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This paper proposes an alternative finite memory structure (FMS) smoother with a recursive form under a least squares criterion
using a forgetting factor strategy. The proposed FMS smoother does not require information of the noise covariances as well as the
initial state. The proposed FMS smoother is shown to have good inherent properties such as time-invariance, unbiasedness, and
deadbeat. The forgetting factor is shown to be considered as useful parameter to make the estimation performance of the proposed
FMS smoother as good as possible. Through computer simulations for the F-404 engine system, it is shown that the proposed
FMS smoother can be better than the existing FMS smoother for incorrect noise covariances and the IMS smoother for temporary

uncertainties.

1. Introduction

Recently, to overcome the resulting problems of existing
fixed-lag Kalman smoother with the infinite memory struc-
ture (IMS) in [1-5], the fixed-lag smoother with the finite
memory structure (FMS) has been developed for state esti-
mation in discrete time-invariant systems [6-9] and discrete
time-varying systems [10]. This FMS smoother has been
known to have some good properties such as unbiased-
ness and deadbeat, which cannot be obtained by the IMS
smoother. Moreover, in contrast to the IMS smoother with
the recursive structure that tends to accumulate the smooth-
ing error with the progression of time, the FMS smoother is
inherently bounded input/bounded output stable and more
robust against temporarily uncertain model parameters and
round-off errors due to the FMS as shown in [11-15].

However, existing FMS smoothers in [6-10] have some
limitations. Firstly, information about noise covariances to
obtain the optimal estimate should be also assumed to be
exactly known as the IMS smoother, which may be somewhat
restrictive. Secondly, the recursive form of the FMS smoother
has not been developed. Thus, for a large system dimension
or window length, the computation load may be burdensome
in real-time computation.

In this paper, to overcome the resulting difficulties in
applications of existing FMS smoother, an alternative FMS
smoother with a recursive form is proposed under a least
squares criterion using a forgetting factor strategy. The
forgetting factor strategy has been well-known in estimation
areas to give exponentially less weight to older error samples
as shown in [16-18]. The proposed FMS smoother does not
require a priori information about noises covariance as well
as the initial state. The proposed FMS smoother has good
inherent properties such as time-invariance, unbiasedness,
and deadbeat. The proposed FMS smoother is represented
in a recursive form as well as a matrix form. It is noted
that the recursive form has not been developed by the
existing FMS smoother in [6-10]. The forgetting factor is
shown to be considered as useful parameter to make the
estimation performance of the proposed FMS smoother as
good as possible. Finally, extensive computer simulations
are performed for the F-404 engine system. As would be
expected, the existing FMS smoother with correct noise
covariances outperforms the proposed FMS smoother, since
the existing FMS smoother is an optimal state estimate under
the correct noise covariances. However, in comparison with
the existing FMS smoother with incorrect noise covariances,
the proposed FMS smoother can be better. In addition, the
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proposed FMS smoother is shown to be better than the IMS
smoother for temporary uncertainties.

This paper is organized as follows. In Section 2, the
FMS estimation for state-space model is reviewed briefly. In
Section 3, an alternative FMS smoother is proposed and its
inherent properties are shown. In Section 4, extensive com-
puter simulations are performed to verify the proposed FMS
smoother. Finally, conclusions are presented in Section 5.

2. Finite Memory Structure Estimation for
State-Space Model

A discrete time state-space model is considered as follows:

x(i+1)=Ax @)+ Gw(),
1
z (i) =Cx (i) +v (i), o

where x(-) (€ R") is the state and z(-) (€ RY) is the measure-
ment. The system noise w(-) (¢ R?) and the measurement
noise v(-) (€ RT) are zero-mean white Gaussian and mutually
uncorrelated. The covariances of w(:) and v(-) are denoted by
Q and R, respectively.

In this paper, for the state estimation in the stochastic
state-space models (1), the finite memory structure (FMS)
is considered. The FMS estimation utilizes only the finite
number of measurements on the most recent interval [i —
M, i] called the window and discards past measurements
outside the window. This window of finite measurements
recedes forward in time at each sampling time when a new
measurement is available.

