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This paper presents a modeling methodology for the thermal error of machine tool. The temperatures predicted by modified
lumped-mass method and the temperatures measured by sensors are fused by the data fusion method of Kalman filter. The fused
temperatures, instead of the measured temperatures used in traditional methods, are applied to predict the thermal error. The
genetic algorithm is implemented to optimize the parameters in modified lumped-mass method and the covariances in Kalman
filter. The simulations indicate that the proposed method performs much better compared with the traditional method of MRA, in
terms of prediction accuracy and robustness under a variety of operating conditions. A compensation system is developed based
on the controlling system of Siemens 840D. Validated by the compensation experiment, the thermal error after compensation has
been reduced dramatically.

1. Introduction

With the increasing demand of high precision machining,
thermal error accounts for an increasingly important part
among all error sources of machine tools.Themanufacturing
industry is going through great challenges in thermal error
management. More requirements, such as environment tem-
perature controlling and compulsive warm-up stage before
processing, have been proposed by the machine tool builders
to avoid the influence of thermal error. Though the thermal
error could be reduced to some extent, these methods have
the disadvantages of high cost and low efficiency [1]. As a
result, more thermal error management techniques, such as
identification andmodeling, have been developed to decrease
the thermal errors more economically and efficiently.

Nowadays, thermal error compensation and structure
optimization are two main approaches for the thermal error
management. The different approaches apply different mod-
eling techniques: empirical-based modeling method and
principle-based modeling method [2]. The empirical-based
modeling method aims at thermal error compensation. The
predictionmodels are established by statisticalmethods, such

as regression [3, 4] and neural network [5, 6]. The dependent
variables of the models are the thermal-induced displace-
ments. The independent variables are the discrete temper-
atures and operating parameters related to temperatures.
The measurement experiment is essential before modeling.
As a result, the measurement accuracy and reliability of
the temperatures and thermal-induced displacements are of
great importance to the prediction accuracy and stability
of the model. If the temperature sensors break down, the
compensation system with empirical-based models will be
out of order, which may cause potential safety problems. In
addition, as the statistical model could not reflect the mech-
anisms in thermal error generation, the prediction accuracy
and robustness of the empirical-based models are limited.

The principle-based modeling method is mainly used
to optimize the structure of the machine tool. Utilizing the
basic laws of heat transfer and stress-strain, the temperature
field and thermal deformation are calculated. The principle-
based modeling method could be further classified into two
categories, the finite element method (FEM) [7] and lumped-
mass method [8]. At present, the FEM is mostly conducted
on the reliable commercial software, such as ANSYS and
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Figure 1: Measuring points of PT100 inside the ram.

PATRAN. The nodes and elements in FEM are refined but
large in quantity. As the calculation amount depends on the
number of nodes and elements, the FEM is time consuming
and requires the hardware with high performance. This dis-
advantage constrains the application of FEM in the real-time
error compensation.The lumped-masses in the lumped-mass
method could be considered as the alternation of the nodes
and elements in FEM. However, the number of lumped-
masses is much smaller. The decrease in the calculation
amountmakes it available to develop a principle-basedmodel
to compensate the thermal error.

The difficulty in the lumped-mass method is how to eval-
uate the parameters, such as the convection coefficient and
lumped-mass. Several researchers [9, 10] used the modified
lumped-mass method to forecast the real-time temperatures
of a ball screw system. Influence coefficients are used to
compensate the deviations in parameter evaluation.Validated
by experiments, themodified lumped-massmethod achieved
comparable prediction accuracy with the FEM.

In this paper, a novel modeling method is developed
based on the data fusion method of Kalman filter. The fused
variables are the temperatures from the modified lumped-
mass method and measurement. In order to achieve the
optimal fitting accuracy, the parameters in modified lumped-
mass method and covariances in Kalman filter are optimized
by the genetic algorithm. The fused temperatures are further
used to forecast the thermal error based on regression analy-
sis. The proposed model in this paper could be considered as
an integrated model of empirical-based model and principle-
basedmodel.The application of data fusion is aimed at taking
the advantages of these two models. Considering the low
prediction accuracy and weak robustness of the empirical-
based models, the application of principle-based models into
the thermal error compensation is a difficult, but mean-
ingful work. In addition, the proposed method provides a
more effective way for the compensation system to operate
properly, even when the temperature sensors do not work.

