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Energy consumption is a fundamental barrier in taking full advantage of today and future semiconductor manufacturing
technologies. The paper presents our recent research activities and results on characterizing and reducing the energy consumption
in embedded systems. Firstly, a technique for characterizing the energy consumption of embedded processors during an
application execution is presented. The technique trains a per-processor linear approximation model for fitting it to the energy
consumption of the processor obtained by postlayout simulation. Secondly, based on the energy model mentioned above, the
paper shows techniques for reducing the energy consumption by optimally mapping program code, stack frames, and data items
to the scratch-pad memory (SPM) of the processor memory space.

1. Introduction

There is a wide consensus that the energy consumption
is a fundamental barrier in taking full advantage of today
and future semiconductor manufacturing technologies. The
paper presents our recent research activities and results in
two categories: estimating software energy consumption and
reducing the energy required for accessing the memory
subsystem. Firstly, the paper presents a technique to esti-
mate the instantaneous energy consumption of embedded
processors during an application execution. The technique
trains a per-processor energy model which receives statistics
from the processor instruction-set simulator (ISS) and gives
the instantaneous energy consumption. Secondly, the paper
presents techniques for reducing the energy consumption
by optimally mapping program code, stack frames, and
static data items to the scratch-pad memory (SPM) which
is integrated on a processor chip.

In the rest of the paper, Section 2 presents the instan-
taneous energy estimation technique, Section 3 provides
various techniques for reducing the energy consumption
of the memory subsystem, and Section 4 summarizes and
concludes the paper.

2. Software Energy Analysis

This section shows an overview of our energy characteri-
zation tool which helps designers in developing a fast and
accurate energy model for a target processor-based system.
Our tool uses a linear model for energy estimation and finds
the coefficients of the model using multiple linear regression
analysis. For more detailed information of our tool see [1].

2.1. Related Work. The most accurate and fastest approach
to find the energy consumption of software running on a
processor is to measure the power consumption of the actual
chip. Tools like PowerScope [2] and Itsy [3] use computer-
controlled multimeters or A/D converters to measure energy
consumption. The major drawback of using PowerScope is
that it cannot measure the energy consumption of individual
subsystems (e.g., a memory system) separately. Although Itsy
overcomes this issue, it cannot measure the energy consumed
in a short period of time because the energy consumption
is averaged out over the entire execution time. In recent
years, many instruction-level energy modeling and analysis
techniques have been proposed. The idea of instruction-level
energy modeling by measuring the power consumption of
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each instruction while executed in a loop was introduced
in [4, 5]. The accuracy of these methods were improved by
accounting for data dependencies, the effects of instruction
and data addresses, register file addresses, and operand values
[6]. The main drawback of these techniques is that they rely
on exhaustive simulation to find the energy consumption of
each instruction and the interinstruction effects on the power
consumption. The efficiency of the characterization can be
improved by performing measurements on a limited subset
of instructions and instruction sequences [7, 8]. In [9, 10],
the same average energy is assumed for all instructions
and the average power consumption while running an
application program is calculated using the operating voltage
of the processor and the clock frequency. In [11], the authors
measure the average energy consumed in each pipeline
stage of a VLIW processor using a cycle-accurate simu-
lator (e.g., Trimaran [12]) to improve the accuracy. The
techniques estimate the average energy consumption over
the entire program execution, while many software-level
energy optimization techniques need cycle-accurate energy
estimation. The technique described in [13] estimates the
power consumption of the target processor cycle by cycle.
However, this requires calculating the power consumption
of every gate for each instruction which is very time
consuming. Most of existing energy estimation techniques
including the techniques presented in [4–11, 13–21] assume
a linear approximation model for estimating the energy
consumption of software running on a processor. However,
none describes how to generate the linear approximation
model for accurately characterizing the energy consump-
tion of the processor. In [21], Tan et al. modeled the
software energy consumption using a linear equation and
discussed the parameters required to accurately estimate the
energy consumption. However, they did not provide any
method to find parameters, corresponding coefficients, and
test benches required for the accurate energy modeling.
Our energy characterization framework assists designers to
find an accurate linear model for estimating the energy
consumption of a processor-based embedded system. In our
framework, designers can find a training bench suitable for
the energy characterization of the target embedded system
and can optimize the corresponding coefficients through
multiple regression analysis. We use parameters which can
be extracted through GNU C debugger which is provided
for almost all types of commercial embedded processors.
Therefore, our approach does not need a cycle-accurate ISS
which is not provided for many types of embedded proces-
sors and is usually more expensive than a cycle-inaccurate
one like a GNU debugger.

2.2. A Target System. We target a processor system which
consists of a CPU core, an instruction cache, code and data
on-chip scratch-pad memories (SPMs), and SDRAM as an
off-chip main memory as shown in Figure 1.