The finite measurements on the most recent window [i —
M, i] are denoted by Z(i) as follows:

Z@e [ -M) T G-M+1) - T G-1] @

and can be represented in the following regression form from
the discrete time state-space model (1):

Z({@)=Lx(i-M)+NW(@H)+V(3§)), (3)

where W (i), V(i) have the same form as (2) and matrices L,
N are as follows:

C
CA
L2 : ,
CAM—Z
CAM—I
i i (4)
T 0 0 e 0 07
CG 0
N=2| CAG CG
| CAM™2G cAM3G -+ CG 0]
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Using finite measurements Z(i) on the most recent window
[i — M, i], FMS smoothers [6-10] as well as FMS filters [12—
15] have been developed.

3. Alternative FMS Smoother with
Forgetting Factor

In this paper, the fixed-lagged system state x(i — d) at the
time i — d is considered. As shown in [6-10], the fixed-
lagged system state means there is a fixed delay between the
measurement and the availability of its estimate. The delay
length d is the positive integer with 0 < d < M. This delay
length means the number of discrete time steps between the
lagged time i — d when the state is to be estimated and the
current time i. To estimate fixed-lagged system state x(i —
d), an alternative FMS smoother is developed using finite
measurements Z(i) on the most recent window [i — M, i].

As shown in [6-10], the state x(i — d) at the lagged time
i — d is represented from the discrete time state-space model
(1) as follows:

x(i-d)=AM% (- M)+ NW (i), (5)
where

— . d

N=Md1g ... 600 -0l (6)

Therefore, finite measurements Z(i) (3) can be modified by
ZG@) =Lx(i—-d)+NW(>G+V(3), (7)
where

L2pa ™
B o (8)
N2N-LA MR

An alternative FMS smoother is developed under a least
squares criterion using the forgetting factor strategy. Given
measurements Z(i) on the most recent window [i — M, 1],
the FMS smoother X(i — d) is obtained from the following
forgetting factor least squares criterion:

~ . . T . T . T .
x(i-d)= arggilgil) [Z (i) - Lx(i- d)] A [Z (i) — Lx (i - d)] , (9)
where A is a diagonal matrix as

A2 diag [AMT AM2 20, 0<A<1, (10)
where A is called the forgetting factor. The forgetting factor
strategy has been well-known in estimation areas to give
exponentially less weight to older error samples as shown in
[16-18]. A main role of the forgetting factor A is to account
for the fact that the state-space models (1) are not perfect
to globally model the observed phenomenon and thus is to
make the model that is locally well modeling the observations
by concentrating on finite measurements on the most recent
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window [i—M, i]. Then, when {A, C} is observable and M > n,
the solution of (9) is given by the following matrix form:

— —\ 1
%(i-d)= (T A"’AL) T'ATPAZ )

(11)
=31TAY2 7 (i),
where
zeAM(r'r) ",
f /\(M—l)/ZCAd
r2A2pA = -
CAM*d-1 AT A (12)

AM-D/2,
Z(i)éAl/ZZ(i)z[ =0 M)]

Z (i)
where I is upper M — 1 rows of I and Z(i) is lower M — 1 rows
of Z(i).

In the following theorem, the proposed FMS smoother
(11) with a matrix form is represented in a recursive form.

Theorem 1. When {A, C} is observable and M > n, the FMS
smoother X(i — d) (11) can be represented in the following
recursive form:

X(i-d+1)=Fx(i-d)+H z(i-M)+H,z(i), (13)
where smoother gain matrices are defined by
F 225 (zAT) ",

7, = Mz (cat)' (14)
7,23 (caM

Proof. Using (12), at the lagged time i — d, the FMS smoother
X(i — d) (11) can be written by

T

AMD2CAd T TAMED2, M):|

fc(i—d):E[ :
7 (i)

AT A

(15)

=AM (ca?) 2 (i - M)
R S AOR

Using (15), at the lagged time i — d + 1, the FMS smoother
X(i —d + 1) can be written by

FGi-d+1)=3"AY?Z G+ 1)

NP Z (i)
z (i)

i T
z CAM+d—1 ]

= NP7 (0) + 2 (CAM Y 2 (6)

3
- A2 (24T) 2 (- d)
- M3z (CA‘“)T z(i— M)
+ 3 (caM N 2 ).
(16)
This completes the proof. O

Note that this recursive form has not been developed by
the existing FMS smoother in [6-10]. Smoother gain matrices
F, I, and ¥, in (14) require offline computations only on
the interval [0, M] once and then they are time-invariant for
all windows. Therefore, the proposed FMS smoother can be
time-invariant.

