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We propose a generalization belief propagation (BP) decoding algorithm based on particle swarm optimization (PSO) to improve
the performance of the polar codes. Through the analysis of the existing BP decoding algorithm, we first introduce a probability
modifying factor to each node of the BP decoder, so as to enhance the error correcting capacity of the decoding. Then, we
generalize the BP decoding algorithm based on thesemodifying factors and drive the probability update equations for the proposed
decoding. Based on the new probability update equations, we show the intrinsic relationship of the existing decoding algorithms.
Finally, in order to achieve the best performance, we formulate an optimization problem to find the optimal probability modifying
factors for the proposed decoding algorithm. Furthermore, a method based on the modified PSO algorithm is also introduced to
solve that optimization problem. Numerical results show that the proposed generalization BP decoding algorithm achieves better
performance than that of the existing BP decoding, which suggests the effectiveness of the proposed decoding algorithm.

1. Introduction

Since the ability of achieving Shannon capacity and their
low encoding and decoding complexity, the polar codes
have received much attention in the research field of error-
correcting coding recently [1–17]. While compared to some
existing coding schemes, such as low-density parity-check
(LDPC) and turbo codes, the performance of the polar codes
in the finite length regime is disappointing [2, 3]. Hence,
motivated by this observation, researchers have proposed
many decoding algorithms to improve the performance of the
polar codes [4–17].

Based on the successive-cancelation (SC) decoding algo-
rithm proposed by Arıkan [1], authors of [4, 5] had intro-
duced a list successive-cancelation (SCL) decoding algorithm
with consideration of 𝐿 SC decoding paths, where the results
showed that performance of SCL was very close to that of
maximum-likelihood (ML) decoding. Then, to decrease the
time complexity of the SCL, another decoding algorithm

derived from SC called stack successive-cancelation (SCS)
was proposed in [6]. Furthermore, it was proven in [7]
that, with cyclic redundancy check (CRC) aided, SCL even
outperformed more than some turbo codes. However, due to
the serial processing nature of the SC, all the algorithms in [4–
7] would suffer a low decoding throughput and high latency.
Therefore, some improved versions of SC were further pro-
posedwith the explicit aim to increase throughput and reduce
the latency without sacrificing error-rate performance, such
as simplified successive-cancellation (SSC) [8], maximum-
likelihood SSC (ML-SSC) [9], and repetition single parity
check ML-SSC (RSM-SSC) [10, 11]. Besides from those SC
based algorithms, researchers had also investigated some
other algorithms more in parallel, one typical representation
of which was the belief propagation (BP) [12] decoding
algorithm. With the factor graph representation of polar
codes [13], authors in [14, 15] showed that BP polar decoding
has particular advantages with respect to the decoding
throughput, while the performancewas better than that of the
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SC and some improved SC decoding. What is more, with the
minimal stopping set optimized, results of [16, 17] had shown
that the error floor performance of polar codes was superior
to that of LDPC codes.

Indeed, all the decoding algorithms in [4–17] can improve
the performance of polar codes to a certain degree. However,
as the capacity achieving coding scheme, the results of those
algorithms is still limited. Hence, in this paper, we pro-
pose a generalization belief propagation (BP) decoding algo-
rithm based on particle swarm optimization (PSO) to
improve the performance of the polar codes with the finite
length. Based on the analysis results of the existing BP decod-
ing algorithm,we first show that the error-correcting capacity
of the BP decoding algorithm is important for perform-
ance of the decoding. Motivated by that observation, we
introduce a probability modifying factor to each node of
the BP decoder to enhance the reliability of the probability
updated. Then, we generalize the BP decoding algorithm on
the basis of thesemodifying factors and further drive the pro-
bability update equations for the proposed generalization BP
decoding. Finally, in order to achieve the best performance,
we formulate an optimization problem to find the optimal
probabilitymodifying factors for the proposed generalization
BP decoding. Furthermore, a method based on the modified
PSO algorithm is also introduced to solve the optimization
problem. The main contributions of this paper can be sum-
marized as follows.

(i) A generalization belief propagation (BP) decoding
algorithm based on probability modifying factor is
introduced. Furthermore, as to improve the perfor-
mance of the proposed decoding, a BP decoding
algorithm optimization problem is formulated.

(ii) A method based on the modified PSO algorithm is
introduced to solve the optimization problem.

Thefinding of this paper suggests thatwith the probability
modifying factor, the error-correcting capacity of the BP
decoding can be enhanced, and the performance of the polar
codes can be improved correspondingly, which is finally
proven by the simulation results.

The remainder of this paper is organized as follows. In
Section 2, we explain some notations and introduce some
background on the polar codes. And in Section 3, the gener-
alization belief propagation (BP) decoding algorithm based
on the probability modifying factors is described in detail. In
Section 4, we formulate and solve the optimization problem
of finding the probability modifying factors. And Section 5
provides the simulation results for the complexity and bit
error performance of the proposed decoding. Finally, we
make some conclusions in Section 6.

2. Preliminary

2.1. Notations. In this paper, the blackboard bold letters,
such as X, denote the sets, and |X| denotes the num-
ber of elements in X. The notation 𝑢

𝑁−1

0
denotes an 𝑁-

dimensional vector (𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑁−1
), and 𝑢

𝑗

𝑖
indicates a

subvector (𝑢
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑗−1

, 𝑢
𝑗
) of 𝑢𝑁−1

0
, 0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1.

When 𝑖 > 𝑗, 𝑢𝑗
𝑖
is an empty vector. Further, given a vector set

U, vector 𝑢⃗
𝑖
is the 𝑖th element of U.

The matrices in this paper are denoted by bold letters.
The subscript of a matrix indicates its size, for example,
A
𝑁×𝑀

represents an𝑁×𝑀matrixA. Specifically, the square
matrices are written as A

𝑁
, size of which is 𝑁 × 𝑁, and A−1

𝑁

is the inverse of A
𝑁
. Furthermore, the Kronecker product

of two matrices A and B is written as A ⊗ B, and the 𝑛th
Kronecker power of A is A⊗𝑛.