The following three types of processors have been used in
the experiments validating our approach in [1]: (1) M32R-
II, a 32-bit RISC microprocessor originally developed by
Renesas Technology Corporation, (2) SH3-DSP, a 32-bit
RISC microprocessor of Renesas Technology Corporation,
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Figure 1: A target processor system model.

and (3) multiperformance processor [22, 23] which is
based on Media embedded Processor (MeP) developed by
Toshiba. All of the above three microprocessors have on-chip
cache memories and scratch-pad memories (SPMs). The
processors are synthesized using a 0.18 μm CMOS standard
cell library and an SRAM module library. In this paper, for
sake of concision, only (3), the multiperformance processor,
is used in the results section.

2.3. Processor Energy Characterization. The energy consump-
tion of a processor can be estimated using the following
linear formula:

Eestimate =
N∑

i=0

ci ∗ Pi, (1)

where Pi’s, ci’s, and N are the parameters of the model, the
corresponding coefficients, and the number of parameters,
respectively. The first step for the modeling is to find the
Pi’s required for estimating the energy consumption of the
target processor system. The Pi’s should be parameters whose
values can be easily obtained using a fast simulator like
an ISS. For example, Pi’s can be the number of load and
store instructions executed, the number of cache misses, and
so forth. Once the required set of parameters is obtained,
the next step is to find a training bench for the energy
characterization. Note that the number of cycles simulated
for the training bench is much smaller than that for the target
application programs. In our tool, the generated training
bench is simulated during about 500,000 cycles only while
the full simulation of the target application programs needs
billions of cycles. More detailed explanation for our method
to generate the training bench is presented in the following
subsection. The final step is to find the coefficients, ci’s
corresponding to the Pi’s. This is done by using multiple
linear regression analysis. The energy consumption Eestimate

is then calculated using (1). Figure 2 shows an overview of
our energy characterization flow.

To obtain the reference energy values, we simulate
the processor system at gate level for a fixed number of
instructions. We refer to this number of instructions for a
test sequence as the instruction frame. The width is the same
for all the instruction frames as shown in Figure 3. Since
we perform gate-level simulation and calculate the energy
consumption values for all the instruction frames, this step
is time consuming. However, it needs to be done only once
for a given processor system.

Next, we produce an instruction trace for each applica-
tion program using an instruction-set simulator. The traces
are divided into small segments each corresponding to one
instruction frame. The parameters Pi’s are obtained from
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Figure 2: Overview of energy characterization.
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Figure 3: An example of instruction frame.

these instruction traces. Then, for a set of Pi’s, we find the
coefficients which minimize

∑ |Eestimate(i) − Egate-level(i)|2,
where Egate-level(i) and Eestimate(i) are the energy consumption
values obtained by gate-level simulation and through (1) for
the ith instruction frame, respectively.

2.4. Training Bench Generation. As described in the previous
subsection, the selection of training bench is the most
important process for the energy characterization. Figure 4
shows a motivational example. Both (a) and (b) of Figure 4
show energy estimation results for JPEG encoder and
MPEG2 encoder run on a target processor system. For
the results of the left figure, a file compression program
compress is used as a training bench and is executed for
500,000 instructions by gate-level simulation for the energy
characterization. Through the characterization, a linear
equation for estimating the energy consumption of a target
processor system is obtained. Then the estimated energy
consumption values are compared with the gate-level energy
consumption results. As can be seen from the Figure, the
energy estimation error is huge. The error is on an average
67% and more than 1000% for the worst case. There are two
major reasons of the huge estimation error as follows.

(1) Standard deviations of some parameter values are too
small. For example, the numbers of cache misses are
constant for all the instruction frames. In this case, it

is difficult to identify an impact of the cache misses
on the energy consumption of the processor.

(2) Some parameters are strongly correlated to each
other. For example, the numbers of cache misses and
the numbers of branch misses have similar trends in
an entire training bench. In this case, it is difficult to
distinguish the impact of cache misses from that of
branch misses.

If we carefully generate the training bench, the accu-
racy of the energy estimation can be improved drastically.
The right of Figure 4 shows estimation results of our
approach. The only difference between the left and right
results in Figure 4 is the training bench. We generate the
training bench considering the standard deviations of every
parameter values and correlation factors between any two
parameters as criteria for generating the training bench. As a
result, the estimation error of our approach is on an average
2% and 16% even for the worst case. Figure 5 shows the
flow of our approach for generating the training bench.
The training bench generation starts from a template of
training bench which consists of subroutines which execute
power-hungry instructions like a data-access instruction
repeatedly and produce many cache misses, many read-after-
write hazards, and other pipeline stalls. The parameter values
are extracted using ISS. This process takes a few seconds.
Then the standard deviations of every parameter values and
correlation factors of any two parameters are evaluated.
If the standard deviations of some parameter values are
lower than a specific value or if the correlation factors of
some parameters are higher than a specific value, the initial
training bench is modified so that the standard deviations
and the correlation factors are improved. This process is
repeated until those two criteria are satisfied.

2.5. Debugger-Based Energy Estimation. Once the energy
model is developed, the energy consumption of software
running on the processor system can be estimated using a
cycle-inaccurate instruction-set simulator (ISS) whose speed
is 350,000 instructions per second. We use our tool for
characterizing the energy consumption of three commercial
microprocessors with their on-chip caches, SPMs, and an off-
chip SDRAM. Experimental results using three benchmark
programs demonstrate that the error of our technique is
on an average 5% compared to the postlayout gate-level
estimation results. Figure 6 shows the energy consumption
results estimated for an MPEG2 encoder program executed
on MeP processor. The line chart represents the results of
postlayout gate-level energy estimation. The colored portion
of the graph represents the energy consumption estimated
by our approach. The results show that the accuracy of our
energy estimation model is very good.