In order to validate the performance of the proposed
model, several measurement experiments are conducted on a
heavy-duty floor-type milling and boring machine tool.
Compared with traditional method without data fusion, the
proposed model achieves much better prediction accuracy

and robustness. Finally, a compensation system based on the
controlling system of Siemens 840D has been developed to
compensate the thermal errors in real-time.

2. Measurement Experiment

The measurement experiment is the preliminary work of
thermal error modeling. The experiments under a variety of
operating conditions are conducted on a heavy-duty floor-
type milling and boring machine tool. The enclosed design
of the ram in this machine tool results in high temperature
inside the ram.The amount of thermal expansion is related to
dimensions of the component. The ram of the heavy-duty
machine tool is usually in large scale, which raises the thermal
error to submillimeter range. This paper aims to predict the
thermal errors of the ram.

There are two heat sources inside the ram, spindle motor
and hydraulic bearing. Two PT100 temperature sensors are
used to detect the temperatures around the heat sources
as shown in Figure 1. The temperature measuring point of
spindle motor is located in front of the spindle motor, next to
the coolant outlet. The measuring point of hydrostatic bear-
ing is located inside the oil-returning slot of the bearing. In
order to ensure the measurement accuracy and installation
stability, both sensors are imbedded into the ram during the
assembling stage of the machine tool. Another temperature
sensor is used to detect the environment temperature. But in
fact, the variation of environment temperature is quite small,
and the variation range is within 0.2∘C as shown in Figure 2.
The thermal error of the ram is mainly affected by the two
heat sources.

The thermal errors are measured by laser CCD of
KEYENCE LK-H02 and MIIYI ILD1700. The measurement
uncertainty of the displacement is 0.5 𝜇m. As thermal errors
are usually related to the relative displacement between the
workpiece and the tool, the displacement sensors are fixed on
the working table of themachine tools tomeasure the relative
distance changes between the sensors and the spindle of
the machine tool. The measuring point (see Figure 3(a)) of
thermal error in 𝑍-axis is located at the spindle nose. The
measuring points (see Figures 3(a) and 3(b)) of thermal error
in 𝑋-axis and 𝑌-axis are located at the outer surface of the
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Figure 2: Variation of the temperatures.

spindle close to the spindle nose. The thermal errors of an
experiment under variable rotating speed are shown in
Figure 3(d). It could be easily found that the thermal error
in 𝑍-axis is much larger than those in 𝑋-axis and 𝑌-axis. As
a result, the proposed model in this paper is focused on the
thermal error in 𝑍-axis. The thermal errors in the other two
axes could be predicted as the similar way.

There is a second-level decelerator inside the ram. The
reduction ratio for the rotating speed over 750 RPM is 464/
3796. And the reduction ratio for the rotating speed below
750 RPM is 1102/2263. The different reduction ratios lead to
the different correlations between the heat powers of spindle
motor and hydraulic bearing.

3. Thermal Error Modeling

3.1. Modified Lumped-Mass Method. For the modified
lumped-mass model, the temperature of a typical lumped-
mass is calculated as

𝛼1𝑄conv + 𝛼2𝑄cond + 𝛼3𝑄gene = 𝑚𝑐𝜕𝑇𝜕𝑡 , (1)

where 𝑄conv is the convection heat. 𝑄cond is the conduction
heat.𝑄gene is the generation heat. 𝛼 is the influence coefficient
to compensate the evaluation deviation of each term. 𝑚 and𝑐 are the mass and heat capacity of the lumped-mass.