During the procedure of the encoding and decoding, we
denote the intermediate node by V

𝐼
(𝑖, 𝑗) or V

𝑂
(𝑖, 𝑗), 0 ≤ 𝑖 ≤

𝑛, 0 ≤ 𝑗 ≤ 𝑁 − 1, where𝑁 = 2
𝑛 is the code length. Besides,

we also indicate the probability messages of the intermediate
node V

𝐼
(𝑖, 𝑗) as 𝑝

𝐼(𝑖,𝑗)
, where the probability of V

𝐼
(𝑖, 𝑗) being

equal to 0 or 1 is𝑝
𝐼(𝑖,𝑗)

(0) or𝑝
𝐼(𝑖,𝑗)

(1). Similarly, the probability
messages of V

𝑂
(𝑖, 𝑗) are 𝑝

𝑂(𝑖,𝑗)
(0) and 𝑝

𝑂(𝑖,𝑗)
(1).

Throughout this paper, “⊕” denotes the modulo-two
sum, and “∑𝑀

𝑖=0
⊕𝑥
𝑖
” means “𝑥

0
⊕ 𝑥
1
⊕, . . . , ⊕𝑥

𝑀
”. While the

operators “⊗” and “⊙” are defined as 𝑝
𝑥
⊗ 𝑝
𝑦
= 𝑝
(𝑥⊕𝑦)

and
𝑝
𝑥
⊙ 𝑝
𝑦
= 𝑝
𝑥
∗ 𝑝
𝑦
, respectively, 𝑥, 𝑦 ∈ {0, 1}.

2.2. Background of Polar Codes. A polar coding scheme can
be uniquely defined by three parameters: block-length 𝑁 =

2
𝑛, code rate 𝑅 = 𝐾/𝑁, and an information set I ⊂ N =

{0, 1, . . . , 𝑁 − 1}, where𝐾 = |I|. With these three parameters,
a source binary vector 𝑢𝑁−1

0
consisting of 𝐾 information bits

and 𝑁 − 𝐾 frozen bits can be mapped a codeword 𝑥
𝑁−1

0
by

a linear matric G
𝑁

= B
𝑁
F⊗𝑛
2
, where F

2
= [
1 0

1 1
], B
𝑁

is a
bit-reversal permutation matrix defined in [1], and 𝑥

𝑁−1

0
=

𝑢
𝑁−1

0
G
𝑁
.

In practice, the construction procedure of a polar code
can be divided into 𝑛 = log

2
𝑁 stages, as shown in Figure

1(a), where the circle nodes in the leftmost column are the
input nodes of encoder, values of which are equal to binary
source vector,that is, V

𝐼
(0, 𝑖) = 𝑢

𝑖
, and the circle nodes in

the rightmost column are the output nodes of encoder,
V
𝑂
(𝑛 − 1, 𝑖) = 𝑥

𝑖
. It is also noticed that, each encoding stage

has 𝑁/2, so-called processing units (PU) with a generation
matrix of F

2
, and each PU has two input and two output

variable nodes, as shown in Figure 1(b). During the process
of polar encoding, based on F

2
, we have

V
𝑂
(𝑖, 2𝑗) = V

𝐼
(𝑖, 2𝑗) ⊕ V

𝐼
(𝑖, 2𝑗 + 1)

V
𝑂
(𝑖, 2𝑗 + 1) = V

𝐼
(𝑖, 2𝑗 + 1) ,

(1)

where V
𝐼
(𝑖, 2𝑗) and V

𝐼
(𝑖, 2𝑗 + 1) are the input nodes of the 𝑗th

PU in the 𝑖th stage, 0 ≤ 𝑖 ≤ 𝑛 − 1, 0 ≤ 𝑗 ≤ 𝑁/2 − 1, and
similarly, V

𝑂
(𝑖, 2𝑗) and V

𝑂
(𝑖, 2𝑗+1) are the output nodes. After

the procedure of the polar encoding, all the bits in the code-
word 𝑥

𝑁−1

0
are passed to the𝑁-channels, which consisted of

𝑁 independent channels of𝑊, with a transition probability of
𝑊(𝑦
𝑖
| 𝑥
𝑖
), where𝑦

𝑖
is 𝑖th element of the received vector𝑦𝑁−1

0
.

Then, the decoder of the receiver will output the estimated
codeword 𝑥

𝑁−1

0
and the estimated source binary vector 𝑢̂𝑁−1

0

with different decoding algorithms [4–17].
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Figure 1: (a) Construction procedure of polar codes with𝑁 = 8. (b) Diagram of PU in code construction.

3. BP Decoding for Polar Codes

In this section, we will generalize the BP decoding algorithm
for polar codes with the analysis of the existing polar BP
decoding.

3.1. Existing BP Decoding. The basic BP process unit (BP-
PU) of polar codes is shown in Figure 2, where 𝑝𝑡

𝐼𝐿(𝑖,2𝑗)
and

𝑝
𝑡

𝐼𝐿(𝑖,2𝑗+1)
are the right-to-left probability messages passed to

V
𝐼
(𝑖, 2𝑗) and V

𝐼
(𝑖, 2𝑗 + 1); 𝑡 is the iteration number. 𝑝𝑡−1

𝐼𝑅(𝑖,2𝑗)

and𝑝𝑡−1
𝐼𝑅(𝑖,2𝑗+1)

are the left-to-right probabilitymessages passed
from the nodes. 𝑝𝑡−1

𝑂𝐿(𝑖,2𝑗)
and 𝑝

𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
are the right-to-left

probability messages passed from V
𝑂
(𝑖, 2𝑗) and V

𝑂
(𝑖, 2𝑗 + 1)

and 𝑝
𝑡

𝑂𝑅(𝑖,2𝑗)
and 𝑝

𝑡

𝑂𝑅(𝑖,2𝑗+1)
are the left-to-right probability

messages passed to the nodes. According to the formula of
total probability, there has

