algo-
rithm is linear to the number of training patterns. Moreover,
the space complexity is irrelevant to the number of training
patterns.

As mentioned above, only normal training patterns are
used to build the detection model in most novelty detection
algorithms. In practical applications of novelty detection, it is
difficult, but not impossible, to obtain a very few abnormal
training patterns. For instance, in machine fault detection,
in addition to extensive measurements on the normal work-
ing conditions, there may be also some measurements on
faulty situations [14]. Recently, extensive and comprehen-
sive researches have been carried out in both academia
and industry to solve the imbalanced novelty detection
problem.

Kernel-based novelty detection based on imbalanced data
is researched in this paper. Suppose 𝑆 = {(x

𝑖
, 𝑦
𝑖
)}, 𝑖 = 1, . . . , 𝑛,

is a given training dataset with 𝑛 examples, where x
𝑖
⊂ 𝑅
𝑑 is

the 𝑖th input instance, 𝑦
𝑖
∈ {−1, +1} is a class identity label

associated with instance x
𝑖
, 𝑆maj ⊂ 𝑆 is the set of majority

training patterns and |𝑆maj| = 𝑚
1
, 𝑆min ⊂ 𝑆 is the set of

minority training patterns and |𝑆min| = 𝑚
2
, and𝑚

1
+𝑚
2
= 𝑛.

𝜙(⋅) is the feature mapping function defined by a given kernel
function 𝜅(⋅, ⋅). The length of the perpendicular projection of
the training pattern 𝜙(x

𝑖
) onto the vector k is expressed as

⟨k, 𝜙(x
𝑖
)⟩, which actually reflects the information about the

angular and the Euclidean distances between k and 𝜙(x
𝑖
) in

the Euclidean vector space. According to the definition in
[15], ⟨k, 𝜙(x

𝑖
)⟩ is called vector-angular.

In this paper, a large vector-angular region and margin
(LARM) algorithm and its fast trainingmethod based on core
set are proposed for novelty detection, where the training
patterns are imbalanced.Themain contributions of this paper
lie in three aspects. Firstly, the boundary of SVM is only
determined by the support vectors and the distribution of
the data in the training set is not considered [16]. However,
recent theoretical results have proved that data distribution
information is crucial to the generalization performance [17,
18]. The proposed algorithm in this paper aims to find an
optimal vector k in the feature space, in which the mean and
the variance of vector-angular aremaximized andminimized,
respectively. Therefore, normal and abnormal examples are
well separated when projected onto the optimal vector

k joining their large mean and small variance. Secondly,
the proposed LARM integrates one-class and binary classi-
fication algorithms to tackle the novelty detection problem
based on imbalanced data, which constructs the largest
vector-angular region in the feature space to separate normal
training patterns and maximizes the vector-angular margin
between the optimal vector-angular region and the abnor-
mal data. Since the number of normal training patterns is
sufficient, the largest vector-angular region is constructed
accurately, which can minimize the chance of accepting the
normal examples. To achieve better generalization perfor-
mance, the vector-angular margin between the surface of
this optimal vector-angular region and the abnormal data
is maximized. Thirdly, the core set based LARM algorithm
is proposed for fast training LARM problem. The time
and space complexity of core set based LARM are linear
to and independent of the number of training patterns,
respectively.

The structure of this paper is organized as follows.
Section 1 introduces the novelty detection technique and
presents an analysis of the existing problems. Section 2 intro-
duces ]-support vector machine (]-SVM), two-class SVDD,
and maximum vector-angular margin classifier (MAMC).
Section 3 presents the proposed LARM for novelty detection
and its fast training method based on core set. Experimental
results are shown in Section 4 and conclusions are given in
Section 5.

2. ]-SVM, SVDD, and MAMC

2.1. ]-SVM. ]-SVM was proposed by Schölkopf et al. [19]
to solve the binary classification problem, which uses the
parameter ] to control the number of support vectors and the
bound of the classification errors. ]-SVM can be modeled as
follows:

min
w,𝜌,𝑏,𝜉

1

2
‖w‖2 − ]𝜌 +

1

𝑛

𝑛

∑

𝑖=1

𝜉
𝑖

s.t. 𝑦
𝑖
(wT

𝜙 (x
𝑖
) + 𝑏) ≥ 𝜌 − 𝜉

𝑖
, 𝑖 = 1, . . . , 𝑛

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛,

𝜌 > 0,

(1)

where w is the normal vector of the decision hyperplane, 𝑏 is
the bias of the classifier,𝜌 is themargin, 𝜉 = [𝜉

1
, . . . , 𝜉

𝑛
]
T is the

vector of slack variables, and ] is a positive constant. ]-SVM
obtains the optimal hyperplanewT

𝜙(x
𝑖
)+𝑏 = 0 for separating

the two classes with a maximal margin 𝜌/(2‖w‖). To classify
a testing instance z ∈ 𝑅

𝑑, the decision function takes the sign
function of the optimal hyperplane 𝑓(z) = sgn(wT

𝜙(z) + 𝑏).