The temperatures of two measuring points inside the
tested machine tool could be predicted as

𝛼𝑖1ℎ𝐴 (𝑇𝑗𝑒 − 𝑇𝑗𝑖 ) + 𝛼𝑖2𝑄𝑚 + 𝛼𝑖3𝑄𝑏 = 𝑚𝑖𝑐𝑇𝑗𝑖 − 𝑇𝑗−1𝑖Δ𝑡
(𝑖 = 1, 2) , (2)

where 𝑇𝑗𝑖 and 𝑇𝑗𝑒 are the temperatures of the measured point
and environment at 𝑗th time. ℎ is the convection coefficient.𝐴 is the convection area. 𝑄𝑚 and 𝑄𝑏 are the generation heats

of spindle motor and hydrostatic bearing, and both of them
are proportional to the rotating speed:

𝑄𝑏 = 𝑘𝑏𝑛,
𝑄𝑚 = 𝑘𝑚𝑛𝑓 , (3)

where 𝑘 is the heat generation coefficient and 𝑓 is the
reduction ratio.

Equation (2) could be represented as

(𝑚𝑖𝑐Δ𝑡 + V𝑖1)𝑇𝑗𝑖 = 𝑚𝑖𝑐Δ𝑡 𝑇𝑗−1𝑖 + V𝑖1𝑇𝑗𝑒 + V𝑖2𝑛𝑗 + V𝑖3𝑛𝑗𝑘 , (4)

where V𝑖1 = 𝛼𝑖1ℎ𝐴, V𝑖2 = 𝛼𝑖2𝑘𝑚, and V𝑖3 = 𝛼𝑖3𝑘𝑏.
As long as the rotating speed and the environment

temperature are provided in real-time, the temperatures of
two inner measuring points could be predicted as (4).

3.2. Data Fusion of Kalman Filter. Besides the predicted tem-
peratures, the sensors are used tomeasure the temperatures in
real-time. Data fusion is conducted to calculate fused values
of the predicted and measured temperatures. Due to the
requirement of low computation complexity for the compen-
sation model, Kalman filter is implemented for data fusion
[11, 12].

The Kalman filter algorithm involves two stages: pre-
diction and updating. Based on (4), the equations for the
prediction stage are presented as

𝑇𝑗𝑖,𝑃 = 𝐴𝑇𝑗−1𝑖,𝐹 + 𝐵𝑇𝑗𝑒,𝑀 + 𝐶𝑛𝑗, (5)

𝑃𝑗𝑖,𝑃 = 𝐴2𝑃𝑗−1𝑖,𝐹 + 𝑁, (6)

where 𝐴 = 𝑚𝑖𝑐/Δ𝑡/(𝑚𝑖𝑐/Δ𝑡 + V𝑖1), 𝐵 = V𝑖1/(𝑚𝑖𝑐/Δ𝑡 + V𝑖1),
and 𝐶 = (V𝑖2 + V𝑖3)/𝑘/(𝑚𝑖𝑐/Δ𝑡 + V𝑖1). 𝑁 is the covariance of
the process noise. The variables with the subscripts 𝑃, 𝐹, and𝑀 represent the predicted value, fused value, and measured
value, respectively.

The equations for the updating stage are presented as

𝐾𝑗𝑖 = 𝑃𝑗𝑖,𝑃(𝑃𝑗𝑖,𝑃 + 𝑅) , (7)

𝑇𝑗𝑖,𝐹 = 𝑇𝑗𝑖,𝑃 + 𝐾𝑗𝑖 (𝑇𝑗𝑖,𝑀 − 𝑇𝑗𝑖,𝑃) , (8)

𝑃𝑗𝑖,𝐹 = 𝑃𝑗𝑖,𝑃 − 𝐾𝑗𝑖 𝑃𝑗𝑖,𝑃, (9)

where 𝐾𝑗𝑖 is the Kalman gain. 𝑅 is the covariance of the
measurement noise. The covariances𝑁 and 𝑅, which greatly
affect the performance of data fusion, will be optimized by the
genetic algorithm.