In the following theorem, the proposed FMS smoothers
in (11) and (13) are shown to have an unbiasedness property
when there are noises and a deadbeat property when there are
no noises. The unbiasedness property means that the mean
value of X(i — d) tracks the mean value of the state at every
time. The deadbeat property means that X(i—d) tracks exactly
the state at every time.

Theorem 2. When {A, C} is observable and M > n, the FMS
smoother X(i — d) is unbiased for noisy systems and exact for
noise-free systems.

Proof. When there are noises on the window [i — M, i], since
NW(@) + V(i) is zero-mean in (7), E[Z(i)] = LE[x(i — d)] =
LA M-9E[x(i—d)]. Therefore, the following is obtained from
(11):

E[®(i-d)] =>ITAVE[Z (i)]

= SITAY2 LAY A™ME [x (i - d)]
(17)
=SI"TA™E [x (i - d)]

=3 'E[x(i-d)] =E[x(i-d)].

This completes the proof of the unbiasedness property.

When there are no noises on the window [i — M, i] as
x(i +1) = Ax(i) and z(i) = Cx(i), the observation Z(i) is
determined by the current state x(i — d) as Z(i) = Lx(i —d) =
LAY A™Mx(i - d). Therefore, the following is obtained directly
from the proof of the unbiasedness property:

X(i-d)y=x(@{-d). (18)
This completes the proof of the deadbeat property. O

The deadbeat property in Theorem 2 means that the FMS
smoother designed for the system (1) with noises provides
exact state when, in actual, there are no noises. Note that the
proposed FMS smoother can have the finite convergence time
and the fast estimation ability due to the deadbeat property.
Hence, the proposed FMS smoother can be useful in many
engineering problems such as fault detection and diagno-
sis, maneuver detection, and target tracking, because these



problems require fast estimation and detection of signals
with unknown times of occurrence. These good inherent
properties, time-invariance, unbiasedness, and deadbeat of
the proposed FMS smoother cannot be obtained by the IMS
smoother such as the Kalman smoother.

The important issue here is how to choose an appropriate
forgetting factor A that makes the residual performance as
good as possible. When the window length M is fixed, the
forgetting factor A should be chosen. Intuitively, a reasonable
criterion for the choice of the forgetting factor should be
how much information about the current state of the system
the older data and the new data contain. If the newly
coming data bring enough information about the current
state, or the older data contain less information on the present
data, the forgetting factor A should be smaller. When the
exact information about the noise covariances cannot be
obtained but some rough information about the noises can
be obtained, there are some choices of the forgetting factor.
If the covariance Q of the system noise w(i) is smaller, the
older data should contain more information on the current
state. Therefore, the smaller Q is, the bigger forgetting factor
A should be. In comparison with the covariance Q of the
system noise, if the covariance R of the measurement noise
v(i) is relatively bigger, A should be bigger too. Intuitively, the
above facts can be roughly explained as follows. When the
covariance R of the measurement noise is larger, more data
should be used to suppress the influence of the noise by means
of averaging the measurement data, which means that the
forgetting factor A should be larger. Thus, the forgetting factor
A is a continuous parameter to adjust finely the smoothing
performance.

4. Computer Simulations

Computer simulations are performed for the following dis-
crete time F-404 engine system [19] with a fixed-lag d as well
as a uncertain model parameter §(i) to illustrate the validity
of the proposed FMS smoother and to compare with both
existing FMS smoother and IMS smoother

£0.9305 + & (i) 0 0.1107

A= 0.0077  0.9802+8(i) -0.0173 |,
0.0142 0 0.8953 + & (i)
! (19)
19

G=|1],

|1

10 0
C= )

010

where actual system and measurement noise covariances are
taken as Q = 0.2* and R = 0.4%. The delay length is set by
d=4.