𝑝
𝑡

𝐼𝐿(𝑖,𝑗)
(0) + 𝑝

𝑡

𝐼𝐿(𝑖,𝑗)
(1) = 1,

𝑝
𝑡

𝐼𝑅(𝑖,𝑗)
(0) + 𝑝

𝑡

𝐼𝑅(𝑖,𝑗)
(1) = 1,

𝑝
𝑡

𝑂𝐿(𝑖,𝑗)
(0) + 𝑝

𝑡

𝑂𝐿(𝑖,𝑗)
(1) = 1,

𝑝
𝑡

𝑂𝑅(𝑖,𝑗)
(0) + 𝑝

𝑡

𝑂𝑅(𝑖,𝑗)
(1) = 1.

(2)

Furthermore, based on the transition probability of the
channel𝑊, that is,𝑊(𝑦

𝑖
| 𝑥
𝑖
), and the received vector 𝑦𝑁−1

0
,

we have

𝑝
0

𝑂𝐿(𝑛−1,𝑖)
(0) = 𝑊(𝑦

𝑖
| 𝑥
𝑖
= 0)

𝑃 (𝑥
𝑖
= 0)

𝑃 (𝑦
𝑖
)

𝑝
0

𝑂𝐿(𝑛−1,𝑖)
(1) = 𝑊(𝑦

𝑖
| 𝑥
𝑖
= 1)

𝑃 (𝑥
𝑖
= 1)

𝑃 (𝑦
𝑖
)

,

(3)

where 𝑃(𝑥
𝑖
) and 𝑃(𝑦

𝑖
) are the probability distribution func-

tions of coded bit 𝑥
𝑖
and received signal sample 𝑦

𝑖
. In the BP
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Figure 2: The BP decoding algorithm for polar codes is based
on the factor graph representation of the codes [13]. In the algo-
rithm, each node V

𝐼
(𝑖, 𝑗) or V

𝑂
(𝑖, 𝑗) is associated with two types of

probability messages: left-to-right probability messages and right-
to-left probability messages. Both of messages are propagated and
updated iteratively between adjacent nodes in the procedure of BP.
And the messages updated schedule is the same as that of [14];
that is, messages will firstly propagate from the rightmost nodes to
the leftmost nodes. After arriving at the leftmost nodes, the course
will be reversed, and messages propagation will move toward the
rightmost nodes. This procedure makes one round iteration of BP.
Diagram of BP-PU.

decoding algorithm [13–17], the messages updated equations
are given by

𝑝
𝑡

𝐼𝐿(𝑖,2𝑗)
= 𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗)
⊗ (𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
⊙ 𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗+1)
) ,

𝑝
𝑡

𝐼𝐿(𝑖,2𝑗+1)
= (𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗)
⊗ 𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗)
) ⊙ 𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
,

𝑝
𝑡

𝑂𝑅(𝑖,2𝑗)
= 𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗)
⊗ (𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗+1)
⊙ 𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
) ,

𝑝
𝑡

𝑂𝑅(𝑖,2𝑗+1)
= (𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗)
⊗ 𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗)
) ⊙ 𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗+1)
.

(4)

Based on (4), when the decoding reaches maximum
iteration number (mIter), BP decoder output the decoded
vector û = (𝑢̂

0
, . . . , 𝑢̂

𝑁−1
), each elements of which depended

on

𝑢̂
𝑖
= {

0, 𝑝
mIter
𝐼𝐿(0,𝑖)

(0) > 𝑝
mIter
𝐼𝐿(0,𝑖)

(1)

1, otherwise.
(5)

3.2. Analysis of BP Decoder. It is noticed from [13–17], based
on the BP decoding, the performance of polar codes can
be improved to a certain degree. However, as the capacity
achieving coding scheme, the results of those algorithms is
still disappointing.Hence, we cannot helpwonderingwhy the
performance of the polar codes with finite length is inferior
to that of LDPC codes [16, 17], and how we can improve it. To
answer the questions, we need to make a further analysis of
the existing BP decoder.

In fact, it is noticed from the factor graph of polar codes
in [13] that the degree of the check or variable nodes in the
polar BP decoder is 2 or 3. While the average degree of the
LDPC codes is usually greater than 3 [12, 18], which means
that the error-correcting capacity of the polar BP decoding
will be weaken. Hence, the performance of the polar codes
is inferior to that of LDPC codes with the same length [18].
As shown in Figure 3, two Tanner graphes with different

degree distributions are given. We assume that there exists
an error variable node V

1
in a certain iteration. Compared

to the check nodes 𝑐
0
and 𝑐
1
in Figure 3(a), the influence

of error probability messages from V
1
to 𝑐
0
and 𝑐
1
in Figure

3(a) is weak, because with a greater degree number, the pro-
portion of the error probability messages in the input prob-
ability messages of 𝑐

0
and 𝑐
1
will be reduced. What is more,

the convergence of BP decoding with a greater average degree
will be quicker, which results in less computational iteration
number, as shown in [12–18]. Therefore, to improve the
performance of polar BP decoding, it is important to enhance
the error-correcting capacity of the algorithm.

3.3. Generalization of BP Decoding. Motivated by aforemen-
tioned observation, in this subsection, we will introduce a
generalization framework of BP decoder for polar codes. In
order to improve the error-correcting capacity of polar BP
decoding, twelve probability messages modifying factors are
introduced to the nodes of the BP-PU shown in Figure 2.
When the probability messages of a node of the BP-PU is
updated, three probability messages modifying factors are
added to other three nodes, respectively.

