
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 635909, 15 pages
doi:10.1155/2012/635909

Research Article
An Efficient Collision Detection Method for
Computing Discrete Logarithms with Pollard’s Rho

Ping Wang and Fangguo Zhang

School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510006, China

Correspondence should be addressed to Fangguo Zhang, isszhfg@mail.sysu.edu.cn

Received 7 July 2011; Revised 15 November 2011; Accepted 21 November 2011

Academic Editor: Jacek Rokicki

Copyright q 2012 P. Wang and F. Zhang. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Pollard’s rho method and its parallelized variant are at present known as the best generic algo-
rithms for computing discrete logarithms. However, when we compute discrete logarithms in
cyclic groups of large orders using Pollard’s rho method, collision detection is always a high time
and space consumer. In this paper, we present a new efficient collision detection algorithm for
Pollard’s rho method. The new algorithm is more efficient than the previous distinguished point
method and can be easily adapted to other applications. However, the new algorithm does not
work with the parallelized rho method, but it can be parallelized with Pollard’s lambda method.
Besides the theoretical analysis, we also compare the performances of the new algorithm with the
distinguished point method in experiments with elliptic curve groups. The experiments show that
the new algorithm can reduce the expected number of iterations before reaching a match from
1.309

√
|G| to 1.295

√
|G| under the same space requirements for the single rho method.

1. Introduction

One of the most important assumptions in modern cryptography is the hardness of the
discrete logarithm problem (DLP). Many popular cryptosystems base their security on
DLP. Such cryptosystems are, for example, the Diffie-Hellman key agreement protocol [1],
the ElGamal signature and encryption schemes [2], the US Government Digital Signature
Algorithm (DSA) [3], and the Schnorr signature scheme [4]. Originally, they worked with
multiplicative groups of finite prime fields. Once elliptic curve cryptosystems were proposed
by Koblitz [5] and Miller [6], analogous practical systems based on the DLP in groups
of points of elliptic curves over finite fields were designed [7]. Recall the following two
definitions.

Definition 1.1 (discrete logarithm problem, DLP). Let G be a cyclic group of prime order p,
and let g ∈ G be generator of G. Given g, h ∈ G, determine the integer 0 ≤ k < p such that
h = gk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192739349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Journal of Applied Mathematics

Definition 1.2 (elliptic curve discrete logarithm problem, ECDLP). Let E be an elliptic curve
defined over finite field Fq. Let P ∈ E be a point of prime order n, and let G be the subgroup
of E generated by P . Given Q ∈ G, determine the integer 0 ≤ k < n such that Q = kP .

For DLP on a multiplicative subgroup G of prime order p of finite field Fq, the index
calculus method determines the size of q, which is a subexponential time algorithm, while
the size of p is set by Pollard’s rho method [8].

Furthermore, for ECDLP, Pollard’s rho method and its modifications by Gallant et al.
[9] and Wiener and Zuccherato [10] are to date known as the most efficient general algo-
rithms. van Oorschot andWiener [11] showed that the modified Pollard’s rho method can be
parallelized with linear speedup.

Pollard’s rho method is a randomized algorithm for computing discrete logarithms.
Generally, an iteration function F : G → G is used to define a pseudorandom sequence Yi by
Yi+1 = F(Yi) for i = 0, 1, 2, . . ., with some initial value Y0. The sequence Y0, Y1, Y2, . . . represents
a walk in the group G. The basic assumption is that the walk Yi behaves as a random walk.
Because the order of the group is finite, the sequence will ultimately reach an element that has
occurred before. This is called a collision or a match. The advantage of this method is that the
space requirements are small if one uses a clever method of detecting a collision. The problem
of efficient collision detection of a pseudo-randomwalk in Pollard’s rho method is the central
topic of this paper.

There are several collision detection algorithms for a random walk in the group G.
These algorithms in general do not exploit the group structure ofG. As a result, the algorithms
discussed in this paper in fact apply to any set G on which an iterated function F is used to
make random walks, and their utilization goes beyond discrete logarithm computation.

A simple approach to detecting a collision with Pollard’s rho method is to use Floyd’s
cycle-finding algorithm [8], which shows that it suffices to compare Yi and Y2i for all i to find a
collision. Floyd’s algorithm uses only a small constant amount of storage, but needs roughly
three times more work than is necessary. Brent [12] improved this approach by using an
auxiliary variable. Nivasch designed an algorithm [13] for detecting periodicity in sequences
using a single pointer and a small stack. This stack algorithm halts at a uniformly random
point in the second loop through the sequence’s cycle.

In finding DES collisions [14, 15], Quisquater and Delescaille took a different approach
based on storing distinguished points, an idea noted earlier by Rivest to reduce the search
time in Hellman time-memory tradeoff [16]. A distinguished point is one that has some easily
checked property such as having a fixed number of leading zero bits. During the pseudo-
random walk, points that satisfy the distinguishing property are stored. Collision can be
detected when a distinguished point is encountered a second time. This technique can be
efficiently applied to find collisions among multiple processors [11].

In this paper, we describe a new efficient collision detection algorithm for computing
discrete logarithm with Pollard’s rho method. It is a probabilistic algorithm and more
efficient than the previous methods. With this algorithm, we can significantly reduce the
space requirements and provide a better time-space trade-off approach. We also compare
their performances in experiments with elliptic curve groups, and our experimental results
confirmed the theoretical analysis.