Today’s SoC chips are usually implemented with off-the-
shelf processor IPs. Even for those SoC chips, our method can
accurately model the energy consumption since it does not
need to know the detailed internal architecture of the target
processor. Another key point of our method is that it works
very well even with a cycle-inaccurate simulator like a GNU
debugger which is a de facto standard of software debugger.
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Figure 4: Impact of training bench selection.
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Figure 5: Training bench generation.

This helps compilers or programmers to customize software
codes to meet customers’ needs for low power.

3. Memory Energy Reduction

SPMs are small on-chip memories which are much faster
and consume much less energy than off-chip memories.
Compared to a cache, an SPM requires an explicit soft-
ware management but is more deterministic and consumes
significantly less energy. In this context, two fully software
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Figure 6: Results for MPEG2 encoder run on MeP.

techniques are presented which place into these SPMs the
code and the data that are the most often accessed. Both
techniques are then merged to achieve a more general and
efficient management of the SPM.

The first technique, detailed in [24], is applied on single-
task applications and assigns frames of the stack to the data
SPM. This is motivated by the fact that the stack is usually
one of the most often accessed data memory objects. For
instance, with the MiBench [25] benchmark suite, stack
accesses represent about 60% of the total data memory
accesses. The second technique, detailed in [26], shares the
spaces of the code and the data SPMs among the static
memory objects of several tasks. This second technique is
then merged with the stack technique for an efficient usage
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of the SPMs with the majority of the memory objects, that is,
the code, the static data, and the stack.

Both techniques utilize profile information from the
target application for generating integer linear programming
(ILP) formulations whose objectives to minimize model the
energy consumptions related to memory accesses. For each
technique, the solutions of the formulations give the optimal
configurations of the respective managements for each SPM.

3.1. Related Work. Several works use the SPM for reducing
the energy consumption of memory accesses.

Usually, only the static data and the code memory objects
are considered since they are allocated at compile time. Some
techniques decide at compile time which of those objects are
to place in the SPM, and which are to be left in the main
memory (MM) [27–37]. In [38] the previous approaches are
extended with the possibility to split some arrays so that only
their often accessed parts are placed into the SPM. Recent
works like [39] also consider the case where the size of the
SPM is not known at compile time: they propose a technique
which modify the code at run time, during an initialization
phase, in order to take advantage of the discovered SPM size.

Dynamic memory objects like the stack and the heap are
less often considered. Nevertheless, a few methods do exist
for managing the stack between the SPM and the MM [40–
43]. The main idea is to place in the SPM the most frequently
accessed stack variables while leaving the others into the MM.
Some of them require specific hardware features like [42, 43]
which use a memory management unit (MMU) or [44]
which presents an SPM controller device. Embedded systems
with tight constraints often cannot afford such features,
hence fully software methods like [24, 40, 41] are required. In
[40], it is proposed to manage dynamically a circular buffer
of stack frames inside the SPM. While interesting, especially
because it supports recursive functions, this approach is
suboptimal. By contrast [41] proposes to find at compile
time an optimal allocation for the stack variables. Two levels
of granularity are studied: the frame level, where the stack
frames are considered monolithically, and the variable level
where the stack variables are considered independently of
each other. The implementation of the variable is question-
able though, since when compiled, the local variables are
usually assigned to registers, and the content of the frames
corresponds actually to the spill code. This is why in [24]
we prefer using the frame level only and get optimization
opportunities by supporting moves of a part or the totality
of frames during the execution of the application.

The heap remains the most difficult memory object
to manage and place in an SPM. Usually, prefetch and
additional hardware are the solutions [43, 44]. Among the
recent works, [45] proposes a simple API for a semiautomatic
management of the heap between the SPM and the MM for
the case of a CELL processor.

Techniques which move at run time the objects between
the SPM and the MM like [24, 43, 46–50] are complementary
with the compile-time ones which can improve the usage
of the limited SPM space. They can support code memory
object [46, 50], static memory objects [48, 49], the stack [24],
or all the memory objects [43]. However, these techniques

Stack Stack Stack
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Figure 7: Standard management of the stack.

have an overhead for moving the memory objects, which
can surpass the gain of using the SPM. This overhead can
be bounded though, when the displacement of the memory
objects is fixed at compile time as it is the case with [24, 46,
48–50].

In multitask environments, the SPM is to be shared
among several tasks for the placement of their memory
objects. Several techniques exist for performing this sharing
for static memory objects, that is, code and static variables
[31–37]. Although they target multitask systems, some ap-
proaches like [31, 35] do not use the scheduling as a parame-
ter for optimizing the usage of the SPM. Other approaches
are targeting systems with a static scheduling [32, 33] or
assume the knowledge at compile time of the fully execution
flow of the tasks [34]. Finally, a few approaches target pre-
emptive systems, which is also the target system in this paper.
For instance, [26, 36, 37] optimize the SPM usage while using
the properties of a static priority-based real-time preemptive
system.