2.2. SVDD. One-class SVDD and two-class SVDD were
proposed by Tax and Duin in 2004 [7], in which the
minimal ball is constructed to enclose most of the training
patterns. Here, we only review two-class SVDD that can
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utilize the abnormal data. Two-class SVDDcanbemodeled as
follows:

min
𝑅,c,𝜉

𝑅
2
+ 𝐶
1

𝑚
1

∑

𝑖=1

𝜉
𝑖
+ 𝐶
2

𝑛

∑

𝑗=𝑚
1
+1

𝜉
𝑗

s.t. 𝜙 (x𝑖) − c
2
≤ 𝑅
2
+ 𝜉
𝑖
, 𝑖 = 1, . . . , 𝑚

1


𝜙 (x
𝑗
) − c

2

≥ 𝑅
2
− 𝜉
𝑗
, 𝑗 = 𝑚

1
+ 1, . . . , 𝑛

𝜉
𝑘
≥ 0, 𝑘 = 1, . . . , 𝑛,

(2)

where 𝑅 and c are the radius and the center of the hyper-
sphere, 𝐶

1
and 𝐶

2
are two trade-off parameters which can

treat imbalanced datasets, and 𝜉 = [𝜉
1
, . . . , 𝜉

𝑛
]
T is the vector

of slack variables. The testing instance z ∈ 𝑅
𝑑 can be

determined, whether it is inside of the optimal hypersphere
or not. Hence, the decision function of two-class SVDD is
𝑓(z) = sgn(𝑅2 − ‖𝜙(z) − c‖2).

2.3. MAMC. MAMC was proposed by Hu et al. in 2012 [15],
which attempts to find an optimal vector k in the feature space
based on the maximum vector-angular margin. MAMC can
be modeled as follows:

min
𝜌,k,𝜉

− ]𝜌 +
1

𝑛

𝑛

∑

𝑖=1

𝜙 (x𝑖) − k
2
+
𝐶

𝑛

𝑛

∑

𝑖=1

𝜉
𝑖

s.t. 𝑦
𝑖
𝜙 (x
𝑖
)
T k ≥ 𝜌 − 𝜉

𝑖
, 𝑖 = 1, . . . , 𝑛

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛,

(3)

where k is the optimized vector, 𝜌 is the vector-angular
margin, 𝜉 = [𝜉

1
, . . . , 𝜉

𝑛
]
T is the vector of slack variables,

and 𝐶 and ] are two positive constants. To classify a testing
instance z ∈ 𝑅

𝑑, the decision function is defined as 𝑓(z) =

sgn(∑𝑛
𝑖=1

(1/𝑛 + 𝛼
𝑖
𝑦
𝑖
/2)𝜅(x

𝑖
, z)).

3. Core Set Based Large Vector-Angular
Region and Margin

In this section, LARM algorithm and its fast training method
based on core set are proposed for novelty detection with
imbalanced data.

3.1. LARM. To tackle the novelty detection problem on
imbalanced data, the distribution of vector-angular and
maximization of vector-angularmargin are considered in this
paper. Figure 1 illustrates the principle of LARM.

Firstly, LARM is adopted to find an optimal vector k in
the feature space, which attempts to maximize the vector-
angular mean and minimize the vector-angular variance
simultaneously. Here, the vector-angular expresses the length
of projection of training pattern 𝜙(x

𝑖
) onto the optimal vector

k. Therefore, the normal and abnormal examples are well
separated when projected onto the optimal vector k joining
their large mean and small variance.

Secondly, for the learning problem on imbalanced data,
the largest vector-angular region in the feature space is

Construct the largest
vector-angular region

Maximize the vector-
angular margin

The decision hyperplane 

v

Support vectors
−1

+1

Figure 1: The schematic illustration of LARM principle.

constructed to separate the normal data. Since the number
of normal training patterns is sufficient, the largest vector-
angular region is constructed accurately, which canminimize
the chances of accepting the normal examples. Meanwhile, to
achieve a favorable generalization performance, the vector-
angular margin between the surface of this optimal vector-
angular region and the abnormal data is maximized.

3.1.1. Primal Formulation of LARM. Formally, define the
training pattern matrix X = [𝜙(x

1
), . . . , 𝜙(x

𝑛
)], label col-

umn vector y = [𝑦
1
, . . . , 𝑦

𝑛
]
T, and label diagonal matrix

Y = diag(𝑦
1
, . . . , 𝑦

𝑛
). According to the definition in [18],

the vector-angular mean 𝛾 and vector-angular variance �̂�

between training patterns (𝜙(x
𝑖
), 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑛 and vector k

can be expressed as

𝛾 =
1

𝑛

𝑛

∑

𝑖=1

𝑦
𝑖
kT𝜙 (x

𝑖
) =

1

𝑛
(Xy)T k,

�̂� =
1

𝑛2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(𝑦
𝑖
kT𝜙 (x

𝑖
) − 𝑦
𝑗
kT𝜙 (x

𝑗
))
2

=
2

𝑛2
(𝑛kTXXTk − kTXyyTXTk) .

(4)

Then, the primal LARM can be formulated as the follow-
ing optimization problem:

min
𝜔,𝜌,k,𝜉

− 𝜔
2
− ]𝜌2 +

2𝜆

𝑛2
(𝑛kTXXTk − kTXyyTXTk)

−
𝜆

𝑛
(Xy)T k + 1

]
1
𝑚
1

𝑚
1

∑

𝑖=1

𝜉
𝑖
+

1

]
2
𝑚
2

𝑛

∑

𝑗=𝑚
1
+1

𝜉
𝑗
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s.t. kT𝜙 (x
𝑖
) ≥ 𝜔
2
− 𝜉
𝑖
, 𝑖 = 1, . . . , 𝑚

1

kT𝜙 (x
𝑗
) ≤ 𝜔
2
− 𝜌
2
+ 𝜉
𝑗
, 𝑗 = 𝑚

1
+ 1, . . . , 𝑛

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛,

(5)

where k is the optimal vector, 𝜔2 (𝜔 > 0) is the width
of vector-angular region, 𝜌2 (𝜌 > 0) is the vector-angular
margin, 𝜉 = [𝜉

1
, . . . , 𝜉

𝑛
]
T is the vector of slack variables, and

], ]
1
, ]
2
, and 𝜆 are four positive constants.