The remainder of this paper is organized as follows. In Section 2, we recall Pollard’s
rho method for discrete logarithm computation and discuss several previous methods for
collision detection. We describe and analyze the new algorithm in Section 3 and discuss its
applications in Section 4. We present our experiments in Section 5 and conclude the paper in
Section 6.

Journal of Applied Mathematics 3

2. Preliminary

In this section, we describe Pollard’s rhomethod for discrete logarithm computation and then
discuss several collision detection algorithms and their performances.

2.1. Pollard’s Rho Method

Pollard [8] proposed an elegant algorithm for the discrete logarithms based on aMonte Carlo
idea and called it the rho method. The rho method works by first defining a sequence of
elements that will be periodically recurrent, then looking for a match in the sequence. The
matchwill lead to a solution of the discrete logarithm problem with high probability. The two
key ideas involved are the iteration function for generating the sequence and the cycle-finding
algorithm for detecting a match.

IfD is any finite set and F : D → D is a mapping and the sequence (Xi) inD is defined
by the rule:

X0 ∈ D, Xi+1 = F(Xi), (2.1)

this sequence is ultimately periodic. Hence, there exist unique integers μ ≥ 0 and λ ≥ 1 such
that X0, . . . , Xμ+λ−1 are all distinct, but Xi = Xi+λ for all i ≥ μ. A pair (Xi,Xj) of two elements
of the sequence is called amatch if Xi = Xj where, i /= j. For the expected values of μ and λ, we
have the following theorem.

Theorem 2.1 (see [17]). Under the assumption that an iteration function F : D → D behaves like
a truly random mapping and the initial value X0 is a randomly chosen group element, the expected
values for μ and λ are

√
π |D|/8. The expected number of evaluations before a match appears is E(μ +

λ) =
√
π |D|/2 ≈ 1.25

√
|D|.

Now we explain how the rho method for computing discrete logarithms works. Let G
be a cyclic group of prime order p, and let g ∈ G be generator of G and h ∈ G. The discrete
logarithm problem is to compute x satisfying gx ≡ h. Pollard defined the iteration function
F : G → G as follows:

F(Y) =

⎧
⎪⎪⎨

⎪⎪⎩

g · Y Y ∈ S1,

Y 2 Y ∈ S2,

h · Y Y ∈ S3.

(2.2)

Let the initial value Y0 = 1. In each iteration of Yi+1 = F(Yi), the function uses one of
three rules depending on the value of Yi. The group G is partitioned into three subsets S1,
S2, S3 of roughly equal size. Each Yi has the form gaihbi . The sequence (ai) (and similarly for
(bi)) can be computed as follows:

ai+1 =

⎧
⎪⎪⎨

⎪⎪⎩

ai + 1
(
modp

)
Yi ∈ S1,

2ai

(
modp

)
Yi ∈ S2,

ai

(
modp

)
Yi ∈ S3.

(2.3)

4 Journal of Applied Mathematics

As soon as we have a match (Yi, Yj), we have the equation gai ∗ hbi = gaj ∗ hbj .
Since h = gx, this gives

ai + bix ≡ aj + bjx mod p. (2.4)

Now, if gcd(bi − bj , p) = 1, we get that x = (aj − ai)(bi − bj)−1 mod p. Due to the method of
Pohlig and Hellman [18], in practice applications the group order p is prime, so that it is very
unlikely that gcd(bi − bj , p) > 1 if p is large.

Theorem 2.1 makes the assumption of true randomness. However, it has been shown
empirically that this assumption does not hold exactly for Pollard’s iteration function [19].
The actual performance is worse than the expected value given in Theorem 2.1.

Teske [19] proposed better iteration functions by applying more arbitrary multipliers.
Assume that we are using r partitions (multipliers). We generate 2r random numbers,

mi, ni ∈R
{
0, 1, . . . , p − 1}, for i = 1, 2, . . . , r. (2.5)

Then we precompute r multipliers M1,M2, . . . ,Mr , where Mi = gmi · hni , for i = 1, 2, . . . , r.
Define a hash function,

v : G −→ {1, 2, . . . , r}. (2.6)

Then the iteration function F : G → G defined as

F(Y) = Y ·Mv(Y), where v(Y) ∈ {1, 2, . . . , r}. (2.7)

The indices are update by

ai+1 = ai +mv(Yi), bi+1 = bi + nv(Yi). (2.8)

The difference in performance between Pollard’s original walk and Teske’s r-adding
walk has been studied in [19, 20]. We summarize the results as follows. In prime order sub-
groups of Z

∗
p, the value of E(μ + λ) for Pollard’s original walk and Teske’s r-adding walk is

1.55
√
|G| and 1.27

√
|G|, while in groups of points of elliptic curves over finite fields, the value

is 1.60
√
|G| and 1.29

√
|G|, respectively.

2.2. Previous Methods for Collision Detection

To find the collision in the pseudo-random walk, it always needs much storage. In order
to minimize the storage requirements, a collision detection algorithm can be applied with a
small penalty in the running time.