3.2. Stack Placement and Management. Contrary to the static
memory objects (i.e., code or static variables), the size of the
stack changes during the execution of the application. More
precisely, when a function starts its execution, it allocates
a new frame on top of the stack by decreasing the stack
pointer register (SP). This frame is used for placing the
function’s local variables which are not assigned to registers.
Eventually, just before returning, the function destroys this
frame by increasing SP. Figure 7 illustrates this mechanism
by giving the evolution of the content of the SPM during the
execution of function f1 which calls f2, another function. A
consequence is that the stack can grow larger than the SPM
during the execution of the application. Furthermore, as
frames are usually not equally accessed it may be inadequate
to assign all of them to the SPM as the space they use could
be more efficiently used by other memory objects.

In this context, the technique presented here manages
two substacks, one into the MM and one into the SPM. The
frequently accessed frames are allocated on top of the SPM
substack while the others are allocated on top of the MM
substack. The technique also supports moves of a part or
the totality of frames during the execution of the application
in order to free space from the SPM to be used by further
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frames. It is this technique which is briefly presented in this
section.

3.2.1. Overview of the Technique. The proposed management
with two substacks is performed by new stack operations
which are inserted at compile time into the assembly code of
the application. For that purpose, four new stack operations
are defined:

warp: translates SP to the top of the SPM substack,

unwarp: translates SP to the top of the MM substack,

store: copies a part or the totality of the top frame of
the SPM substack to the top of the MM substack,

load: copies a part or the totality of the top frame of
the MM substack to the top of the SPM substack.

Warp and unwarp operations are to be inserted just before
and just after the call instructions where the substack of the
coming frame is to be different from the current top one.
This is enough because it is only when entering and leaving a
function that the state of the stack changes. A store operation
is to be inserted just before a call instruction (or if present,
just before the unwarp operation preceding the call) when
the top frame is to be moved (partly or fully) from the SPM
to the MM. It is not necessary to insert store operations in
other places in the program because it is only there that the
stack grows. Symmetrically, a load operation is to be inserted
just after a call instruction (or if present, just after the warp
operation following the call instruction) when the top frame
is to restore back to the SPM.

Figure 8 illustrates the proposed management with the
new stack operations. In the figure, the evolution of the
content of the SPM is shown while four functions, respec-
tively, f1, f2, f3, and f4 are executed. Initially, frames 0 and
1 are assigned to the MM. Then a warp operation in f1
allows to allocate frame 2 to the SPM. A store operation on
frame 2 follows, executed during f2, which frees some SPM
space. This space is not immediately required since frame
3 is allocated to the MM but this space is indeed used by
frame 4. This possibility to store a frame ahead of the need

is the reason why the store and the load operations have been
limited to act only on the respective top frames of the MM
and the SPM.

3.2.2. Limitations. In conventional programs, the stack is
localized with SP. Yet, this does not forbid to access it
relatively to other registers provided the computation of their
value takes root from SP. Therefore, if translation operations
are inserted into arbitrary places of the code, the value of
several registers and also some memory contents (e.g., in
case of spill code) have to be updated at the same time. This
requires both deep data dependency analysis to identify the
places to update and important assembly code modifications.
Both are complex to carry out, and more importantly, the
energy cost of the code modifications can exceed the gain
achieved by using the SPM. Moreover, such modifications are
likely to change the size of the frames which could invalidate
the inserted stack operations. Consequently, implementing a
variable level approach like [41] is, at least, very difficult in
practice.

This is why the technique proposed in this paper requires
that, when accessed, a frame must be either fully into the
SPM or fully into the MM. Furthermore, when a frame is
stored it needs to be loaded symmetrically unless it is not
accessed before the next call.

3.2.3. Difficulties. Even though the technique is simple, sev-
eral cases require additional care. First, when the arguments
of a function are too numerous, some of them cannot be
assigned to registers and are instead placed into the caller’s
frame. Then they are accessed by the called function but
relatively to its own frame. This requires both frames to be
contiguous; that is, they cannot be assigned into different
substacks. However, [24] can allow such frames to be in
different substacks by moving the corresponding stack oper-
ations before the instructions which put the extra arguments
into the stack.

Second, when references to the current frame are passed
as arguments to another function, the frame cannot be stored
since it would invalidate the reference.
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Third, the user often cannot modify the code of library
functions, thence cannot insert into them new stack opera-
tions. However, it is still possible to assign their frames to the
SPM by considering each call to such a library function as
a call to a large monolithic function whose frame size is the
maximum stack requirement during its execution.

Fourth, when a function f is called from different points
into the program, it can happen that its frame is assigned
to different substacks depending on where it has been called
from. This is not a problem yet as the substack is selected
before calling f . However, if f calls another function g, g’s
frame too might be assigned to different substacks depending
on where f has been called from. Thence, depending on
where f has been called from, different stack operations
might be required to be executed during f . A simple solution
is to forbid stack operations for this frame. A more refined
solution is presented in [24] where predicates computed
from the return address of f are inserted for selecting the
stack operations to execute.