As illustrated in Figure 4, 𝛾𝑡
𝐿0(𝑖,𝑗)

, . . . , 𝛾
𝑡

𝐿5(𝑖,𝑗)
and 𝛾

𝑡

𝑅0(𝑖,𝑗)
,

. . . , 𝛾
𝑡

𝑅5(𝑖,𝑗)
are the probability messages modifying factors of

the 𝑗th BP-PU in 𝑖th stage. In this case, each equation in
(4) will be correspondingly added with three variables, for
example, the first equation of (4) is added with 𝛾𝑡

𝐿0(𝑖,𝑗)
, 𝛾𝑡
𝐿1(𝑖,𝑗)

,
and 𝛾

𝑡

𝐿2(𝑖,𝑗)
. Besides, based on the new construction of BP-

PU, we further define the result of each nodes’ probability
messages calculation as a function with respect to these three
variables and the probability messages of other three nodes;
hence, we can get the new messages update equations as (6).
Consider

𝑝
𝑡

𝐼𝐿(𝑖,2𝑗)
= 𝑓
0

(𝑖,𝑗)
(𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗)
, 𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
, 𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗+1)
,

𝛾
𝑡

𝐿0(𝑖,𝑗)
, 𝛾
𝑡

𝐿1(𝑖,𝑗)
, 𝛾
𝑡

𝐿2(𝑖,𝑗)
) ,

𝑝
𝑡

𝐼𝐿(𝑖,2𝑗+1)
= 𝑓
1

(𝑖,𝑗)
(𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
, 𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗)
, 𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗)
,

𝛾
𝑡

𝐿3(𝑖,𝑗)
, 𝛾
𝑡

𝐿4(𝑖,𝑗)
, 𝛾
𝑡

𝐿5(𝑖,𝑗)
) ,

𝑝
𝑡

𝑂𝑅(𝑖,2𝑗)
= 𝑓
2

(𝑖,𝑗)
(𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗)
, 𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗+1)
, 𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
,

𝛾
𝑡

𝑅0(𝑖,𝑗)
, 𝛾
𝑡

𝑅1(𝑖,𝑗)
, 𝛾
𝑡

𝑅2(𝑖,𝑗)
) ,

𝑝
𝑡

𝑂𝑅(𝑖,2𝑗+1)
= 𝑓
3

(𝑖,𝑗)
(𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗+1)
, 𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗)
, 𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗)
,

ℎ 𝛾
𝑡

𝑅3(𝑖,𝑗)
, 𝛾
𝑡

𝑅4(𝑖,𝑗)
, 𝛾
𝑡

𝑅5(𝑖,𝑗)
) .

(6)

In (6), 𝑓0
(𝑖,𝑗)

(𝜑
5

0
), 𝑓1
(𝑖,𝑗)

(𝜑
5

0
), 𝑓2
(𝑖,𝑗)

(𝜑
5

0
), and 𝑓

3

(𝑖,𝑗)
(𝜑
5

0
) are the

four probability messages update functions of the 𝑗th BP-
PU in 𝑖th stage, and 𝜑

0
, . . . , 𝜑

5
are six probability messages

variables. Based on (6), we can easily get a new expression of
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Figure 3: (a) Tanner graph with average degree less than 3. (b) Tanner graph with average degree more than 3.
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Figure 4: Diagrams of the new BP-PU.

(4) defined as the functions of 𝑓0
(𝑖,𝑗)

(𝜑
5

0
), 𝑓
1

(𝑖,𝑗)
(𝜑
5

0
), 𝑓
2

(𝑖,𝑗)
(𝜑
5

0
),

and 𝑓
3

(𝑖,𝑗)
(𝜑
5

0
); that is,

𝑓
0

(𝑖,𝑗)
(𝜑
5

0
) = 𝜑
0
⊗ (𝜑
1
⊙ 𝜑
2
) ,

𝑓
1

(𝑖,𝑗)
(𝜑
5

0
) = 𝜑
0
⊙ (𝜑
1
⊗ 𝜑
2
) ,

𝑓
2

(𝑖,𝑗)
(𝜑
5

0
) = 𝜑
0
⊗ (𝜑
1
⊙ 𝜑
2
) ,

𝑓
3

(𝑖,𝑗)
(𝜑
5

0
) = 𝜑
0
⊙ (𝜑
1
⊗ 𝜑
2
) .

(7)

That is to say, the existing BP decoding algorithm is a
special case of the generalization BP decoding proposed in
this work. Furthermore, with the four probability messages
update functions of

𝑓
0

(𝑖,𝑗)
(𝜑
5

0
) = 𝜑
0
⊗ 𝜑
1
,

𝑓
1

(𝑖,𝑗)
(𝜑
5

0
) = 𝜑
0
⊙ (𝜑
1
⊗ 𝜑
2
) ,

𝑓
2

(𝑖,𝑗)
(𝜑
5

0
) = 𝜑
0
⊗ 𝜑
1
,

𝑓
3

(𝑖,𝑗)
(𝜑
5

0
) = 𝜑
0
;

(8)

we can also get the probability messages update equations
of the SC based decoding algorithms as shown in [1, 4–
11]. Similarly, it is concluded that the SC based decoding
algorithms are also the special cases of our generalization BP
decoding, which has shown the intrinsic relationship of the
SC based decoding and BP decoding algorithms.

Therefore, we can conclude from (6)–(8) that, in order to
improve the performance of the polar codes, it is needed to
find the optimal functions of𝑓0

(𝑖,𝑗)
(𝜑
5

0
),𝑓1
(𝑖,𝑗)

(𝜑
5

0
),𝑓2
(𝑖,𝑗)

(𝜑
5

0
) and

𝑓
3

(𝑖,𝑗)
(𝜑
5

0
), and the optimal parameters of 𝛾𝑡

𝐿0(𝑖,𝑗)
, . . . , 𝛾

𝑡

𝐿5(𝑖,𝑗)
and

𝛾
𝑡

𝑅0(𝑖,𝑗)
, . . . , 𝛾

𝑡

𝑅5(𝑖,𝑗)
, which will be discussed in the next section.
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4. BP Decoding Algorithm Optimization

Motivated by the aforementioned conclusion, we now con-
sider how to optimize the generalization BP decoding algo-
rithm so as to improve the performance of the polar codes.