Floyd’s Cycle-Finding Algorithm

In Pollard’s paper, Floyd’s algorithm is applied. To find Yi = Yj , the algorithm calculates
(Yi, ai, bi, Y2i, a2i, b2i) until Yi = Y2i. For each iteration, we compute Yi+1 = F(Yi) and

Journal of Applied Mathematics 5

Y2(i+1) = F(F(Y2i)), which means that this algorithm requires negligible storage. Floyd’s algo-
rithm is based on the following idea.

Theorem 2.2 (see [25]). For a periodic sequence Y0, Y1, Y2, . . ., there exists an i > 0 such that Yi =
Y2i and the smallest such i lies in the range μ ≤ i ≤ μ + λ.

The best running time requires μ iterations and the worst takes μ + λ iterations. Under
the assumption that F : G → G behaves like a truly random mapping, the expected number
of iterations before reaching a match is

√
π5|G|/288 ≈ 1.03

√
|G| [20]. The key point for this

algorithm is that we need three group operations and one comparison for each iteration,
which makes it inefficient.

Brent’s Algorithm

Brent proposed an algorithm [12] which is generally 25% faster than Floyd’s method. It uses
an auxiliary variable, say w, which at each stage of the algorithm holds Yl(i)−1, where l(i) =
2	log i
. w is compared with Yi for each iteration and is updated by w = Yi when i = 2k − 1 for
k = 1, 2, The correctness of this algorithm depends on the following fact.

Theorem 2.3 (see [20]). For a periodic sequence Y0, Y1, Y2, . . ., there exists an i > 0 such that Yi =
Yl(i)−1 and l(i) ≤ i < 2l(i). The smallest such i is 2�logmax(μ+1,λ)� + λ − 1.

Under the assumption that F : G → G is a random mapping, with Brent’s algorithm
the first match is expected to occur after 1.98

√
|G| iterations [12]. The algorithm needs one

group operation and one comparison for each iteration, which makes it 25%–30% faster
than Floyd’s algorithm. Variations of Brent’s algorithm requiring slightly more storage and
comparisons but less iterations can be found in [21, 22].

Stack Algorithm

In 2004, Nivasch proposed an interesting algorithm that uses logarithmic storage space and
can be adapted with tradeoff for storage space versus speed. This algorithm requires that a
total ordering < be defined on the set G, and it works as follows. Keep a stack of pairs (Yi, i),
where, at all times, both the i’s and the Yi’s in the stack form strictly increasing sequences.
The stack is initially empty. At each step j, pop from the stack all entries (Yi, i), where Yi > Yj .
If a match Yi = Yj is found with an element in the stack, the algorithm terminates successfully.
Otherwise, push (Yj, j) on top of the stack and continue. The stack algorithm depends on the
following fact.

Theorem 2.4 (see [13]). The stack algorithm always halts on the smallest value of the sequence’s
cycle, at some time in [μ + λ, μ + 2λ).

Under the assumption that F : G → G is a random mapping, the expected number of
iterations before finding a match is 5/2

√
π |G|/8 ≈ 1.57

√
|G| [13]. The algorithm needs a little

bit more than one group operation and one comparison for each iteration. Under the same
assumption, Nivasch proves also that the expected size of the stack is ln h +O(1). Therefore,
the algorithm only requires a logarithmic amount of memory.

6 Journal of Applied Mathematics

Distinguished Point

The idea of the distinguished point method is to search for a match not among all terms of
the sequence, but only among a small subset of terms that satisfy a certain distinguishing
property. It works as follows. One defines a set D, a subset of G, that consists of all group
elements that satisfy a certain distinguishing property. During the pseudo-random walk,
points that satisfy the distinguishing property are stored. Collision can be detected when
a distinguished point is encountered a second time.

Currently, the distinguished point method is the most efficient algorithm to detect
collisions in pseudo-random walk when |G| is large. A popular way of definingD is to fix an
integer k and to define thatw ∈ D if and only if the k least significant bits in the representation
of w as a binary string are zero. To break ECC2K-130, it [23] defines the distinguishing pro-
perty as the Hamming weight of normal-basis representation of x-coordinate of the point
less than or equal to 34. Notice that this kind of definitions allows a fast check for the dis-
tinguishing property to hold, and the size of D can be easily monitored as well. Obviously,
we have the following theorem.

Theorem 2.5 (see [11]). Let θ be the proportion of points in G which satisfy the distinguishing
property, that is, θ = |D|/|G|. Under the assumption that F : G → G is a randommapping andD is a
uniform distribution inG, the expected number of iterations before finding a match is

√
π |G|/2+1/θ.

3. The New Algorithm

We are motivated by the fact that, in distinguished point method, the distinguished points
may be not uniformly distributed in the pseudo-random walk, also the points in subset D
may be not uniformly distributed in G, which always results in more iteration requirements.
We are trying to design an algorithm which leads to a uniform distribution and also to pro-
vide a better way for time-space tradeoff rather than distinguishing property.