According to [18], k∗ for problem (5) is expressed as
follows:

k∗ =
𝑛

∑

𝑖=1

𝛼
𝑖
𝜙 (x
𝑖
) = X𝛼. (6)

Hence, XTk = XTX𝛼 = K𝛼 can be obtained, where K = XTX
is the kernelmatrix. Problem (5) can be formulated as follows:

min
𝜔,𝜌,𝛼,𝜉

− 𝜔
2
− ]𝜌2 +

1

2
𝛼
TQ𝛼 + qT𝛼 + 1

]
1
𝑚
1

𝑚
1

∑

𝑖=1

𝜉
𝑖

+
1

]
2
𝑚
2

𝑛

∑

𝑗=𝑚
1
+1

𝜉
𝑗

s.t. 𝛼TK
:𝑖
≥ 𝜔
2
− 𝜉
𝑖
, 𝑖 = 1, . . . , 𝑚

1

𝛼
TK
:𝑗
≤ 𝜔
2
− 𝜌
2
+ 𝜉
𝑗
, 𝑗 = 𝑚

1
+ 1, . . . , 𝑛

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛,

(7)

whereQ = 4𝜆(𝑛KTK−(Ky)(Ky)T)/𝑛2, q = −𝜆(Ky)/𝑛, andK
:𝑖

is the 𝑖th column of K.

3.1.2. Dual Problem. To investigate the problem with con-
straints described as (7), the Lagrangian function is con-
structed as follows:

𝐿 (𝜔, 𝜌,𝛼, 𝜉,𝛽, 𝜂)

= −𝜔
2
− ]𝜌2 +

1

2
𝛼
TQ𝛼 + qT𝛼 + 1

]
1
𝑚
1

𝑚
1

∑

𝑖=1

𝜉
𝑖

+
1

]
2
𝑚
2

𝑛

∑

𝑗=𝑚
1
+1

𝜉
𝑗
−

𝑚
1

∑

𝑖=1

𝛽
𝑖
(𝛼

TK
:𝑖
− 𝜔
2
+ 𝜉
𝑖
)

+

𝑛

∑

𝑗=𝑚
1
+1

𝛽
𝑗
(𝛼

TK
:𝑗
− 𝜔
2
+ 𝜌
2
− 𝜉
𝑗
) −

𝑛

∑

𝑖=1

𝜂
𝑖
𝜉
𝑖
,

(8)

where 𝛽 = [𝛽
1
, . . . , 𝛽

𝑛
]
T and 𝜂 = [𝜂

1
, . . . , 𝜂

𝑛
]
T are Lagrange

multipliers. The following equations can be obtained by

making the partial derivatives of 𝐿(𝜔, 𝜌,𝛼, 𝜉,𝛽, 𝜂) with
respect to the primal variables to zero:

𝜕𝐿

𝜕𝜔
= 0 ⇒ −2𝜔 + 2𝜔

𝑚
1

∑

𝑖=1

𝛽
𝑖
− 2𝜔

𝑛

∑

𝑗=𝑚
1
+1

𝛽
𝑗
= 0

⇒ 2𝜔(−1 +

𝑛

∑

𝑖=1

𝛽
𝑖
𝑦
𝑖
) = 0

(9)

𝜕𝐿

𝜕𝜌
= 0 ⇒ −2]𝜌 + 2𝜌

𝑛

∑

𝑗=𝑚
1
+1

𝛽
𝑗
= 0

⇒ 2𝜌(

𝑛

∑

𝑗=𝑚
1
+1

𝛽
𝑗
− ]) = 0

(10)

𝜕𝐿

𝜕𝜉
𝑖

= 0 ⇒
1

]
1
𝑚
1

− 𝛽
𝑖
− 𝜂
𝑖
= 0, 𝑖 = 1, . . . , 𝑚

1 (11)

𝜕𝐿

𝜕𝜉
𝑗

= 0 ⇒
1

]
2
𝑚
2

− 𝛽
𝑗
− 𝜂
𝑗
= 0, 𝑗 = 𝑚

1
+ 1, . . . , 𝑛 (12)

𝜕𝐿

𝜕𝛼
= 0 ⇒ Q𝛼 + q −

𝑚
1

∑

𝑖=1

𝛽
𝑖
K
:𝑖
+

𝑛

∑

𝑗=𝑚
1
+1

𝛽
𝑗
K
:𝑗
= 0

⇒ Q𝛼 + q −

𝑛

∑

𝑖=1

𝛽
𝑖
𝑦
𝑖
K
:𝑖
= 0.