4.1. Messages Update Functions. It is noticed from (4) and
(6)–(8) that, in order to enhance the reliability of messages
propagation, it is important to determine the appropriate
messages update functions for the generalization BP decod-
ing algorithm. However, in general, it is difficult to find the
optimal messages update functions; therefore, in this work,
the messages update functions are introduced by the analysis
of the construction of polar encoding. And based on (1), we
have

V
𝐼
(𝑖, 2𝑗) = V

𝑂
(𝑖, 2𝑗) ⊕ V

𝑂
(𝑖, 2𝑗 + 1)

= V
𝑂
(𝑖, 2𝑗) ⊕ V

𝐼
(𝑖, 2𝑗 + 1) ,

V
𝐼
(𝑖, 2𝑗 + 1) = V

𝑂
(𝑖, 2𝑗 + 1) = V

𝑂
(𝑖, 2𝑗) ⊕ V

𝐼
(𝑖, 2𝑗) ,

V
𝑂
(𝑖, 2𝑗) = V

𝐼
(𝑖, 2𝑗) ⊕ V

𝐼
(𝑖, 2𝑗 + 1)

= V
𝐼
(𝑖, 2𝑗) ⊕ V

𝑂
(𝑖, 2𝑗 + 1) ,

V
𝑂
(𝑖, 2𝑗 + 1) = V

𝐼
(𝑖, 2𝑗 + 1) = V

𝐼
(𝑖, 2𝑗) ⊕ V

𝑂
(𝑖, 2𝑗) .

(9)

Therefore, based on the error coding theory and (9), we
can get the messages update functions as

𝑓
0

(𝑖,𝑗)
(𝜑
5

0
) = ((𝜑

0
⊙ 𝜑
3
) ⊗ (𝜑

1
⊙ 𝜑
4
))

⊙ ((𝜑
0
⊙ 𝜑
3
) ⊗ (𝜑

2
⊙ 𝜑
5
)) ,

𝑓
1

(𝑖,𝑗)
(𝜑
5

0
) = (𝜑

0
⊙ 𝜑
3
) ⊙ ((𝜑

1
⊙ 𝜑
4
) ⊗ (𝜑

2
⊙ 𝜑
5
)) ,

𝑓
2

(𝑖,𝑗)
(𝜑
5

0
) = ((𝜑

0
⊙ 𝜑
3
) ⊗ (𝜑

1
⊙ 𝜑
4
))

⊙ ((𝜑
0
⊙ 𝜑
3
) ⊗ (𝜑

2
⊙ 𝜑
5
)) ,

𝑓
3

(𝑖,𝑗)
(𝜑
5

0
) = (𝜑

0
⊙ 𝜑
3
) ⊙ ((𝜑

1
⊙ 𝜑
4
) ⊗ (𝜑

2
⊙ 𝜑
5
)) .

(10)

That is to say, with the probability messages modifying
factors, the new probability messages update equations will
be written as

𝑝
𝑡

𝐼𝐿(𝑖,2𝑗)
= ((𝑝

𝑡−1

𝑂𝐿(𝑖,2𝑗)
⊙ 𝛾
𝑡

𝐿0(𝑖,𝑗)
) ⊗ (𝑝

𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
⊙ 𝛾
𝑡

𝐿1(𝑖,𝑗)
))

⊙ ((𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗)
⊙ 𝛾
𝑡

𝐿0(𝑖,𝑗)
)

⊗ (𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗+1)
⊙ 𝛾
𝑡

𝐿2(𝑖,𝑗)
)) ,

𝑝
𝑡

𝐼𝐿(𝑖,2𝑗+1)
= (𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
⊙ 𝛾
𝑡

𝐿3(𝑖,𝑗)
)

⊙ ((𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗)
⊙ 𝛾
𝑡

𝐿4(𝑖,𝑗)
)

⊗ (𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗)
⊙ 𝛾
𝑡

𝐿5(𝑖,𝑗)
)) ,

𝑝
𝑡

𝑂𝑅(𝑖,2𝑗)
= ((𝑝

𝑡−1

𝐼𝑅(𝑖,2𝑗)
⊙ 𝛾
𝑡

𝑅0(𝑖,𝑗)
) ⊗ (𝑝

𝑡−1

𝐼𝑅(𝑖,2𝑗+1)
⊙ 𝛾
𝑡

𝑅1(𝑖,𝑗)
))

⊙ ((𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗)
⊙ 𝛾
𝑡

𝑅0(𝑖,𝑗)
)

⊗ (𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗+1)
⊙ 𝛾
𝑡

𝑅2(𝑖,𝑗)
)) ,

𝑝
𝑡

𝑂𝑅(𝑖,2𝑗+1)
= (𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗+1)
⊙ 𝛾
𝑡

𝑅3(𝑖,𝑗)
)

⊙ ((𝑝
𝑡−1

𝐼𝑅(𝑖,2𝑗)
⊙ 𝛾
𝑡

𝑅4(𝑖,𝑗)
)

⊗ (𝑝
𝑡−1

𝑂𝐿(𝑖,2𝑗)
⊙ 𝛾
𝑡

𝑅5(𝑖,𝑗)
)) .

(11)

Next, our task is to determine the optimal probability
messages modifying factors, that is, 𝛾𝑡

𝐿0(𝑖,𝑗)
, . . . , 𝛾

𝑡

𝐿5(𝑖,𝑗)
and

𝛾
𝑡

𝑅0(𝑖,𝑗)
, . . . , 𝛾

𝑡

𝑅5(𝑖,𝑗)
, so as to achieve the best performance.