3.3. Regression Analysis of the Thermal Error. The thermal
error is calculated by regression analysis. The independent
variables are the temperatures after data fusion. The basic
prediction model of the thermal error is

𝐸𝑗𝑃 = 𝛽1Δ𝑇𝑗1,𝐹 + 𝛽2Δ𝑇𝑗2,𝐹. (10)
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Figure 3: The thermal error measurement.

In order to minimize the prediction deviation, the least-
squares method is conducted to estimate the regression
coefficients:

min {𝐹 (𝛽1, 𝛽2)}
= min

{{{
𝑛∑
𝑗=1

(𝐸𝑗𝑀 − 𝛽1Δ𝑇𝑗1,𝐹 − 𝛽2Δ𝑇𝑗2,𝐹)2}}} ,
�̂� = (Δ𝑇Δ𝑇)−1 Δ𝑇𝐸,

(11)

in which Δ𝑇 = [ Δ𝑇11,𝐹 Δ𝑇12,𝐹...
...

Δ𝑇𝑛
1,𝐹
Δ𝑇𝑛
2,𝐹

], 𝐸 = [ 𝐸1𝑀...
𝐸𝑛
𝑀

].
3.4. Optimization of Genetic Algorithm. The genetic algo-
rithm is one of the intelligent optimization algorithms. Based
on the simulation of Darwin’s evolution theory, the best
individual is survived after iterations. Due to the excellent
capability of global search, the genetic algorithm has been
widely used in the researches of parameter optimization and
identification.

The optimization is conducted in two steps: the opti-
mization of parameters in modified lumped-mass method

𝑉𝑖 = [V𝑖1 V𝑖2 V𝑖3] and the optimization of the covariances in
Kalman filter 𝐶 = [𝑁 𝑅]. These parameters are encoded as
floating-point form [13]; namely, a real number of floating-
point vector is applied to define an individual. Compared
with the traditional binary encoding, the floating-point
encoding is more appropriate for the individual with several
parameters.

The objective function is used to evaluate the fitness of
each individual. It is defined as the root mean square value
(RMSV) of the prediction deviations.The objective functions
for 𝑉𝑖 = [V1𝑖 V2𝑖 V3𝑖] and 𝐶 = [𝑁 𝑅] are presented as (12)
and (13), respectively:

𝐹1 = √∑𝑛𝑗=1 (𝑇𝑗𝑖,𝑃 − 𝑇𝑗𝑖,𝑀)2𝑛 − 1 , (12)

𝐹2 = √∑𝑛𝑗=1 (𝐸𝑗𝑀 − 𝐸𝑗𝑃)2𝑛 − 1 . (13)

The iteration of the genetic algorithm is conducted by the
operators of selection, crossover, and mutation.The selection
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operator reflects the survival of the fittest.The selection strat-
egy of roulette method is used in this paper. The individual
with smaller value of 𝐹 has a larger probability to be selected.

The operators of crossover and mutation affect the con-
vergence rate and global searching ability of the algorithm.
The crossover operator is conducted based on arithmetic
crossover method. The values of an offspring individual are
calculated by the arithmetic averaging of two parent individ-
uals: 𝑥𝑖,𝑘 = 𝜎𝑥𝑖,𝑘 + (1 − 𝜎) 𝑥𝑗,𝑘,

𝑥𝑗,𝑘 = (1 − 𝜎) 𝑥𝑖,𝑘 + 𝜎𝑥𝑖,𝑘, (14)

where 𝜎 ∈ [0, 1] is a random number. 𝑥𝑖,𝑘 and 𝑥𝑖,𝑘 are the
parameters in the offspring individual𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿)
and parent individual 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐿), respectively.

For themutation operator, a variation subject to Gaussian
distribution is added to the original variable:

𝑥𝑖,𝑘 = 𝑥𝑖,𝑘 + 𝛽𝜉𝑘, (15)

where 𝜉𝑘 ∼ 𝑁(0, 1) and 𝛽 is a scaling parameter. If the
parameters after mutation exceed the upper or lower bound-
ary of the parameter, the mutation process will be repeated
again.