Last, recursive functions are difficult to handle since a
same frame can be assigned several times in sequence. If the
number of recursions is known at compile time, a single large
frame which will contain all the frames of the recursion can
be assigned. Otherwise, the technique cannot support them
and they must be assigned to the MM substack. In [24] a
more efficient solution is described which allocates on top
of the SPM substack a circular buffer (already presented in
[40]) for the frames of a recursive function. The code of the
function is then updated for managing this buffer so that,
when full, its oldest frame is evicted to the MM.

3.2.4. Compile-Time Selection of the Stack Operations. The
stack operations to insert are decided through an ILP whose
objective to minimize models the energy consumed while
accessing the stack and the extra energy consumed by the
stack operations. The constraints ensure that the inserted
operations maintain a valid state for MM and the SPM
substacks.

For that purpose, a history of the calls is required to
determine which frames exist at each point of the program
where new stack operations can be inserted. This history is
built from the call and control flow graph CCFG. This graph
is partitioned into subgraphs we call sessions. Sessions are
separated by the call instructions and are of two types: a store
session is the subgraph of the CCFG starting just before a call
instruction, and a load session is the subgraph of the CCFG
starting just after a call instruction. By definition, a store
operation can be inserted at the beginning of a store session
and a load operation at the beginning of a load session.

The ILP formulation can then be built using the frames
(u) and the sessions (v) for indexing the variables and the
constants. The variables of the formulation are there to
control the insertion of the stack operations and are the
following:

xu,v: this binary variable is 1 when frame u is fully into
the SPM during session v;

xnu,v: this integer variable is the number of bytes of
frame u into the SPM during session v;

snv: this integer variable is the number of bytes stored
at the beginning of session v;

lnv: this integer variable is the number of bytes loaded
at the beginning of session v.

The parameters used for the formulation include character-
istics of the processor, metrics extracted from the application
code and from profiling information. In the formulation,
these parameters are represented by the following constants:

Sstack: is the maximum size of the SPM substack;

Cspmu,v: it is the energy cost of the total accesses to
frame u during the whole executions of session v if it
is in the SPM;

Cmmu,v: it is the energy cost of the total accesses to
frame u during the whole executions of session v if it
is in the MM;

Su: is the size of frame u;

Cst: is the energy cost for storing one byte;

Cld: is the energy cost for loading one byte;

Nev: it is the number of executions for session v;

Au,v: indicates if frame u is accessed during session v;

Forbv: indicates if the load or the store operation of
session v is forbidden;

Symv: indicates if the load operation of session v
must be symmetric with the corresponding store
operation.

The objective function is the sum of two parts: the first one,
noted objstack, represents the energy consumed while access-
ing the stack, and the second one, noted objops, represents
the energy consumed by the stack operations inserted into
the assembly code for managing the stack between the SPM
and the MM.

The first part of the objective function is the sum of
the energy consumed by the application during each of its
sessions when accessing the stack. For each frame, the energy
consumed depends on whether it is assigned to the MM
or to the SPM. The xu,v variables are used for selecting the
cost corresponding to the used memory, and objstack is then
computed as follows:

objstack =
((
Cspmu,v − Cmmu,v

)∗ xu,v
)
. (2)

In the above equation, in order to keep the linearity of the
objective, only the difference in energy consumption between
the accesses to the MM and the SPM is actually represented.

The second part of the objective function is the sum of
the store and the load costs (the warp and unwarp operations
are neglected in this paper, please refer to [24] for details
about how to take them into account):

objops =
(
Nev ∗

(
Cst ∗ snu,v + Cld ∗ lnu,v

))
. (3)

Since the size of the SPM substack is bounded, con-
straints are required for limiting the assignment of frames
to it. There is one such constraint per session:

∀v xnu,v ≤ Sstack. (4)
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Figure 9: Basic SPM sharing among tasks.

When accessed during a session v, a frame u is required
to be fully into the MM or fully into the SPM, which means
that xnu,v must be either 0 or the size of the frame. This is
ensured by the following constraint:

∀u, v Au,v =⇒ xnu,v = xu,v ∗ Su. (5)

The load and store operations modify the size of current
frame’s part into the SPM, hence, they are constrained as
follows where Store and Load are, respectively, the sets of
the store and the load sessions and Prev(v) is the set of the
sessions preceding v:

∀u ∀v ∈ Store ∀w ∈ Prev(v) xnu,v = xnu,w − snu,v

∀u ∀v ∈ Load ∀w ∈ Prev(v) xnu,v = xnu,w + lnu,v.
(6)

These operations are not always possible the validity of
the assembly update can forbid them or force them to be
symmetric. Both kind of limitations are converted to the
following respective constraints where Call(v) is the session
from which the function of frame u has been called:

∀u ∀v ∈ Store Forbu,v =⇒ snu,v = 0,

∀u ∀v ∈ Load Forbu,v =⇒ lnu,v = 0,

∀u, v Symu,v =⇒ lnu,v = snu,Call(v).