First, to show how to choose the forgetting factor A,
the proposed FMS smoother is compared with the existing
FMS smoother. To make a clearer comparison of estimation
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FIGURE I: Estimation error for temporary modeling uncertainty
when M = 10.

performances, Monte Carlo simulations of 100 runs are
performed and in each simulation 600 sample points are
generated. The estimation performance of smoothers can be
evaluated by the mean of root-squared estimation error. It was
mentioned in previous section that when the measurement
noise covariance R is relatively bigger than the system noise
covariance Q, A should be bigger too. It is easy to see that
the above states seem right from simulation results in Table 1
when the window length is taken M = 20. These results
can provide practical guidance on the choice of a forgetting
factor A. The simulation results in Table 2 show estimation
performance of the proposed FMS smoother with A = 0.9
and the existing FMS smoother. In comparison with the
existing FMS smoother, the FMS smoother performs worse
than when information about noise covariances is assumed
to be exactly known. This may be the expected result since
the existing FMS smoother in this case is optimal. However,
when this assumption is not satisfied, the performance of the
FMS smoother can be better than that of the existing FMS
smoother.

Secondly, the proposed FMS smoother and the fixed-
lag Kalman smoother are compared for the temporarily
uncertain system. The uncertain model parameter is taken
by two cases, 8(i) = 0.8 and §(i)) = 0.6 for the interval
200 < i < 250 the temporarily uncertain F404 engine
system (19). In addition, the window length is taken by
two cases, M = 10 and M = 20 for the proposed FMS
smoother. As shown in Figures 1 and 2, the estimation error
of the proposed FMS smoother is smaller than that of the
fixed-lag Kalman smoother on the interval where modeling
uncertainty exists for all cases. In addition, the convergence
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TABLE 1: Mean of root-squared estimation error of the proposed FMS smoother for various As.
A 0.7 0.8 0.9 0.95 1
M =10 0.1403 0.1070 0.0411 0.0269 0.0747

TABLE 2: Mean of root-squared estimation error of two FMS smoothers.

Existing FMS smoother

Proposed FMS smoother
Correct Incorrect A=0095
Q=05,R=1% Q=22R=1°
M =10 0.0054 0.1824 0.0269
; M =20,6 = 0.08 5. Conclusions
% ol In this paper, an alternative FMS smoother with a recursive
g form has been proposed under a least squares criterion using
ERE a forgetting factor strategy. The proposed FMS smoother does
Z 0 : y not require information of the noise covariances as well as the
‘ N ‘ ‘ ‘ initial state. The proposed FMS smoother has been shown
0 100 200 300 400 500 600 to have good inherent properties such as time-invariance,
Time unbiasedness, and deadbeat. The forgetting factor has been
shown to be considered as useful parameter to make the
— EMS smoother estimation performance of the proposed FMS smoother as
—— IMS smoother . .
good as possible. It has been shown from computer simula-
M = 20,8 = 0.06 tions that the proposed FMS smoother can be better than the
5 15 : existing FMS smoother for incorrect noise covariances and
g ol the IMS smoother for temporary uncertainties.
g ‘ : : As an alternative design parameter for the proposed FMS
EoSbo smother, the delay length d should be considered in future
z . : : A\ works. In addition, the combination with the window length
. N . . . and the forgetting factor should be also researched to improve
0 100 200 300 400 500 600 smoothing performance.
Time
— EMS smoother Conflicts of Interest
—— IMS smoother

FIGURE 2: Estimation error for temporary modeling uncertainty
when M = 20.

of estimation error is much faster than that of the fixed-
lag Kalman smoother after temporary modeling uncertainty
disappears. This phenomenon is more remarkable when the
model is more uncertain; that is, §(i) = 0.8. Of course,
the fixed-lag Kalman smoother can outperform the proposed
FMS smoother after the effect of temporary modeling uncer-
tainty completely disappears. Therefore, the proposed FMS
smoother can be more robust than the fixed-lag Kalman
smoother when applied to temporarily uncertain systems,
although the proposed FMS smoother is designed with no
consideration for robustness. Moreover, it can be known that
a large window length may yield the long convergence time
of the estimation error and thus degrades the performance of
the the proposed FMS smoother. Therefore, it can be stated
that the window length M can be considered as a useful
parameter to make the performance of the the proposed FMS
smoother as good as possible.

The author declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.
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