The flowchart of the proposed model is presented as Fig-
ure 4. The real-time data of temperatures and rotating speed
are the inputs of the model. After the optimization of genetic
algorithm, the data fusion method of Kalman filter is used
to calculate the fused value of predicted temperature and
measured temperature. The thermal errors are calculated by
the fused temperatures.

4. Comparisons

In general, the thermal error models could achieve excellent
fitting accuracy. However, the prediction deviations will
enlarge obviously under different operating conditions. As
a result, the prediction accuracy is an important evaluation
indicator for the performance of thermal error model.
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Figure 5: Fitting accuracies.

The measured results under variable rotating speed as
shown in Figures 2 and 3 are used to optimize the parameters
in modified lumped-mass method and the covariances in
Kalman filter. The crossing probability and variation proba-
bility in genetic algorithm are set as 0.7 and 0.02, respectively.
The fitting results of the proposed model are presented as
Figure 5.Themost commonmodel of multivariate regression
analysis (MRA) is used for comparison. In themodel ofMRA,
the measured temperatures are used to calculate the thermal
error directly:

𝐸𝑗𝑃,MRA = 𝛽1Δ𝑇𝑗1,𝑀 + 𝛽2Δ𝑇𝑗2,𝑀. (16)

The maximum residuals (MR) (17) of the proposed
model and MRA in Figure 5 are 0.0143mm and 0.0137mm,
respectively. And the root mean square values (RMSV) (13)
of the residuals are 0.0050mm and 0.0056mm. Two models
achieve comparable accuracies. The fitting performance of
them is quite good.

𝑃 = max {𝐸𝑗𝑀 − 𝐸𝑗𝑃} , (17)
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Figure 6: Prediction accuracies under different operating conditions.

where 𝐸𝑗𝑀 and 𝐸𝑗𝑃 are the measured and predicted thermal
errors, respectively.

In order to evaluate the prediction accuracies under
different operating conditions, the results from another two
measurement experiments are used for comparisons. One
experiment (Case 1) is conducted under the rotating speed
of 1300 RPM. And the other one (Case 2) is conducted under
variable rotating speed. The prediction accuracies under
different operating conditions are presented in Figures 6 and
7. Compared with the fitting accuracies (see Figure 5), the
prediction accuracies (see Figure 6) of the proposed model
and MRA are worse. This reduction in prediction accuracy is
quite common in research of thermal error modeling. How-
ever, the prediction accuracy of the proposedmodel has been
much improved compared with that of MRA.The increase in
MR or RMSV for the proposed model is much smaller than
the increase for MRA. Taking Case 1 as an example, the
RMSV of the proposedmodel increase by 0.0032mm, but the
RMSV of MRA increase by 0.0106mm. As the temperature
from the modified lumped-mass method is calculated by the
basic laws of heat transfer, the fused temperature could reflect
the essences of temperature variation, which results in the
improvement in prediction accuracy.

During the measurement, the temperature sensors must
be attached onto the surface of the component or be dipped
into the oil tank. The measurement results can be affected by
the mounting stability. The traditional thermal error models
are vulnerable to the measurement errors. Therefore, besides
the prediction accuracy, the robustness of the model is con-
sidered as another evaluation indicator. In order to evaluate
the robustness of the proposed model, the values calculated
from sinusoidal function (18) and constant values (19) are

added to the measured temperatures of spindle motor. The
added values could be regarded as the measurement errors
of temperatures. The prediction results of the simulation
with measurement errors are shown in Figures 8 and 9. The
maximum residuals and rootmean square values of the resid-
uals are given in Figure 7. Compared with the results of sim-
ulation without measurement errors, the residuals are much
larger. Taking Case 2 with sinusoidal errors as an example
(Figure 8(b)), the measurement errors induce an increase of
RMSV from 0.0100mm to 0.0156mm for the proposed
model. But the samemeasurement errors drive the RMSV up
to 0.0221mm for MRA.The residuals of both models present
sinusoidal wave forms. The amplitude of the sinusoidal wave
in the proposed model is much smaller than that in MRA.
Similar results could be achieved in the other three simula-
tions. Therefore, the proposed model could reduce the fluc-
tuation and deviation induced by the measurement errors.