(7)

3.3. Code and Static Data Placement with SPM Sharing among
Several Tasks. In multitask environments, the SPM is to
be shared among several tasks when placing their memory
objects. The sharing can be done among two dimensions
[35, 37]: spatial and temporal. With the spatial sharing, each
task is provided with an exclusive access to a part of the SPM
for placing its memory objects. This sharing does not require
any run-time processing, but each task has access to only a
small part of the SPM. Figure 9(a) illustrates this sharing:
whatever the executed task may be (i.e., t0, t1, t2, and t3),
the assignments to the SPM space do not change. On the

contrary, the temporal sharing provides each task the totality
of the SPM space as seen in Figure 9(b). Consequently, this
second sharing dimension requires to change the content of
the SPM at each context switch: when a task is preempted,
this content must be first saved to the MM (if it has been
modified), then the content corresponding to the next active
task must be restored from the MM to the SPM. These
copies require time and consume energy which reduces the
efficiency of this sharing. Works in [35, 37] presented hybrid
approaches which use both sharing dimensions in order to
achieve better results. Both approaches reserve a part of the
SPM for the spatial sharing and the rest for the temporal
sharing. In [26] we proposed an approach which also uses
these dimensions but in a more uniform fashion since the full
space of the SPM is used for both. It is this approach which
is described in this section.

3.3.1. Assumptions. As there is one code SPM and one data
SPM in the target architecture, the technique is applied twice,
once for the code and once for the data. In addition, when a
task is preempted, the SPM management needs to save the
parts of its memory objects assigned to the SPM which will
be overwritten by other tasks only if they have been modified.
For the code regions, it is assumed here they are never
modified (which is often the case in practice for embedded
systems). For the data regions, it is difficult to know if they
have been modified or not. Hence, it is assumed here that
they are always modified.

3.3.2. Overview of the Technique. The proposed technique
assigns to each task a block in the SPM for placing its
memory objects (code or data depending on the target SPM).
Blocks can overlap but then, these overlap regions must be
updated at context switches. In order to reduce the cost of
such updates, the addresses of the blocks within the SPM are
computed for reducing the overlaps among the blocks which
often interfere. Figure 10 shows how the addresses of the



Journal of Electrical and Computer Engineering 9

SP
M

 s
pa

ce
 (

k 
by

te
s)

Tasks

β0

β1

1

0.5

0

t1t0

(a) Large overlap

Tasks

β0

β1

SP
M

 s
pa

ce
 (

k 
by

te
s)

1

0.5

0

t0 t1

(b) Small overlap

Figure 10: Effect of the blocks’ address on overlaps.

Time

Time

Time
t0

t1

t2

Figure 11: Example of scheduling with three tasks.

blocks change the overlaps’ sizes between them for the case of
two tasks. In Figure 10(a), both blocks have the same address
and the overlap region is the totality of block β1 whereas, in
Figure 10(b), the overlap is minimized to 128 bytes.

3.3.3. Importance of the Scheduling. The scheduling is an
important parameter for reducing the number of copies
between the SPM and the MM during the context switches.
For instance, if a task t0 is never active while another task t1
is ready, their respective blocks can overlap without any cor-
responding copy being required during the context switches
for updating the content of the SPM. However if t0 is active
the overlap region between its block and t1s will have to be
saved to (if data) and restored from the MM. In order to take
the scheduling into account, the following is defined.

Preemption pattern: it is the set of the tasks executed
between two consecutive active states of a ready task
called the reference task.

Figure 11 gives an example of scheduling and the corre-
sponding preemption patterns are given with their number
of occurrence in Table 1. In the figure, the up arrows
represent the firing of a task and the down ones represent
preemptions.

During the execution of a given preemption pattern, the
parts of the reference task’s block to save (if data) and replace

Table 1: Example of preemption patterns.

Pattern Reference task Executed tasks Occurrences

p0 t1 {t0} 2

p1 t2 {t0,t1} 1

are the ones in overlap with blocks of the tasks of the pattern.
When several overlaps of a pattern intersect, the common
parts must still be counted only once for the corresponding
context-switches update costs. Figure 12 illustrates such a
case where δ0,1 is the overlap region between β0 and β1, but
is also included into δ0,2 which is the overlap region between
β0 and β2.

As an overlap region needs to be copied to the MM
only once for a given pattern occurrence, δ0,1 should not be
counted when computing the context switch cost. For that
purpose we define the following.

Effective overlap: it is an overlap region whose con-
text switch cost is counted for a given scheduling pat-
tern.

For a given pattern, the effective overlaps can be consid-
ered as the overlap regions which are not included into other
ones obtained from other executed tasks in the pattern as it
is shown in [26]. However, it can still happen that part of



10 Journal of Electrical and Computer Engineering

β0

β1

β2

SP
M

 s
pa

ce

δ0,1

δ0,2

δ1,2

Task

t0 t1 t2

Figure 12: Intersection of overlaps.

overlaps are still over counted. For simplicity, these last over
counts are neglected in this paper but [26] do take them into
account.