(13)

Substituting (9)–(13) into (8), the dual form can be
obtained, which omits constants without influence on opti-
mization:

max
𝛽

−
1

2
𝛽
TH𝛽 + pT𝛽

s.t. 0 ≤ 𝛽
𝑖
≤

1

]
1
𝑚
1

, 𝑖 = 1, . . . , 𝑚
1

0 ≤ 𝛽
𝑖
≤

1

]
2
𝑚
2

, 𝑖 = 𝑚
1
+ 1, . . . , 𝑛

𝑛

∑

𝑖=1

𝛽
𝑖
𝑦
𝑖
= 1

𝑛

∑

𝑖=1

𝛽
𝑖
= 1 + 2],

(14)

whereH = YKQ−1KY, p = −𝜆(He)/𝑛, andQ−1 is the inverse
matrix ofQ and e = [1, . . . , 1]

T.
The dual problem (14) is a QP problem, which has the

same form as the dual of the ]-SVM [19, 20]. Therefore, the
QP problem (14) can be easily solved by SMO algorithm in
LIBSVM [21].

Suppose𝛽∗ is the optimal vector of the dual problem (14).
According to (13), 𝛼∗ can be expressed as follows:

𝛼
∗
= Q−1(

𝑛

∑

𝑖=1

𝛽
∗

𝑖
𝑦
𝑖
Κ
:𝑖
− q) = Q−1 (ΚY𝛽∗ − q) . (15)
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To compute 𝜔2 and 𝜌
2, two sets are considered:

𝑆
1
= {0 < 𝛽

𝑖
<

1

]
1
𝑚
1

, 𝑖 = 1, . . . , 𝑚
1
} ,

𝑆
2
= {0 < 𝛽

𝑗
<

1

]
2
𝑚
2

, 𝑗 = 𝑚
1
+ 1, . . . , 𝑛} .

(16)

According to the Karush-Kuhn-Tucker (KKT) conditions

𝛽
𝑖
(kT𝜙 (x

𝑖
) − 𝜔
2
+ 𝜉
𝑖
) = 0, 𝑖 = 1, . . . , 𝑚

1
,

𝛽
𝑗
(kT𝜙 (x

𝑗
) − 𝜔
2
+ 𝜌
2
− 𝜉
𝑖
) = 0, 𝑗 = 𝑚

1
+ 1, . . . , 𝑛,

𝜂
𝑖
𝜉
𝑖
= 0, 𝑖 = 1, . . . , 𝑛,

(17)

and (11) and (12), 𝜂
𝑖
> 0, 𝜉

𝑖
= 0, 𝜂

𝑗
> 0, and 𝜉

𝑗
= 0 can be

obtained. Hence, set 𝑛
1
= |𝑆
1
| and 𝑛

2
= |𝑆
2
|, and 𝜔

2 and 𝜌
2
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3.1.3. Decision Function. It can be seen that minimizing the
cost function (5) willmake thewidth of vector-angular region
𝜔
2 and vector-angular margin 𝜌

2 as large as possible. Mean-
while, the optimal vector k in feature space is found, which
makes the normal and abnormal examples well separated
when projected onto the optimal vector k joining their large
mean and small variance. Therefore, the testing patterns can
be classified in terms of the vector-angular between the vector
k and the training patterns 𝜙(x). The optimal separating
hyperplane of SVM iswT

𝜙(x)+𝑏 = 0, which is at themiddle of
the margin. Similarly, the separating hyperplane of LARM is
defined at the center of themargin.Hence, for testing instance
z ∈ 𝑅
𝑑, the decision function is expressed as follows:

𝑓 (z) = sgn(kT𝜙 (z) − 𝜔
2
+
𝜌
2

2
)

= sgn(
𝑛

∑

𝑖=1

𝛼
∗

𝑖
𝜅 (x
𝑖
, z) − 𝜔

2
+
𝜌
2

2
) .

(19)

3.1.4. ]-Property. Let 𝑚+ and 𝑚
− represent the number of

margin errors of the normal and abnormal training patterns
and 𝑠
+ and 𝑠

− denote the number of support vectors of the
normal and abnormal training patterns, respectively. Accord-
ing to (9) and (10), the following formulas can be obtained:

𝑚
1

∑

𝑖=1

𝛽
𝑖
= ] + 1,

𝑛

∑

𝑗=𝑚
1
+1

𝛽
𝑗
= ].

(20)

By using similar proof about ]-property in [19] and by
making use of (20), inequalities (21) can be obtained:

𝑚
+

𝑚
1

≤ ]
1
(] + 1) ≤

𝑠
+

𝑚
1

,

𝑚
−

𝑚
2

≤ ]
2
] ≤

𝑠
−

𝑚
2

.

(21)

The inequalities (21) indicate that ]
1
(] + 1) (or ]

2
]) is a

lower bound of the fraction of support vectors in the normal
(or abnormal) dataset and an upper bound of the fraction of
misclassified patterns in the normal (or abnormal) dataset.
The ]-property of LARM can be used for parameter selection
in the following experiments.

3.2. Core Set Based LARM. As mentioned above, the dual
problem of LARM can be actually formulated as a QP
problem. So, solving the corresponding QP problem of
LARM takes𝑂(𝑛3) computational time complexity and𝑂(𝑛2)
space complexity. When the number of training patterns is
large, it is thus computationally infeasible. Inspired from the
core set based approximate MEB algorithms, (1 + 𝜀) and
(1 − 𝜀)-approximation algorithm is utilized for fast training
LARMproblem, which is called core set based LARM. Firstly,
core sets of training patterns are obtained by (1 + 𝜀) and
(1−𝜀)-approximation algorithm to achieve the distribution of
vector-angular region of the normal and abnormal examples.
The core set is a subset of the original training patterns
and the optimization problem can be approximately solved
on the core set. Secondly, the LARM problem is solved by
SMO algorithm [22] using the obtained core set. According
to [12, 13], the number of core sets is independent of both
the number and the dimension of training patterns, and the
time complexity is linear to the number of training patterns
while the space complexity is independent of the number of
training patterns.The schematic illustration of core set based
LARM is shown in Figure 2.