𝐸 (𝑡) = 2 sin( 𝑡350) ∘C, (18)

𝐸 (𝑡) = −2∘C. (19)

Besides high prediction accuracy and strong robustness,
the proposed model could operate even when the tempera-
ture sensors cannot work, which is impossible for the tradi-
tional thermal errormodels. After setting theKalman gain𝐾𝑗𝑖
in (7) as zero, the fused temperatures are all from themodified
lumped-mass model. The performance of the simulations
without measurement results is presented in Figures 7 and 10.
Though the prediction accuracy for Case 2 is not as good as
the prediction accuracy after data fusion, a significant pro-
portion of the thermal error could be predicted. If we make



Mathematical Problems in Engineering 7

0
0.01
0.02
0.03
0.04
0.05

M
R 

(m
m

)

0
0.005

0.01
0.015

0.02
0.025

RM
SV

 (m
m

) 

Ca
se

 1
 w

ith
co

ns
ta

nt
 er

ro
r

Ca
se

 1
 w

ith
ou

t
da

ta
 fu

sio
n

Ca
se

 1
 w

ith
sin

us
oi

da
l e

rr
or

Ca
se

 1

Fi
tti

ng
 ca

se

Ca
se

 1
 w

ith
co

ns
ta

nt
 er

ro
r

Ca
se

 1
 w

ith
ou

t
da

ta
 fu

sio
n

Ca
se

 1
 w

ith
sin

us
oi

da
l e

rr
or

Ca
se

 1

Fi
tti

ng
 ca

se

Proposed model
MRA

Proposed model
MRA

(a) Simulations based on Case 1

0
0.02
0.04
0.06
0.08

M
R 

(m
m

)

0
0.01
0.02
0.03
0.04
0.05

RM
SV

 (m
m

)

Proposed model
MRA

Proposed model
MRA

Ca
se

 2

Ca
se

 2
 w

ith
co

ns
ta

nt
 er

ro
r

Ca
se

 2
 w

ith
ou

t
da

ta
 fu

sio
n

Fi
tti

ng
 ca

se

Ca
se

 2
 w

ith
sin

us
oi

da
l e

rr
or

Ca
se

 2

Ca
se

 2
 w

ith
co

ns
ta

nt
 er

ro
r

Fi
tti

ng
 ca

se

Ca
se

 2
 w

ith
ou

t
da

ta
 fu

sio
n

Ca
se

 2
 w

ith
sin

us
oi

da
l e

rr
or

(b) Simulations based on Case 2

Figure 7: Performance of the models.
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Figure 8: Prediction accuracies of the simulation with sinusoidal errors.

full use of this advantage, it is unnecessary to worry about the
sensor faults during the machining process.

5. Compensation

The aim of modeling is to compensate the thermal error in
real-time. In order to meet the real-time performance, the

computational complexity of the established model must
match the computational capacity of the compensation sys-
tem.

The computational complexity includes space complexity
and time complexity. The space complexity represents the
storage space required in the compensation system.Thenum-
ber of variables in (5)–(10) is proportional to the number of
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Figure 9: Prediction accuracies of the simulation with constant errors.
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Figure 10: Prediction accuracies of the simulation without measurement results.

the measured temperatures. As a result, the proposed model
has the linear space complexity: 𝑆 = 𝑂(𝑛).

The time complexity is used to evaluate the time spent in
the calculation. The time complexity is calculated based on
the amount of calculations. For the proposed model, there is
no array operation. The calculations include the basic oper-
ations of addition, subtraction, multiplication, and division.
As with the space complexity, the time complexity of the
proposed method is linear: 𝑇 = 𝑂(𝑛).

The iteration method of Newton-Raphson method is
widely used in FEM.The inverse operation ofHessianmatrix,
which has a space complexity of 𝑆 = 𝑂(𝑛2) and a time
complexity of 𝑆 = 𝑂(𝑛3), is required in Newton-Raphson

method. As a result, the FEM is time consuming and space
consuming. Compared with the FEM, the proposed method
has much smaller computational complexity.