3.1. The Basic Algorithm

To find a collision in pseudo-random walk, which is produced by the iteration function F :
G → G, assuming F is a random mapping on G, our basic algorithm works as follows. We
fix an integer N and use an auxiliary variable, say w, which at each N iterations keep the
minimum value of N successive values produced by the iteration function F. Once getting
the minimum value w from N successive values, we check whether this value has occurred
before in the stored sequence, if so, we find the match and we are done. Otherwise, store
this value w to the sequence. Then continue to compute the next N new values and repeat
the previous procedures. Choose the integer N properly, we will find the match among the
newly generated minimum value and stored minimum values.

More precisely, to find a collision in pseudo-random sequence Y0, Y1, Y2, . . ., which is
produced by the iteration function F : G → G, we have Algorithm 1.

It is obvious that the algorithm can be considered as two parts. In the first part, that
is from step (3) to step (11), we seek the minimum value w from N successive values in
the pseudo-random walk. The operation is very simple; if the current value Yj is smaller
than w, then just update w with the current value and continue the next iteration. Notice
that steps (7), (8), and (9) can be omitted, since it is unlikely that there is a match within
N iterations. Even if it happened, the algorithm ensures that we can find a match within

Journal of Applied Mathematics 7

Input: Initial value Y0, iteration function F : G → G, fixed integerN
Output:m and n, such that Ym = Yn

(1) w ← Y0,m← 0, n← 0
(2) for i = 1 to �|G|/N� do
(3) for j = (i − 1)N + 1 to iN − 1 do
(4) Yj ← F(Yj−1)
(5) if Yj < w then
(6) w ← Yj , n← j
(7) else if Yj = w then
(8) m← j
(9) returnm, n
(10) end if
(11) end for
(12)
(13) for k = 1 to i − 1 do
(14) if uk = w then
(15) m← vk

(16) returnm, n
(17) end if
(18) end for
(19) ui ← w, vi ← n
(20) w ← F(YiN−1), n← iN
(21) end for

Algorithm 1: The new algorithm for collision detection.

the next N iterations. As a result, there is only one group operation and one comparison in
the first part, which consist the main operations of the algorithm.

In the second part, that is from step (13) to step (19), once we get a minimum valuew,
we check whether w has appeared before in the previous stored values (uk), which is empty
at the beginning. If this is the case, the algorithmwill return the corresponding indices and we
are done. Otherwise, save the value w to the sequence (uk) of the minimum values, and the
second part is finished, continue the next N iterations. It is clear that the second part can be
speeded up by using a hash table. And, more important, the second part can be independent
to the first part, which means the stored sequence of minimum values can be off line; that is,
the first part is response for generating minimum values along the random walk, while the
second part searches the collision among stored minimum values independently.

3.2. Analysis

For further analysis of the algorithm, we assume that the iteration function F : G → G
behaves like a truly random mapping. According to Theorem 2.1, the expected number of
iterations before reaching a match is

√
π |G|/2. Let us look at some simple cases for the new

algorithm. For N = 1, which means we store all the values in the sequence before reaching
a match, and the match can be found once it appears. For N = 2, we need to store half of
the values in the sequence before reaching a match, and always the match can be found
once it appears. Obviously, the bigger the integer N, the less values we need to store. As a
result, with the integerN increasing, there is a probability that we cannot detect the collision
immediately when it happens. So, the new algorithm is a probabilistic algorithm. However,

8 Journal of Applied Mathematics

with high probability, the algorithm will halt close to the beginning of the second loop. More
precisely, we have the following theorem.

Theorem 3.1. Under the assumption that an iteration function F : G → G behaves like a truly
random mapping and the initial value Y0 is a randomly chosen group element, for Algorithm 1, the ex-
pected number of iterations before finding a match is

√
π |G|/2 + (k + 1/2)N with probability 1 −

(2/3)(k−1)/2, where k = 0, 1, 2,

Proof. Let Ii be the set that consists of the ithN successive values generated by iteration func-
tion F; that is,

Ii =
{
Yj | iN ≤ j ≤ (i + 1)N − 1, j ≥ 0

}
, for i = 0, 1, 2, . . . , �|G|/N� − 1. (3.1)

For finite group G, the sequence produced by F is eventually period; that is, for any fixed F
and Y0, there exist certain integers m and n, such that

Im
⋂

In /= ∅, m < n,

Ii
⋂

Ij = ∅, for 0 ≤ i, j < n, i /= j,
(3.2)

and also

Im+i

⋂
In+i /= ∅, for i ≥ 0. (3.3)

To prove the theorem, we divide it into two cases, that is, k = 0 and k = 1, 2, For
k = 0, let minm and minn be the minimum values of Im and In, then

Pr
(
min
m

= min
n

)
=

1
N

N−1∑

i=0

(
1
N

+
2
N

+ · · · + N − i
N

)
1

N − i

=
N2 + 3N + 3

4N2

≈ 1
4
,

(3.4)

that is, the probability of successfully detecting the collision within the first two intersection
sets is 1/4.

For each of k = 1, 2, . . ., we notice that, for two (intersected) sets Ii and Ij , let mini and
minj be the minimum values of Ii and Ij , respectively, we have

Pr
(
min

i
= min

j

)
=

∣∣Ii
⋂
Ij
∣∣2

N2
, where

∣∣∣Ii
⋂

Ij
∣∣∣ denotes the cardinality of Ii

⋂
Ij . (3.5)

Journal of Applied Mathematics 9

Therefore, we have

Pr
(
min
m+k

= min
n+k

)
=

1
N

(
1
N2

+
22

N2
+ · · · + (N − 1)2

N2

)

=
2N2 − 3N + 1

6N2

≈ 1
3
.