Suppose 𝑆
𝑡
is the core set of the 𝑡th iteration, k

𝑡
is the

optimal vector in the feature space of the 𝑡th iteration, �̆�
𝑡

is the minimum distance between the center of the vector-
angular margin and any point in core set of the 𝑡th iteration,
and 𝜛

𝑡
is the maximum distance between the center of the

vector-angular margin and any point in core set of the 𝑡th
iteration. Given 𝜀 > 0, according to [12, 13], the core set based
LARM is trained as follows.
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v

Figure 2: Schematic illustration of core set based LARM.

(i) Initialize 𝑆
0
, 𝜀, �̆�
0
and 𝜛

0
.

(ii) Terminate if there is no training point 𝜙(z) falls
outside the vector-angular region [(1 − 𝜀) × �̆�

𝑡
, (1 +

𝜀) × 𝜛
𝑡
]. Go to step (vi).

(iii) Find z
𝑎
and z

𝑏
; k
𝑡

T
𝜙(z
𝑎
) is the furthest away from

the center of the vector-angular margin and k
𝑡

T
𝜙(z
𝑏
)

is the shortest away from the center of the vector-
angular margin. Set 𝑆

𝑡+1
= 𝑆
𝑡
∪ {z
𝑎
, z
𝑏
}.

The distance between the center of the vector-angular
margin and any point 𝜙(z

ℓ
) is expressed as follows:

𝜛
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(22)

where 𝜔
𝑡

2 is the width of vector-angular region at the 𝑡th
iteration, 𝜌

𝑡

2 is the vector-angular margin at the 𝑡th iteration,
and the set {z

ℓ
} is constructed by all training patterns outside

the vector-angular region [(1 − 𝜀) × �̆�
𝑡
, (1 + 𝜀) × 𝜛

𝑡
].

Computing (22) for all 𝑛 training patterns, takes𝑂(|𝑆
𝑡
|
2
+

𝑛|𝑆
𝑡
|) = 𝑂(𝑛|𝑆

𝑡
|) time at the 𝑡th iteration. When 𝑛 is

large, time cost will be enormous. In order to reduce the
computation cost, the probabilistic speedup method [23] is
used to accelerate the vector-angular computations in steps
(ii) and (iii). The details of time and space complexities can
be seen in [12, 13].

(iv) Find the new vector-angular region [(1−𝜀)×�̆�
𝑡+1

, (1+

𝜀) × 𝜛
𝑡+1

].
(v) Increase 𝑡 by 1 and go back to step (ii).

(vi) Solve the LARM problem (14) by the core set 𝑆
𝑡
.

(vii) Classify the test pattern by the decision function (19).

4. Experimental Results

The proposed core set based LARM is evaluated on twenty
datasets, including both LIBSVM datasets [24] and UCI
datasets [25].Details of the datasets are listed inTable 1, where
𝑑 is the data dimension, #pos is the total number of normal
patterns, #neg is the total number of abnormal patterns, 𝑚

1

is the number of normal training patterns, and 𝑚
2
is that

of abnormal training patterns. The dataset size is ranged
from 178 to more than 495,141, and the proportion of major
and minor data is ranged from 10 : 1 to 1000 : 1. Experiments
are repeated for 10 times with random data partitions, the
geometric mean accuracy and the standard deviation are
recorded.

4.1. Performance Measurement and Parameter Selection. The
performance of core set based LARM is compared with three
kernel-based algorithms: ]-SVM, SVDD, and MAMC. The
geometric mean accuracy 𝑔 = (𝑎

+
⋅ 𝑎
−
)
1/2 [26] is used for

both parameter selection and algorithm evaluation, where
𝑎
+ is the classification accuracy of the positive class and

𝑎
− is the classification accuracy of the negative class. The

measurement is widely applied in imbalanced data [14, 26,
27], and it considers the classification results on both the
positive and the negative classes. To make the experimental
results persuasive enough, all the parameters of ]-SVM,
SVDD, MAMC, and core set based LARM are selected by
fivefold cross validation.

In all experiments, the Radial Basis Function (RBF) is
taken as the kernel function:

𝜅 (x
𝑖
, x
𝑗
) = exp (−𝛾 x𝑖 − x

𝑗



2

) , 0 < 𝛾 < +∞, (23)

where 𝛾 is the kernel parameter of the RBF. For all the
algorithms, RBF parameter 𝛾 is calculated by [12, 13]

𝛾 =
𝑛 − 1

∑
𝑛

𝑖=1
diag (K) − (1/𝑛)∑

𝑛

𝑖=1
∑
𝑛

𝑗=1
K
𝑖,𝑗

, (24)

where K
𝑖,𝑗

= x
𝑖

Tx
𝑗
and diag(K) is the diagonal elements of

matrix K.
For ]-SVM, parameter ] is searched in {0.1𝑘, 0.01𝑘,

0.001𝑘, 0.0001𝑘}, where 𝑘 = 1, 3, 5, 7, 9.
For SVDD, parameter 𝐶

1
is searched in {0.01, 0.05,

0.1, 0.5, 1, 5, 10, 50, 100, 500} and parameter𝐶
2
is searched by

the ratio 𝐶
2
/𝐶
1

belonging to {𝑚
1
/4𝑚
2
, 𝑚
1
/2𝑚
2
, 𝑚
1
/𝑚
2
,

2𝑚
1
/𝑚
2
, 4𝑚
1
/𝑚
2
}.