4.2. Probability Modifying Factors Optimization. In practice,
due to the input of frozen bits [1], there exists some so-
called frozen nodes in the decoder, and values of these nodes
are determined and independent of the decoding algorithm.
Hence, if the decoding is correct, the probabilitymessages of a
frozen node V

𝐼
(𝑖, 𝑗) or V

𝑂
(𝑖, 𝑗) (the determined value of frozen

nodes is 0) must satisfy the condition of

𝑝
𝑡

𝐼𝐿(𝑖,𝑗)
(0) > 𝑝

𝑡

𝐼𝐿(𝑖,𝑗)
(1)

𝑝
𝑡

𝐼𝑅(𝑖,𝑗)
(0) > 𝑝

𝑡

𝐼𝑅(𝑖,𝑗)
(1)

or

𝑝
𝑡

𝑂𝐿(𝑖,𝑗)
(0) > 𝑝

𝑡

𝑂𝐿(𝑖,𝑗)
(1)

𝑝
𝑡

𝑂𝑅(𝑖,𝑗)
(0) > 𝑝

𝑡

𝑂𝑅(𝑖,𝑗)
(1) .

(12)

While in practice, due to the noise of received signal,
there may exist some frozen nodes unsatisfied the reliability
condition. Therefore, in order to improve the accuracy of
decoding, it is needed to find the optimal probability mes-
sages modifying factors such that all the frozen nodes could
always satisfy the conditions of (12) during the procedure of
BP decoding.

To achieve above goal, we introduce a pair parameters
to each node in the decoder, which are called left and right
reliability degrees. And for a node V

𝐼
(𝑖, 𝑗) (similar to V

𝑂
(𝑖, 𝑗)),

the left and right reliability degrees are denoted as 𝜁𝑡
𝐼𝐿(𝑖,𝑗)

and
𝜁
𝑡

𝐼𝑅(𝑖,𝑗)
, respectively. Where if V

𝐼
(𝑖, 𝑗) is a frozen node, we can

get 𝜁𝑡
𝐼𝐿(𝑖,𝑗)

and 𝜁
𝑡

𝐼𝑅(𝑖,𝑗)
by

𝜁
𝑡

𝐼𝐿(𝑖,𝑗)
=

𝑝
𝑡

𝐼𝐿(𝑖,𝑗)
(0)

𝑝
𝑡

𝐼𝐿(𝑖,𝑗)
(1)

,

𝜁
𝑡

𝐼𝑅(𝑖,𝑗)
=

𝑝
𝑡

𝐼𝑅(𝑖,𝑗)
(0)

𝑝
𝑡

𝐼𝑅(𝑖,𝑗)
(1)

;

(13)
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otherwise, the values of 𝜁𝑡
𝐼𝐿(𝑖,𝑗)

and 𝜁
𝑡

𝐼𝑅(𝑖,𝑗)
will be given by

𝜁
𝑡

𝐼𝐿(𝑖,𝑗)
=

𝑝
𝑡

𝐼𝐿(𝑖,𝑗)
(0)

𝑝
𝑡

𝐼𝐿(𝑖,𝑗)
(1)

, 𝜁
𝑡

𝐼𝑅(𝑖,𝑗)
=

𝑝
𝑡

𝐼𝑅(𝑖,𝑗)
(0)

𝑝
𝑡

𝐼𝑅(𝑖,𝑗)
(1)

,

𝑝
𝐼𝐿(𝑖,𝑗) (0)

𝑝
𝐼𝐿(𝑖,𝑗) (1)

> 1

𝜁
𝑡

𝐼𝐿(𝑖,𝑗)
=

𝑝
𝑡

𝐼𝐿(𝑖,𝑗)
(1)

𝑝
𝑡

𝐼𝐿(𝑖,𝑗)
(0)

, 𝜁
𝑡

𝐼𝑅(𝑖,𝑗)
=

𝑝
𝑡

𝐼𝑅(𝑖,𝑗)
(1)

𝑝
𝑡

𝐼𝑅(𝑖,𝑗)
(0)

,

otherwise,

(14)

where 𝜁𝑡
𝐼𝐿(𝑖,𝑗)

> 1 and 𝜁
𝑡

𝐼𝑅(𝑖,𝑗)
> 1.

The reliability degrees indicate the reliability of the node’s
decision value, and the larger reliability degree, the higher
reliability of that value. Specially, when there is no noise in
the channel, the reliability degrees of a node will approach
to infinity. Based on previous observations, the problem of
getting the optimal probability messages modifying factors
can be formulated as an optimization problem to maximize
the reliability degrees of all the node in decoder, while the
target function is written as

arg max
0≤𝛾
𝑡

𝐿0(𝑖,𝑘)
,...,𝛾
𝑡

𝐿5(𝑖,𝑘)
≤1

0≤𝛾
𝑡

𝑅0(𝑖,𝑘)
,...,𝛾
𝑡

𝑅5(𝑖,𝑘)
≤1

{

{

{

log
2
𝑁

∑

𝑖=0

𝑁

∑

𝑗=0

(𝜁
𝑡

𝐼𝐿(𝑖,𝑗)
+ 𝜁
𝑡

𝐼𝑅(𝑖,𝑗)
)

}

}

}

s.t. 𝛾
𝑡

𝐿0(𝑖,𝑘)
(0) + 𝛾

𝑡

𝐿0(𝑖,𝑘)
(1) = 1

...

𝛾
𝑡

𝐿5(𝑖,𝑘)
(0) + 𝛾

𝑡

𝐿5(𝑖,𝑘)
(1) = 1

𝛾
𝑡

𝑅0(𝑖,𝑘)
(0) + 𝛾

𝑡

𝑅0(𝑖,𝑘)
(1) = 1

...

𝛾
𝑡

𝑅5(𝑖,𝑘)
(0) + 𝛾

𝑡

𝑅5(𝑖,𝑘)
(1) = 1,

(15)

where 𝜁𝑡
𝐼𝐿(𝑖,𝑗)

and 𝜁
𝑡

𝐼𝑅(𝑖,𝑗)
are decided by (11) and (13)-(14), and

𝑘 is the integral value of 𝑗/2; that is, 𝑘 = ⌊𝑗/2⌋.