3.3.4. Memory Objects Placement and Task’s Blocks Compu-
tation at Compile Time. An ILP whose objective models the
energy consumption related to the static memory objects’
accesses is used for selecting for each task which memory
object is to put into the SPM and for selecting the address
of its SPM block. The variables and the constants of the
formulation are indexed with i for the preemption patterns,
j for the tasks and their respective blocks, and k for the
memory objects. The variables are the following:

xj,k: this binary variable is 1 when memory object k
of task j is in the SPM when this task is active;

bj : this integer variable gives the starting (“begin”)
address of block j;

ej : this integer variable gives the ending (“end”)
address of block j;

oj, j′ : this integer variable is the size in bytes of the
overlap between blocks j and j′;

osel
j, j′ : this binary variable is used for selecting the

constraint defining the overlap oj, j′ ;

oei, j, j′ : this integer variable is the size in bytes of the
effective overlap between blocks j and j′ for pattern
i;

omin
i, j, j′ : this binary variable is used for selecting the

constraint defining the effective overlap oei, j, j′ .

The parameters used for the formulation include character-
istics of the processor, metrics extracted from the application
code and from the profiling information. In the formulation,
these parameters are represented by the following constants:

Sspm: it is the total size of the (code or data) SPM;

Ri: it is the total number of occurrences for pattern i;

Cspm j,k: it is the energy cost of the total accesses to
memory object k of task j if the object is in the SPM.
This cost also includes the copy required when a task
is fired;

Cmm j,k: it is the energy cost of the total accesses to
memory object k of task j if the object is in the MM
(which can be cached or not);

Sk: it is the size of the memory object k;

Ccxt: it is the average energy spent in context switches
for one byte of data or code. When the target is the
data SPM, this cost is the average energy required
for the saving and restoring of one byte of data and
when the target is the code SPM, this cost is the one
required for restoring one byte of code.

The objective function is the sum of two parts: the first one,
noted objtasks, represents the energy consumed by the tasks
while accessing the memories. The second one, noted objcxt,
represents the energy consumed while updating the SPM
during the context switches.

The first part of the objective function is the sum of the
energy consumed by each task while accessing its memory
objects. For each memory object, the energy consumed
depends on whether it is assigned to the MM or to the SPM.
The xj,k variables are used for selecting the cost correspond-
ing to the used memory, and objtasks is then computed as
follows:

objtasks =
(
Cspm j,k − Cmm j,k

)
∗ xj,k. (8)

In the above equation, in order to keep the linearity of the
objective, only the difference in energy consumption between
the accesses to the MM and the SPM is actually represented.

The second part of the objective function is the sum
of the energy consumed by each scheduling pattern for
saving and restoring parts of blocks pondered by their
corresponding numbers of occurrences. For that purpose,
the effective overlap oei, j, j′ are used:

objcxt = Ccxt ∗
(
Ri ∗

(
oei, j, j′

))
. (9)

The first constraints ensure that each block fits individ-
ually into the SPM. For that purpose the size of a block is
computed as the sum of the sizes of each memory object of
the corresponding task which are assigned to the SPM:

∀i, j e j − bj = xj,k ∗ Sk. (10)

Finally, a block is forced to fit into the SPM by bounding
its upper address as follows (for LP-solvers variables are
positive by default, hence this is not necessary to bound bj):

∀ j e j < Sspm. (11)

Additional constraints are required in order to compute
the effective overlaps. First of all, the (noneffective) overlap
between two blocks, j, and j′, is computed by considering
the four cases of their relative positions when intersecting,
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that is, j included into j′, j’s ending address included into
j′, j′’s ending address included into j and j′ included into
j. The cases are select through the four mutually exclusive
binary variables, osel

j, j , o
sel
j, j′ , o

sel
j′, j , o

sel
j′, j′ as follows:

oj, j′ ≥ ej − bj −Mj, j ∗
(

1− osel
j, j

)
,

oj, j′ ≥ ej − bj′ −Mj, j′ ∗
(

1− osel
j, j′
)

,

oj, j′ ≥ ej′ − bj −Mj, j′, j ∗
(

1− osel
j′, j

)
,

oj, j′ ≥ ej′ − bj′ −Mj′, j′ ∗
(

1− osel
j′, j′
)

,

osel
j, j + osel

j′, j + osel
j′, j + osel

j′, j′ = 1 .

(12)

In the above equations the constants M∗,∗ are used as “big
Ms”: they have to be large enough to ensure the right part
of each equality to be negative when the corresponding osel∗,∗
variable is 0. When there is no overlap, these equations are
still valid as then, either ej − bj′ or ej′ − bj is negative so that
oj, j′ will be set to 0.