ForMAMC, parameter𝐶 is searched in {10, 30, 50, 70, 90}
and parameter ] is searched in {2, 5, 7, 9, 20, 50, 70, 90}.

For core set based LARM, parameter ] is searched in
{10, 30, 50, 70, 90} and parameters ]

1
and ]

2
are searched in

{0.001, 0.01}. From (21), ]
1
(] + 1) ∈ [0.01, 0.9] and ]]

2
∈

[0.01, 0.9] can be achieved, which are most associated with
the percentage of support vectors and margin errors. From
Section 4.2, we can see that parameters 𝜆 and 𝜀 have faint
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Table 1: Datasets used in experiments.

Dataset #pos #neg 𝑚
1

𝑚
2

𝑑

Australian 383 307 192 11 14
Banknote authentication (B. authentication) 762 610 381 19 4
Breast Cancer (B. Cancer) 458 241 229 22 9
Cod-rna 39690 19845 19845 99 8
Covtype 283301 211840 141651 141 54
Diabetic 611 540 306 15 19
Fourclass 307 555 154 7 2
Glass 144 70 72 7 11
Heart 120 150 60 6 13
Hill valley with noise (H. valley) 299 307 150 15 100
Ionosphere 225 126 113 5 34
Liver disorders (L. disorders) 200 145 100 10 6
Magic gamma telescope (MC) 12332 6688 6166 12 10
Sensorless drive diagnosis (SDD) 5319 53190 2660 26 48
Skin segmentation (S. segmentation) 194198 50859 97099 97 3
Sonar 111 97 56 5 60
Shuttle 34108 9392 17054 17 9
Svmguide1 2000 2000 1000 10 4
Wilt 4265 74 2133 10 5
Wine 119 59 84 8 13
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Figure 3: Influence of parameter ] on geometric mean accuracy and the number of core sets.

effect on the accuracy rate. Therefore, parameters 𝜆 and 𝜀 are
set to 1 and 10

−5, respectively.

4.2. Parameters Influence. There are five parameters in core
set based LARM, that is, ], ]

1
, ]
2
, 𝜆, and 𝜀. To verify the

influence of the parameters on the performance of core set
based LARM, experiments on some representative datasets
are performed. By fixing other parameters, the influence of
every parameter on some representative datasets is further
studied, which is shown in Figures 3–7.

Figure 3 shows the influence of ] on the geometric mean
accuracy and the number of core sets by varying ] from 10
to 100 while fixing ]

1
, ]
2
, 𝜆, and 𝜀 as the suggested value

obtained by the cross validation described in Section 4.1.
Figure 4 shows the influence of ]

1
on the geometric mean

accuracy and the number of core sets by varying ]
1
from0.001

to 0.01 while fixing ], ]
2
, 𝜆, and 𝜀 in the same way. Figure 5

shows the influence of ]
2
on the geometric mean accuracy

and the number of core sets by varying ]
2
from 0.001 to 0.01

while fixing ], ]
1
, 𝜆, and 𝜀 in the same way. Figure 6 shows
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Figure 5: Influence of parameter ]
2
on geometric mean accuracy and the number of core sets.

the influence of 𝜆 on the geometric mean accuracy and the
number of core sets by varying 𝜆 from 2

−9 to 2
0 while fixing

], ]
1
, ]
2
, and 𝜀 in the same way. Figure 7 shows the influence

of 𝜀 on the geometric mean accuracy and the number of core
sets by varying 𝜀 from 1𝑒 − 9 to 1𝑒 − 2 while fixing ], ]

1
, ]
2
,

and 𝜆 in the same way.
From Figures 3–7, it can be seen that parameters ], ]

1
, ]
2
,

𝜆, and 𝜀 have faint effect on the geometric mean accuracy and
the number of core sets, whichmake the core set based LARM
even more attractive in practice. Therefore, parameters ], ]

1
,

]
2
, 𝜆, and 𝜀 obtained by the cross validation described in

Section 4.1 are acceptable for all experiments.

4.3. Numerical Results

4.3.1. Detection Performance. For each dataset, samples are
randomly split into training patterns and testing patternswith
the proportion described in Table 1. Parameters of ]-SVM,
SVDD, MAMC, and core set based LARM are selected by
fivefold cross validation to make the experimental results
persuasive enough.

The geometric mean accuracy is used for the perfor-
mance evaluation. Experiments are repeated for 10 times
with random data partitions. The average accuracy and the
standard deviation are listed in Table 2. NULL shows that
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Figure 6: Influence of parameter 𝜆 on geometric mean accuracy and the number of core sets.
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Figure 7: Influence of parameter 𝜀 on geometric mean accuracy and the number of core sets.

there is no return result in 10 hours. Furthermore, with regard
to every dataset, the difference between the bold results
and the best geometric mean accuracy is not significant,
which is determined by theWilcoxon rank-sum test, with the
confidence level of 0.05.

From Table 2, it can be concluded that the performance
of core set based LARM is comparable to the best of ]-
SVM, SVDD, and MAMC on all datasets. The core set based
LARMperforms significantly better than ]-SVM, SVDD, and
MAMC on 12, 9, and 13 over 20 datasets, respectively. It
illustrates that, by using (1+𝜀) and (1−𝜀)-approximation algo-
rithm for training LARM, the generalization performance of

core set based LARM is comparable to or even better than the
best of ]-SVM, SVDD, and MAMC.