In this paper, a compensation system is developed on the
controlling system of Siemens 840D. The signals of PT100
sensors are read by the Siemensmodule of SM331.The analog
signals of sensors are converted to the digital values, and then
the digital values are input into the PLC.

The compensation programs are executed in the PLC. As
the Siemens PLC supports the floating-point arithmetic, the
calculation results could attain high precision. The compu-
tational procedures in PLC are presented in Figure 11. The
temperatures of 𝑇𝑗−1𝑖−𝐹 and 𝑇𝑗−1𝑖−𝑀 are the fused and measured



Mathematical Problems in Engineering 9

PT100 

Kalman filter Thermal error

No

Yes

NC

The procedures triggered by the timer Δt

T
j−1
1,F T

j−1
2,F

T
j−1
1,M T

j−1
2,M

n T
j
e,M

T
j
1,P T

j
2,P

T
j
1,M T

j
2,M

�儨�儨�儨�儨�儨�儨
T

j
i,M − T

j−1
i,M

�儨�儨�儨�儨�儨�儨
< 2

Ki = 0

T
j
1,F T

j
2,F

Figure 11: Computational procedures in PLC.

(a) Compensation module (SM331)

After compensation
Before compensation
Rotating speed

5000 10000 150000
Time (s)

0

500

1000

1500

2000

Ro
ta

tin
g 

sp
ee

d 
(R

PM
)

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Th
er

m
al

 er
ro

r (
m

m
)

(b) Compensation performance

Figure 12: The thermal error compensation.

temperatures at a previous time, respectively. Utilizing the
rotating speed read from NC and the environment tem-
perature measured by PT100 sensors, the temperatures of
spindle motor and hydrostatic bearing are predicted by the
modified lumped-mass method. In addition, the sensors
measure these two temperatures in real-time. A criterion is
added in the compensation system to decide whether the
sensors have broken down. If there is a sudden change of the
measurement value, the Kalman gain will be set as zero. The
fused temperatures 𝑇𝑗𝑖−𝐹 are used to calculate the thermal
error.TheCNC controller reads the compensation values and
shifts the origins of CNC coordinate to implement the
compensation. At last, 𝑇𝑗𝑖−𝐹 and 𝑇𝑗𝑖−𝑀 will be saved as the
corresponding temperatures at the previous time.

The reading of rotating speed andmeasured temperatures
will be triggered by a timer. The timer is set to control the
compensation frequency. An experiment with the compensa-
tion system is conducted to test the compensation system.The
PLC in the experiment will execute the programs every 10 s.
The thermal errors before and after compensation are shown

in Figure 12(b). The thermal error after compensation has
been reduced dramatically.

6. Conclusions

In this paper, a thermal error modeling method is pro-
posed based on the method of data fusion. The temperature
predicted by the modified lumped-mass method and the
temperature measured from the PT100 sensors are fused by
Kalman filter. With the help of regression analysis, the
thermal errors are predicted by the fused temperatures.
In order to achieve the optimal prediction accuracy, the
parameters of the modified lumped-mass method and the
covariances of the Kalman filter are optimized by genetic
algorithm.

Validated by the experiments and simulations, the pro-
posed method could achieve better prediction accuracy and
robustness compared with the traditional method of MRA.
The proposed model could dramatically reduce the fluctua-
tion and deviation induced by the measurement errors.
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A compensation system is developed based on the con-
trolling system of Siemens 840D. An experiment with the
compensation system is conducted to test the compensation
performance. The thermal error after compensation has
been significantly reduced. Due to the low computational
complexity of the proposed method, it is believed that the
proposed model could be applied to the machine tools with
other compensation systems.

At present, the empirical-basedmodels, such asMRA, are
the most popular method used in the thermal error com-
pensation. The proposed model integrates the advantages
of empirical-based model and principle-based model and
achieves good performance. The application of integrated
model into the thermal error compensation is a promising
way for the thermal error management. More researches
could be done to achieve amore reliable thermal errormodel.
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