4.3. Problem Solving Based on Modified PSO Algorithm.
Based on (15), we have formulated the problem to find the
optimal probabilitymodifying factors, and in this subsection,
we will consider the solution of the problem so as to get the
optimized BP decoding algorithm.

Among the different global optimizers, particle swarm
optimization (PSO) has demonstrated its usefulness as an
optimizer capable of finding global optimum. The idea of
PSO is based on simulation of simplified social models such
as birds flocking and fish schooling. Like other stochastic
evolutionary algorithms, PSO is independent of mathemat-
ical characteristics of objective problems. However, unlike
these algorithms, with PSO, each particle has its own unique

memory to “remember” its own best solution. Thus, each
particle has its own “idea” of whether it has found the
optimum. However, in other algorithms, previous knowledge
of the problemwill be destroyed once the population changes.
PSO has attracted increasing attention because of its simple
concept, easy implementation, and quick. These advantages
allow it to be applied successfully in a variety of fields, mainly
for unconstrained continuous optimization problems [19–
26]. Therefore, in this work, we explore the PSO algorithm
with certain modification based on particle fitness evaluation
to solve the problem (15).

To present our modified PSO algorithm, we first intro-
duce some preliminary definitions and concepts used in the
operation of the PSOalgorithm,which is described as follows.

(1) ParametersDefinitions.We consider a swarmof𝐿particles,
{z⃗
0
, . . . , z⃗

𝐿−1
}, where the position of z⃗

𝑖
= (𝑧
𝑖0
, 𝑧
𝑖1
, . . . , 𝑧

𝑖(𝑇−1)
)

represents a possible solution point of those probability
modifying factors in the problem (15), 0 ≤ 𝑖 ≤ 𝐿 − 1, and
𝑇 is the number of the probability modifying factors. Each
element of z⃗

𝑖
is the value of a probability modifying factor;

that is, 0 ≤ 𝑧
𝑖𝑗
≤ 1, 0 ≤ 𝑗 ≤ 𝑇 − 1. Based on the work of [19],

the position of particle z⃗
𝑖
can be updated by

z⃗𝑡+1
𝑖

= z⃗𝑡
𝑖
+ w⃗𝑡+1
𝑖

. (16)

In (16), the pseudovelocity w⃗𝑡+1
𝑖

is calculated as follows:

w⃗𝑡+1
𝑖

= 𝜔
𝑡w⃗𝑡
𝑖
+ 𝑐
1
𝑟
1
(p⃗
𝑖
− z⃗𝑡
𝑖
) + 𝑐
2
𝑟
2
(p⃗
𝑔
− z⃗𝑡
𝑖
) , (17)

where𝜔𝑡 is particle inertia, 𝑡 indicates the iteration number, p⃗
𝑖

represents the best ever position of particle 𝑖 at iteration 𝑡, and
p⃗
𝑔
represents the global best position in the swarmat iteration

𝑡. 𝑟
1
and 𝑟
2
represent uniform random numbers between 0

and 1. It is proven in [19] that, when 𝑐
1
= 𝑐
2
= 2, the products,

𝑐
1
𝑟
1
or 𝑐
2
𝑟
2
, have a mean of 1.

(2) Fitness Evaluation. In general, with the parameter defini-
tions aforementioned, we can get the global optimal solution
of a optimization problem. However, in problem (15), the
situation will be different, because during the procedure
of the BP decoding for polar codes, a node’s probability
messages calculated on the basis of the probability modifying
factors must satisfy the conditions of (12) or (14). In order
to check these conditions during the decoding, we further
define two functions as

𝑔
1
(z⃗𝑡
𝑖
) =

󵄨󵄨󵄨󵄨V
𝑒

𝐹

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨V𝐹

󵄨󵄨󵄨󵄨

,

𝑔
2
(z⃗𝑡
𝑖
) =

󵄨󵄨󵄨󵄨V
𝑒

𝐼

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨V𝐼

󵄨󵄨󵄨󵄨

,

(18)

where V
𝐹
is the frozen nodes set of the decoder, and V𝑒

𝐹
is the

set of frozen nodeswhose probabilitymessages based on z⃗𝑡
𝑖
do

not satisfy the condition of (12). Similarly, V
𝐼
is the nonfrozen

nodes set of the decoder, and V𝑒
𝐼
is the set of nonfrozen nodes

whose left and right reliability degrees based on z⃗𝑡
𝑖
do not

satisfy (14). Furthermore, we have 𝑔
1
(z⃗𝑡
𝑖
), 𝑔
2
(z⃗𝑡
𝑖
) ∈ [0, 1].
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Input:
The stopping parameters 𝜖

1
and 𝜖
2
;

The frozen nodes set, V
𝐹
;

The probability messages of the input nodes of the decoder, {𝑊 (𝑦
0
| 𝑥
0
) , . . . ,𝑊 (𝑦

𝑁−1
| 𝑥
𝑁−1

)};
Output:

The decoded source binary vector, 𝑢̂𝑁−1
0

;
(1) Initialize the parameters used in the PSO algorithm, including particles initial set {z⃗0

0
, . . . , z⃗0

𝐿−1
},

the pseudovelocities {w⃗0
0
, . . . , w⃗0

𝐿−1
}, particle inertia 𝜔0, maximum iteration number and 𝑐

1
, 𝑐
2
;

(2) while (Stopping criterion is not satisfied) do
(3) Update particle pseudovelocity vector w⃗𝑡+1

𝑖
using (17);

(4) Update particle position vector z⃗𝑡+1
𝑖

using (16);
(5) Calculate the probability messages of each nodes in the decoder using (11);
(6) if 𝑔