4.3.2. Time Cost. The time cost of ]-SVM, SVDD, MAMC,
and core set based LARM on different datasets is shown
in Tables 3 and 4. The average and standard deviation of
training time (including parameters selection and model
training time) are shown in Table 3.The average and standard
deviation of testing time are shown in Table 4. All the
experiments are conducted on the computer with an i5-
2400@3.10GHz CPU and 8GB SDRAM. NULL shows that
there is no return result in 10 hours. Furthermore, with regard
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Table 2: Average geometric mean accuracy and standard deviation on datasets.

Dataset ]-SVM (%) SVDD (%) MAMC (%) Core set based LARM (%)
Australian 47.88 ± 14.46 56.03 ± 9.21 35.11 ± 10.36 63.67 ± 9.12
B. authentication 97.25 ± 1.66 98.60 ± 0.95 95.34 ± 3.65 98.60 ± 2.30
B. Cancer 92.38 ± 1.43 95.25 ± 0.89 92.75 ± 2.43 93.61 ± 3.53
Cod-rna 45.63 ± 15.18 NULL NULL 75.46 ± 8.79
Covtype NULL NULL NULL 57.51 ± 8.27
Diabetic 42.91 ± 9.34 52.26 ± 9.01 50.14 ± 8.54 53.50 ± 8.90
Fourclass 77.23 ± 7.34 81.74 ± 11.27 64.31 ± 13.04 81.97 ± 8.16
Glass 95.12 ± 4.27 80.78 ± 5.71 94.56 ± 4.47 96.56 ± 3.52
Heart 42.01 ± 14.10 52.23 ± 5.80 51.50 ± 10.84 54.29 ± 8.32
H. valley 43.05 ± 9.25 42.00 ± 10.79 35.76 ± 19.45 44.16 ± 2.34
Ionosphere 46.44 ± 16.10 66.54 ± 9.81 36.07 ± 16.80 71.17 ± 14.91
L. disorders 50.21 ± 5.83 54.72 ± 7.49 45.80 ± 6.58 58.55 ± 3.14
MC 20.46 ± 3.84 67.36 ± 3.87 41.57 ± 7.12 62.94 ± 5.46
SDD 40.26 ± 9.63 25.93 ± 9.54 20.64 ± 21.66 45.67 ± 10.30
S. segmentation NULL NULL NULL 95.91 ± 1.92
Sonar 52.27 ± 8.87 31.39 ± 6.99 55.79 ± 11.36 46.37 ± 9.04
Shuttle 91.65 ± 5.49 40.23 ± 21.59 NULL 92.88 ± 4.11
Svmguide1 82.17 ± 6.91 90.21 ± 6.88 89.95 ± 4.18 91.83 ± 2.69
Wilt 82.14 ± 9.29 56.95 ± 15.52 64.76 ± 3.81 84.95 ± 13.94
Wine 82.32 ± 4.57 86.00 ± 6.95 87.19 ± 4.32 87.62 ± 1.97

Table 3: Training time on different datasets.

Dataset ]-SVM (s) SVDD (s) MAMC (s) Core set based LARM (s)
Australian 0.0739 ± 0.0086 0.5975 ± 0.0993 0.6325 ± 0.0122 0.8819 ± 0.4613
B. authentication 0.1627 ± 0.0699 0.3441 ± 0.0199 1.3943 ± 0.0131 1.1103 ± 0.1658
B. Cancer 0.0975 ± 0.0063 0.2462 ± 0.0152 0.7309 ± 0.0126 2.2633 ± 0.2803
Cod-rna 388.7901 ± 24.6651 NULL NULL 7.4578 ± 0.1622
Covtype NULL NULL NULL 64.9519 ± 7.3727
Diabetic 0.2096 ± 0.0063 1.1188 ± 0.0819 1.9243 ± 0.0119 5.7415 ± 1.0748
Fourclass 0.0354 ± 0.0030 0.1271 ± 0.0151 0.2706 ± 0.0117 0.5652 ± 0.1175
Glass 0.0255 ± 0.0038 0.0587 ± 0.0038 0.1459 ± 0.0088 0.2079 ± 0.0220
Heart 0.0229 ± 0.0016 0.0858 ± 0.0082 0.1148 ± 0.0070 0.8305 ± 0.2195
H. valley 0.1457 ± 0.0119 1.0385 ± 0.0278 1.4355 ± 0.0164 0.8506 ± 0.2926
Ionosphere 0.0634 ± 0.0097 0.1999 ± 0.0134 0.4018 ± 0.0087 1.9758 ± 0.3947
L. disorders 0.0399 ± 0.0058 0.1861 ± 0.0202 0.1809 ± 0.0095 1.6280 ± 0.4039
MC 19.5417 ± 0.3331 49.0111 ± 10.8097 472.2837 ± 1.3679 17.1713 ± 5.3223
SDD 13.8246 ± 1.0316 145.7426 ± 18.0463 218.5634 ± 0.6386 8.3123 ± 0.5485
S. segmentation NULL NULL NULL 7.2536 ± 0.3645
Sonar 0.0463 ± 0.0050 0.1406 ± 0.0061 0.1896 ± 0.0054 2.3453 ± 0.4481
Shuttle 226.0020 ± 3.1471 268.0641 ± 145.7989 NULL 7.3061 ± 0.2336
Svmguide1 0.4634 ± 0.0171 1.3081 ± 0.3742 8.9181 ± 0.0539 1.0625 ± 0.0781
Wilt 2.0750 ± 0.0774 8.6527 ± 0.7402 52.8582 ± 0.7763 3.6379 ± 0.3202
Wine 0.0263 ± 0.0049 0.0983 ± 0.0274 0.1785 ± 0.0111 0.2936 ± 0.0494

to every dataset, the difference between the bold results and
the best time cost is not significant, which is determined by
theWilcoxon rank-sum test, with the confidence level of 0.05.