(3.6)

Under the assumption that the iteration function F : G → G is a randommapping, according
to Theorem 2.1, the expected number of evaluations before a match appears is

√
π |D|/2.

Combining the above two cases, using Algorithm 1, the expected number of iterations
before reaching a match among minimum values is

√
π |G|/2 + (k + 1/2)N with probability

1 − (2/3)(k−1)/2, where k = 0, 1, 2,

Remark 3.2. According to the above theorem, we need to store
√
π |G|/2/N + k terms to find

the match with the probability 1 − (2/3)(k−1)/2, where k can be 0, 1, 2, . . .; that is, by setting
parameter N, we can balance the expected number of iterations and the expected space
requirements. Therefore, Algorithm 1 is a time-space trade-off algorithm.

Remark 3.3. Algorithm 1 is a probabilistic algorithm. There is a probability that we cannot
detect the collision immediately when it happens. However, with high probability, the
algorithm will halt close to the beginning of the second loop. For example, the probability of
successfully detecting the collision 1 − (2/3)(k−1)/2 is 0.90 with k = 5.

Notice that, compared to the distinguished point method, the new algorithm has
two advantages. First, the distinguished point method depends on the assumption that the
distinguished points are uniformly distributed in the pseudo-random walk, and also the
points in subset D are uniformly distributed in G. However, in practice this may not be the
case, which generally results in more iterations requirement, while, for the new algorithm,
each stored minimum value represents N successive values and the performance of the
new algorithm independent of such assumption. Because the distinguished point method is
currently the most efficient algorithm, we compare the actual performances of the new algo-
rithm with the distinguished point method under the same expected storage requirement in
experiments with elliptic curve groups in Section 5.

Second, using distinguished point method, it is possible for a random walk to fall into
a loop which contains no distinguished point [11]. Then, the processor cannot find new dis-
tinguished point any more on the path. Left undetected, the processor would cease to con-
tribute to the collision search. In this case, we can restart the random walk by choosing a
different initial point. However, those points calculated by previous walk do not help for the
collision search, while the new algorithm can avoid such problem, because it can always find
the collision among minimum values whenever it falls into a loop.

4. Applications

The new algorithm can be combinedwith other algorithms, such as Pollard’s lambdamethod,
and can be adapted to a wide range of problems which can be reduced to finding collisions,

10 Journal of Applied Mathematics

such as in Pollard’s rho method for factorization [24] and in studying the behavior of random
number generators [25]. In this section, we will address some of these issues.

4.1. Pollard’s Lambda Method

It is clear that the new algorithm can be applied to Pollard’s lambda method (also called the
kangaroo method). The lambda method computes a discrete logarithm in an arbitrary cyclic
group, given that the value is known to lie in a certain interval, that is, h = gk, where k ∈ [a, b]
but unknown.

Generally, we have two kangaroos, one tame and one wild. Their positions are
represented by group elements, the tame kangaroo T with starting point t0 = g	(a+b)/2
 and
the wild kangaroo W with starting point w0 = h, and they travel in the cyclic group G = 〈g〉.
In terms of the exponents of g, T starts at the middle of the interval [a, b], whileW starts at x.
Since we do not know k, we do not know the exact location of the wild kangaroo, and that is
why it is called wild. The two kangaroos produce two different pseudo-random walks with
the same walking rules. It is obvious that, at all times, the point of tame kangaroo has the
form gi and the point of wild kangaroo has the form h ∗ gj for some known integers i and j.
The purpose is to provoke a collision between the tame and the wild kangaroos, from which
we can deduce the wild kangaroo’s starting point, that is, k = (i − j) mod |G|.

Similar to the case of Pollard’s rho method, the new algorithm can be applied in this
case to efficiently detect the collision. The advantage of the new algorithm is that we can
achieve uniform distributions of minimum values in the pseudo-random walks both for the
tame kangaroos and the wild kangaroos. The different performances of the new algorithm
and distinguished point method in this case can refer to the case of Pollard’s rho method.

4.2. Parallelization

As we have mentioned above, during the random walk, finding the minimum value from
N iterations and comparing the minimum value w to all previously stored values can be
separated. This feature makes the new algorithm suit for distributed computation.

However, Pollard’s rho method is inherently serial in nature; one must wait for the
current iteration of the function F to complete before the next can begin. Each value in the
sequence totally depends on the previous value and the iteration rules. In discussing the
rho method for factorization, Brent considered running many processors in parallel each
producing an independent sequence and noted that “Unfortunately, parallel implementation
of the “rho” method does not give linear speedup” [26]. Analogous comments apply to
the rho method for computing logarithms and the generalized rho method for collision
search. Notice that here each parallel processor is producing its own sequence of points
independently of the others and each particular processor does not increase the probability
of success of any other processor. For the corresponding picture, with high probability, each
processor draws a different “rho” that never intersect with each other. There is a little chance
that different processors may intersect with each other.

van Oorschot and Wiener [11] showed that the expected speedup of the direct
parallelization of Pollard’s rho method, using m processors, is only a factor of

√
m. This is

a very inefficient use of parallelization. They provided a modified version of Pollard’s rho
method and claimed that it can be linearly parallelized with the distinguished point method;
that is, the expected running time of the modified version, using m processors, is roughly√
π |G|/2/m group operations.