1
(z⃗𝑡+1
𝑖

) > 𝜖
1
and 𝑔

2
(z⃗𝑡+1
𝑖

) > 𝜖
2
then

(7) Calculate the fitness value ℎ𝑡+1
𝑖

using (19);
(8) if ℎ𝑡+1

𝑖
≥ ℎ
𝑏𝑒𝑠𝑡

𝑖
then

(9) ℎ
𝑏𝑒𝑠𝑡

𝑖
= ℎ
𝑡+1

𝑖
, p⃗
𝑖
= z⃗𝑡+1
𝑖

;
(10) end if
(11) if ℎ𝑡+1

𝑖
≥ ℎ
𝑏𝑒𝑠𝑡

𝑔
then

(12) ℎ
𝑏𝑒𝑠𝑡

𝑔
= ℎ
𝑡+1

𝑖
, p⃗
𝑔
= z⃗𝑡+1
𝑖

;
(13) end if
(14) end if
(15) end while
(16) Output the decoded source binary vector by hard decision of the output nodes of the decoder;
(17) return C;

Algorithm 1: BP decoding algorithm based on modified PSO optimization.

Based on (18), we can evaluate the fitness of a particle’s current
position so as to accelerate the finding of the the optimal
solution. After the checking of conditions of (12) and (14), we
further get the fitness value ℎ𝑡

𝑖
of a particle by

ℎ
𝑡

𝑖
(z⃗𝑡
𝑖
) =

log
2
𝑁

∑

𝑘=0

𝑁

∑

𝑗=0

(𝜁
𝑡

𝐼𝐿(𝑘,𝑗)
+ 𝜁
𝑡

𝐼𝑅(𝑘,𝑗)
) . (19)

As the summarization of previous description, we now
provide the whole procedure of the proposed BP decoding
algorithm based on PSO optimization with the form of
pseudocode, as shown in Algorithm 1.

It is noticed form Algorithm 1 that the steps 2–15 are the
key of the algorithm. The main consideration of these steps
is based on the following two observations. On the one hand,
if there is no noise in the channel, the BP decoding of the
polar codes will be errorless, which means that all the nodes
in the decoder will satisfy the condition of (12); that is, 𝑔

1
(z⃗𝑡
𝑖
)

and 𝑔
1
(z⃗𝑡
𝑖
) are both equal to 0. However, in practice, this

case is impossible to happen due to the noise of channel;
hence, we introduce two stopping parameters 𝜖

1
and 𝜖
2
for

𝑔
1
(z⃗𝑡
𝑖
) and 𝑔

1
(z⃗𝑡
𝑖
). Since the values of the frozen nodes are

known to the decoder, we set 𝜖
2
to 0. To ensure that the

correction of the decoding, 𝜖
1
should be as small as possible,

such that when a particle z⃗𝑡
𝑖
is found to make 𝑔

1
(z⃗𝑡+1
𝑖

) ≤ 𝜖
1

and 𝑔
2
(z⃗𝑡+1
𝑖

) ≤ 𝜖
2
both true, which indicates that stopping

criterion is satisfied, the loop of (2)–(15) can be stopped. On
the other hand, when there exist multiparticles that make the
stopping criterion satisfied, we can choose the one which can

generate maximum fitness value to be our final solution, as
shown in steps (11)–(13).

5. Numerical Results

In this section, Monte Carlo simulation is provided to show
the performance of the proposed decoding algorithm. In
the simulation, the BPSK modulation and the additive white
Gaussian noise (AWGN) channel are assumed. The code
length is 𝑁 = 2

3
= 8, code rate 𝑅 is 0.5, and the index of

the information bits is the same as [1].
As it is shown in Figure 5, the proposed decoding algo-

rithm based on PSO achieves better bit error rate (BER,
defined as as the ratio of error decoding bits to the total
decoding bits) performance than that of the existing BP
decoding. Particularly, in the low region of signal to noise
ratio (SNR), that is, 𝐸

𝑏
/𝑁
0
(𝐸
𝑏
is the average power of one

bit and 𝑁
0
is the average value of the noise power spectrum

density) the proposed algorithm provides a higher SNR
advantage; for example, when the BER is 10−3, the proposed
decoding algorithm provides SNR advantages of 0.9 dB, and
when the BER is 10−4, the SNR advantages are 0.6 dB. Hence,
we can conclude that with the proposed generalization BP
decoding and PSO, performance of the belief propagation
decoding algorithm for polar codes could be improved.

Additionally, one important thing to note is that, since
the proposed algorithm is implemented depending on the
probability messages modifying factors, while values of these
factors are optimized by the PSO algorithm. Hence, the time
complexity of the existing BP decoding is lower than that of
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Figure 5: Comparison of BER between the proposed and existing
BP decoding algorithms for polar codes with (4, 8). The maximum
iteration number is set to 60.

the proposed decoding, which is tightly depending on the
convergence time of the PSO algorithm. And the work for the
time complexity optimization of the proposed algorithm will
be conducted in our future research.

6. Conclusion

In this work, we proposed a generalization belief propagation
(BP) decoding algorithm based on particle swarm optimiza-
tion (PSO) to improve the performance of the polar codes.
Through the analysis of the existing BP decoding algorithm
for polar codes, we first introduced a probability modifying
factor to each node of the BP decoder so as to enhance the
error-correcting capacity of the BP decoding. Then, we gen-
eralized the BP decoding algorithmbased on thesemodifying
factors and drive the probability update equations for the
proposed generalization BP decoding. Based on these new
probability update equations, we further proved the intrinsic
relationship of the existing decoding algorithms. Finally, in
order to achieve the best performance, we formulated an
optimization problem to find the optimal probability mod-
ifying factors for the proposed generalization BP decoding.
Furthermore, a method based on the modified PSO algo-
rithmwas also introduced to solve the optimization problem.
Numerical results showed that the proposed generalization
BP decoding algorithm achieved better performance than
that of the existing decoding, which suggested the effective-
ness of the proposed decoding algorithm.
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