From Table 3, it can be clearly seen that the training
time of core set based LARM is longer than the best of ]-
SVM, SVDD, and MAMC, when the number of the training

patterns is less than 2,143. However, when the number of
training patterns is larger than 2,686 such as SDD, MC,
Shuttle, Cod-rna, S. segmentation, and Covtype, the training
time of core set based LARM is shorter than the best of ]-
SVM, SVDD, and MAMC. When the number of training
patterns increases to 141,792, the average training time of core
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Table 4: Testing time on different datasets.

Dataset ]-SVM (s) SVDD (s) MAMC (s) Core set based LARM (s)
Australian 0.0009 ± 0.0005 0.0035 ± 0.0014 0.0023 ± 0.0017 0.0013 ± 0.0004
B. authentication 0.0050 ± 0.0129 0.0010 ± 0.0004 0.0070 ± 0.0032 0.0018 ± 0.0012
B. Cancer 0.0011 ± 0.0003 0.0013 ± 0.0004 0.0032 ± 0.0012 0.0012 ± 0.0003
Cod-rna 0.2901 ± 0.2182 NULL NULL 0.0584 ± 0.0085
Covtype NULL NULL NULL 1.5096 ± 1.1866
Diabetic 0.0015 ± 0.0009 0.0054 ± 0.0016 0.0075 ± 0.0056 0.0029 ± 0.0010
Fourclass 0.0004 ± 0.0001 0.0006 ± 0.0002 0.0015 ± 0.0007 0.0007 ± 0.0002
Glass 0.0002 ± 0.0002 0.0002 ± 0.0001 0.0005 ± 0.0004 0.0004 ± 0.0003
Heart 0.0003 ± 0.0001 0.0005 ± 0.0001 0.0008 ± 0.0004 0.0007 ± 0.0004
H. valley 0.0021 ± 0.0013 0.0101 ± 0.0021 0.0050 ± 0.0032 0.0031 ± 0.0009
Ionosphere 0.0007 ± 0.0003 0.0016 ± 0.0008 0.0018 ± 0.0009 0.0011 ± 0.0003
L. disorders 0.0004 ± 0.0002 0.0006 ± 0.0002 0.0006 ± 0.0002 0.0006 ± 0.0003
MC 0.0282 ± 0.0073 0.6090 ± 0.3269 0.7920 ± 0.9542 0.0269 ± 0.0132
SDD 0.2947 ± 0.3511 9.4060 ± 3.3205 2.6391 ± 4.2971 0.1829 ± 0.0488
S. segmentation NULL NULL NULL 0.1504 ± 0.0331
Sonar 0.0006 ± 0.0003 0.0011 ± 0.0003 0.0013 ± 0.0003 0.0010 ± 0.0004
Shuttle 0.0393 ± 0.0147 4.5419 ± 3.2784 NULL 0.0342 ± 0.0082
Svmguide1 0.0027 ± 0.0009 0.0031 ± 0.0021 0.0696 ± 0.0214 0.0039 ± 0.0010
Wilt 0.0020 ± 0.0003 0.0052 ± 0.0056 0.1133 ± 0.0230 0.0040 ± 0.0009
Wine 0.0002 ± 0.0004 0.0003 ± 0.0003 0.0004 ± 0.0003 0.0003 ± 0.0001

set based LARM does not exceed 65 seconds. Therefore, the
training time of core set based LARM does not increase very
quickly with the number of training patterns.

As can be seen from Table 4, the best testing time of ]-
SVM, SVDD, and MAMC performs slightly better than core
set based LARM on 11 over 20 datasets; the longest time gap
is 0.002 second. However, the testing time of core set based
LARM is not the worst one. When the number of testing
patterns is 353,349, such as Covtype, the average testing
time of core set based LARM is about 1.5 seconds. It shows
that the core set based LARM can detect testing examples
fast.

5. Conclusion

In this paper, a novel LARM algorithm and its fast training
method based on core set are proposed for novelty detection
on imbalanced data. The proposed LARM algorithm com-
bines the ideas of one-class and binary classification algo-
rithms, which constructs the largest vector-angular region in
the feature space to separate normal training patterns and
maximizes the vector-angular margin between this optimal
vector-angular region and the abnormal data. In order to
make the generalization performance of LARM better, the
vector-angular distribution is optimized by maximizing the
vector-angular mean and minimizing the vector-angular
variance. To improve the computation efficiency, (1 + 𝜀) and
(1 − 𝜀)-approximation algorithm is proposed for fast training
LARM based on core set. The time and space complexity
of core set based LARM are linear to and independent of
the number of training patterns, respectively. Comprehensive
experiments have validated the effectiveness of proposed

approach. In the future, it will be interesting to extend the
idea of LARM to handle one-class learning problem.
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