Journal of Applied Mathematics 11

In the modified version, to perform a parallel collision search each processor proceeds
as follows. Select a random starting point Y0 ∈ G, and produce the trail of points Yi+1 = F(Yi),
for i = 0, 1, 2, . . ., until a distinguished point Yd is reached based on some easily testable
distinguished property. Store distinguished point, and start producing a new trail from a new
random starting point. Unfortunately, the new algorithm is not efficient for the parallelized
modified version of Pollard’s rho method. The key point is that there is a probability that
the new algorithm fails to detect the collision while it actually happened, which cannot be
efficiently solved like the serial version.

However, for Pollard’s lambda method, the new algorithm can be efficiently paral-
lelized with linear speedup. We present here a modified version of parallelized Pollard’s
lambda method from [11]. Assume we have m processors with m even. Then, instead of one
tame and one wild kangaroo, we work with two herds of kangaroos, one herd of m/2 tame
kangaroos and one herd of m/2 wild kangaroos, with one kangaroo on each processor. Each
kangaroo starts from a different point, stores a minimum value every N iterations, just like
the serial version. A center server collects all the minimums, and tries to find a collision be-
tween the tame kangaroo minimums and the wild kangaroo minimums By choosing a rea-
sonable integer N, the new algorithm provides an optimal time-space trade-off method for
collision detection.

5. Experiments

We implemented Pollard’s rho method with elliptic curve groups over prime fields using
SAGE [27], which is an open source computer algebra software. Obviously, such experiments
can also be done for DLP on a multiplicative subgroup G of finite field Fq. We compared the
different performances between distinguished point method and the new algorithm. In this
section, we describe these experiments and analyse the results.

For our experiments, we briefly introduce the elliptic curve groups over prime fields
and the notation we use in the following. Let q be a prime, and let Fq denote the field Zq of
integers modulo q. Let a, b ∈ Fq such that 4a3 + 27b2 /= 0. Then the elliptic curve Ea,b over Fq is
defined through the equation

Ea,b : y2 = x3 + ax + b. (5.1)

The set of all solutions (x, y) ∈ Fq × Fq of this equation, together with the element O called
the “point at infinity,” forms a finite abelian group which we denote by Ea,b(Fq). Usually, this
group is written additively. Let P ∈ Ea,b(Fq) be a point of prime order n, and let G denote
the subgroup of E generated by P . Given Q ∈ G, determine the integer 0 ≤ k < n such that
Q = kP .

For the iteration function, we use Teske’s r-adding walk and set r = 20; that is, we
divide the group G into 20 subsets: S1, S2, . . . , S20. Define the iteration function as follows:

F(Y) = Y + (miP + niQ) for Y ∈ Si, i ∈ [1, 20], (5.2)

where mi and ni randomly chosen from [0, n − 1] and (miP + niQ) can be precomputed for
i = 1, 2, . . . , 20. This means it only needs one group operation for each iteration.

12 Journal of Applied Mathematics

Let W = (x, y) be any point of G; we define the partition of G into r subsets S1, S2, . . . ,
Sr as follows. First we compute a rational approximation A of the golden ratio (

√
5 − 1)/2,

with a precision of 2 + 	log10(qr)
 decimal places. Let

u∗ : G −→ [0, 1),
(
x, y
) −→

{
Ax − 	Ax
 if W /=O,
0 if W = O, (5.3)

where Ax − 	Ax
 is the nonnegative fraction part of Ax. Then let

u : G −→ {1, 2, . . . , r}, u(W) = 	u∗(W) · r
 + 1,

Si = {W ∈ G : u(W) = i}. (5.4)

This method is originally from Knuth’s multiplicative hash function [28] and suggested by
Teske [29]. From the theory of multiplicative hash functions, we know that, among all num-
bers between 0 and 1, choosingA as a rational approximation of (

√
5−1)/2 with a sufficiently

large precision leads to the most uniformly distributed hash values, even for nonrandom
inputs.

The purpose of our experiments is to evaluate the expected numbers of steps until a
match is foundwith different collision detectionmethods, that is, distinguished point method
and the new algorithm, under the same expected space requirement. Generally, we randomly
choose a big prime number q, where q is in certain range. Then we randomly choose the para-
meters a and b, where a, b ∈ Fq, which determine the unique elliptic curve Ea,b over Fq. We
will check whether the order of group Ea,b(Fq) has large prime factor n in certain range. If
not, repeat the above procedures until we get a prime order subgroup G of Ea,b(Fq). Then
we set the generator P of G and choose a random point Q of G. When using Pollard’s rho
method to compute this discrete logarithm, we count the number of steps we performed
until a match is found with different collision detection methods on the same case. Then we
determine the ratio R of the number of steps and

√
n. We repeat it a couple of times with the

same P but several randomly chosenQ′s. Furthermore, for practical reasons, we do the above
procedures with a couple of groups, where the group order p is between 231 and 236. We have
Algorithm 2.

More precisely, for each i ∈ [31, 36], we generate 20 elliptic curves, where each of
them has a subgroup G of prime order n, such that n ∈ [2i, 2i+1]. Then for, each group G, we
generate 100 to 3200 DLPs with the same generator P but randomly generated Q. The num-
ber of elliptic curves and instances of DLPs computed is given in Table 1. For each DLP, we
use Teske’s r-adding walk for iteration function and find the match using distinguished point
method and the new algorithm simultaneously. Once reaching a match, we compute the ratio
Rl as (the number of steps until match is found)/

√
n. Then we compute the average ratio Rj

of all DLPs over the same elliptic curve. Finally, we count the average ratio Ri of all DLPs
with the same i, where i ∈ [31, 36] and n ∈ [2i, 2i+1].

Now, let us explain the parameters for distinguishing property and the new algorithm
in more detail. In our experiments, we compute the average ratio of (number of steps until
match is found)/

√
n under the same space requirement. To do this, generally we first define

the distinguishing property and then compute the expected storage requirements. With the
same storage requirements, we can deduce the parameter N for the new algorithm.

Journal of Applied Mathematics 13

Input: Iteration function F : G → G
Output: The average ratio (number of steps)/

√
n : Ri1 and Ri2 for distinguished point method

and the new algorithm, respectively
(1) for i = 31 to 36 do
(2) for j = 1 to 20 do
(3) repeat
(4) Choose a random prime number q ∈ [2i+1, 2i+3]
(5) Choose two random numbers a, b ∈ Fq, where 4a3 + 27b2 /= 0
(6) n← the largest prime factor of #Ea,b

(7) until 2i ≤ n ≤ 2i+1

(8) Choose a random pointW ∈ Ea,b, where the order ofW equal to #Ea,b

(9) P ← (#Ea,b/n) ∗W (the generator of G)
(10) for l = 1 to 3200/2i−31 do
(11) Choose a random number c ∈ [0, n − 1], Q ← c ∗ P
(12) Choose a random point in G be the initial point Y0
(13) k ← 1
(14) repeat
(15) Yk ← F(Yk−1)
(16) Check whether the Hamming weight of Yk less than certain value
(17) Check whether the x-coordinate of Yk is a minimum value
(18) if there is a match among distinguished points then
(19) k1 ← k
(20) end if
(21) if there is a match among minimum values then
(22) k2 ← k
(23) end if
(24) until Both of two methods have found the match
(25) Rl1 ← k1/

√
n for distinguished point method

(26) Rl2 ← k2/
√
n for the new algorithm

(27) end for
(28) Rj1 ← (

∑
Rl1)/3200/2i−31 for distinguished point method

(29) Rj2 ← (
∑

Rl2)/3200/2i−31 for the new algorithm
(30) end for
(31) Ri1 ← (

∑
Rj1)/20 for distinguished point method

(32) Ri2 ← (
∑

Rj2)/20 for the new algorithm
(33) end for

Algorithm 2: Experiments for distinguished point method and the new algorithm.

For example, if i = 36, which means n, the order ofG is a 36-bit prime number. Accord-
ing to [19], we are expected to take 1.292

√
n iterations before reaching a match. We define

the distinguishing property as the Hamming weight of normal-basis representation of x-
coordinate of the point less than or equal to 9. Each point has probability almost exactly
(
(
36
9

)
+
(
36
8

)
+
(
36
7

)
+ · · ·)/236 ≈ 2−8.99 of being a distinguished point, that is, θ = 2−8.99; that is,

to find a collision it is expected to compute 1.292 ∗ 2−8.99√n distinguished points. To keep the
same storage requirements, we setN = 1/θ = 28.99 ≈ 508 for the new algorithm.

The experimental results are given in Table 2. It shows that on average using the new
algorithm for collision detection can reduce the number of iterations until a match is found
from 1.309

√
|G| to 1.295

√
|G| under the same space requirements for the single rho method.

Under the same expected storage requirements, the main reason for the different per-
formances of the distinguished point method and the new algorithm is that the distinguished

14 Journal of Applied Mathematics

Table 1: Number of elliptic curves and instances of DLPs.

Bits No. of elliptic curves No. of DLPs per curve
31 20 3200
32 20 1600
33 20 800
34 20 400
35 20 200
36 20 100

Table 2: Different performance for distinguished point method and the new algorithm.

Bits No. of DLPs Ratio for distinguished point Ratio for the new algorithm
31 64000 1.309 1.295
32 32000 1.309 1.295
33 16000 1.310 1.296
34 8000 1.310 1.297
35 4000 1.309 1.295
36 2000 1.310 1.294
Average 126000 1.309 1.295

points may be not uniformly distributed in the pseudo-random walk, also the points in sub-
setD may be not uniformly distributed in G, which always results in more iterations require-
ment. while, for the new algorithm, each stored minimum value represents N successive
values, which leads to an equal-interval distribution.

6. Conclusion

In this paper, we proposed an optimal time-space trade-off method for collision detection in
the pseudo-random walk when computing discrete logarithms with Pollard’s rho method.
We discussed the new algorithm both in theoretical analysis and in practical experiments. By
comparison to other methods, it shows that the new algorithm is more efficient than previous
methods. Unfortunately, the only practical application of the new idea is with the parallelized
lambda method and it does not work with the parallelized rho method. As a further work,
we would like to explore the performances of the new algorithm in other applications.

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (no.
61070168). The authors would like to thank the reviewers for their helpful comments and
suggestions.

References

[1] W. Diffie andM. Hellman, “New directions in cryptography,” IEEE Transactions on Information Theory,
vol. 22, no. 6, pp. 644–654, 1976.

[2] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE
Transactions on Information Theory, vol. 31, no. 4, pp. 469–472, 1985.

Journal of Applied Mathematics 15

[3] FIPS 186-2, “Digital signature standard,” Tech. Rep. 186-2, Federal Information Processing Standards
Publication, 2000.

[4] C. P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology, vol. 4, no. 3, pp.
161–174, 1991.

[5] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48, no. 177, pp. 203–209,
1987.

[6] V. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology: Proceedings of Crypto’85,
vol. 218 of LNCS, pp. 417–426, Springer, New York, NY, USA, 1986.

[7] A. Menezes, P. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca
Raton, Fla, USA, 1996.

[8] J. M. Pollard, “Monte Carlo methods for index computation mod p,”Mathematics of Computation, vol.
32, no. 143, pp. 918–924, 1978.

[9] R. Gallant, R. Lambert, and S. Vanstone, “Improving the parallelized Pollard lambda search on
anomalous binary curves,”Mathematics of Computation, vol. 69, no. 232, pp. 1699–1705, 2000.

[10] M. Wiener and R. Zuccherato, “Faster attacks on elliptic curve cryptosystems,” in Selected Areas in
Cryptography’98, vol. 1556 of LNCS, pp. 190–200, Springer, Berlin, Germany, 1998.

[11] P. van Oorschot and M. Wiener, “Parallel collision search with cryptanalytic applications,” Journal of
Cryptology, vol. 12, no. 1, pp. 1–28, 1999.

[12] R. P. Brent, “An improvedMonte Carlo factorization algorithm,” BIT, vol. 20, no. 2, pp. 176–184, 1980.
[13] G. Nivasch, “Cycle detection using a stack,” Information Processing Letters, vol. 90, no. 3, pp. 135–140,

2004.
[14] J. J. Quisquater and J. P. Delescaille, “How easy is collision search? Application to DES,” in Proceedings

of the Advances in Cryptology—Eurocrypt, vol. 434 of Lecture Notes in Computer Science, pp. 429–434,
Springer, New York, NY, USA, 1989.

[15] J. J. Quisquater and J. P. Delescaille, “How easy is collision search. New results and applications to
DES,” in Proceedings of the Advances in Cryptology—Crypto, vol. 435 of Lecture Notes in Computer Science,
pp. 408–413, Springer, New York, NY, USA, 1989.

[16] M. E. Hellman, “A cryptanalytic time-memory trade-off,” IEEE Transactions on Information Theory, vol.
26, no. 4, pp. 401–406, 1980.

[17] B. Harris, “Probability distributions related to random mappings,” Annals of Mathematical Statistics,
vol. 31, pp. 1045–1062, 1960.

[18] S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing logarithms over GF(p) and
its cryptographic significance,” IEEE-Transactions on Information Theory, vol. 24, no. 1, pp. 106–110,
1978.

[19] E. Teske, “Speeding up Pollard’s rho method for computing discrete logarithms,” inAlgorithmic Num-
ber Theory Symposium (ANTS IV), vol. 1423 of LNCS, pp. 541–553, Springer, New York, NY, USA, 1998.

[20] S. Bai and R. P. Brent, “On the efficiency of Pollard’s rho method for discrete logarithms,” in CATS
2008, J. Harland and P. Manyem, Eds., pp. 125–131, Australian Computer Society, 2008.

[21] C.-P. Schnorr and H. W. Lenstra Jr., “A Monte Carlo factoring algorithm with linear storage,”
Mathematics of Computation, vol. 43, no. 167, pp. 289–311, 1984.

[22] E. Teske, “A space efficient algorithm for group structure computation,” Mathematics of Computation,
vol. 67, no. 224, pp. 1637–1663, 1998.

[23] D. V. Bailey, L. Batina, D. J. Bernstein et al., “Breaking ECC2K-130,” Tech. Rep. 2009/541, Cryptology
ePrint Archive, 2009.

[24] J. M. Pollard, “A Monte Carlo method for factorization,” BIT, vol. 15, no. 3, pp. 331–335, 1975.
[25] D. E. Knuth, The Art of Computer Programming, vol. 2, Addison-Wesley, Reading, Mass, USA, 3rd

edition, 1997.
[26] R. P. Brent, “Parallel algorithms for integer factorisation,” in Number Theory and Cryptography, J.

H. Loxton, Ed., vol. 154 of London Mathematical Society Lecture Note Series, pp. 26–37, Cambridge
University, Cambridge, UK, 1990.

[27] “SAGE: an open source mathematics software,” http://www.sagemath.org/.
[28] D. E. Knuth, The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, Mass, USA, 2nd

edition, 1981.
[29] E. Teske, “On random walks for Pollard’s rho method,” Mathematics of Computation, vol. 70, no. 234,

pp. 809–825, 2001.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