These overlaps are used for computing the effective
overlaps as described previously. The formulation of each
effective overlap oei, j, j′ is expressed using a binary variable
omin
i, j, j′ which is 1 when oj, j′ is smaller than oj′, j′′ and oj, j′′

and therefore included into them [26] (constants Mmin∗,∗,∗ and
Me∗,∗ are also “big Ms”):

(
1− omin

i, j, j′
)
∗Mmin

j, j′, j′′ ≥ oj, j′ − oj, j′′ + ε j, j′ − ε j, j′′,
(

1− omin
i, j, j′

)
∗Mmin

j, j′, j′′ ≥ oj, j′ − oj′, j′′ + ε j, j′ − ε j′, j′′,
(13)

oei, j, j′ ≥ oj, j′ −Mej, j′ ∗ omin
i, j, j′ . (14)

In the previous equations, constants ε∗,∗ ensure that at
least one effective overlap is not set to 0 when several overlaps
are equal. These positive constants are strictly smaller than 1
and are all different from one another. This artificially forces
the subtraction of overlaps of (13) to be different from 0.

3.3.5. Run-Time Management of the SPM. The content of
the SPM must be updated at each context-switch. For that
purpose a function is added to the context-switch procedure
of the operating system. This function uses two tables for
determining which region of the SPM is to save (if data)
and replace. These tables describe the content of the SPM
partitioned into the set of the areas which are separated by
the starting and ending addresses of the blocks. Figure 13
gives an example of such a partition where the blocks are
noted β∗ and the areas α∗.

By definition, areas are contiguous to each other, do not
overlap and each block is a set of consecutive areas. The
first table, fixed at compile time, is indexed by the blocks
and its two entries are the first and the last of the areas
which are covered by the block. The second table evolves
at run time and is indexed by the areas. Its entries are for
each area, its start address in the SPM, its size, and the
block currently occupying it. At each context-switch, the
SPM update function iterates on the areas (fetched from the
first table) of the next active task. For each of these areas,
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Figure 13: SPM partitioned into areas.

the second table is looked up for determining which block
is occupying it. If it is a block different from the one of the
next active task, the area is saved to the MM (if data) and the
corresponding content of the new block is copied back to the
SPM.

3.4. SPM with Code, Static, and Stack Data in Multitask
Systems. Since the stacks are dynamic memory objects, they
cannot be handled natively by the proposed technique for
sharing the SPM among several tasks (nor, to our knowledge,
by any of the existing sharing techniques). Yet, if the
maximum size of the stacks can be known at compile time,
they can still be considered as usual static objects whose size
is this maximum.

The same can be done with the proposed stack man-
agement technique by considering each SPM substack as
a static memory object whose access cost is the resulting
value of the corresponding objective function and whose
size is chosen small enough to leave room into the SPM
for the other data memory objects. However, the efficiency
of the stack management depends highly on the size of the
SPM substack as it can be seen from the results of the next
section. Fortunately, solving the ILP formulation for this
technique proved to be very fast (less than one second for
all the applications of our experiments) and reasonably fast
for the case for the SPM sharing technique (15 seconds were
required for the worst cases with [51]). But the number of
iteration to perform is exponential with the number of sizes
for the SPM stacks. For instance, with five SPM substack
sizes and nine tasks, 95 iterations are required. It is difficult
in practice to afford such a huge number of iterations of
both techniques for finding the best sizes for each SPM
substack. Yet, since it is affordable to iterate several times with
the stack technique alone, we propose to extend the SPM
sharing technique by adding several substacks of different
size per task. Each of these substacks is considered as a
static memory object whose access cost is the value of the
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objective function of the respective stack management’s ILP
formulation. Equation (8) is therefore modified as follows:

objtasks =
(
Cspm j,k− Cmm j,k

)
∗ xj,k + Cstk,m ∗ xstk, j,m.

(15)

In the equation, m is the index for the SPM substack case
and Cstk,m is its corresponding energy cost. Besides, variable
xstk, j,m is 1 when the SPM substack case m is used and 0
otherwise.

As one and only one SPM substack is required for each
task, the following new constraints are added:

∀ j xstk, j,m = 1. (16)

Finally, the sizes of the substacks must also be taken into
account and (10) becomes

ej − bj = xj,k ∗ Sk + Sstk,m ∗ xstk, j,m. (17)

As a result, the solution of this new formulation includes
for the content of each block the selected SPM substack in
addition to the static memory objects.

While the number of variables increases, the constraints
of (16) are efficiently used by LP-solvers so that the solving
time is not importantly increased: it took 20 seconds for our
LP-solver [51] to solve the problem with the largest task set
of our experiments.

3.5. Experimental Results. We applied our technique on
a multiperformance processor (based on the MeP) which
includes an 8 KB data SPM, an 8 KB code SPM, and a 4-way
instruction cache. Energy characteristics of this architecture
are given in Table 2.

We used the Toshiba’s MeP Integrator (MPI) tool chain
[52] for compiling and simulating the applications. Compi-
lations were performed with the −02 level of optimization.
Executions were performed for a static priority-based rate
monotonic preemptive system with a processor utilization
of about 60%. Both multitask and stack techniques were
applied on the tasks of the sets given in Table 3. Tasks come
from the EEMBC [53] and the Mibench [25] benchmarks.

Table 2: Average energy consumptions for The multiperformance
processor.

Memory access type Energy (nJ per word)

I-SPM read 0.3774

I-Cache hit 1.433

I-Cache miss 57.897

D-SPM read 0.3774

D-SPM write 0.5053

SDRAM data read 42.6466

SDRAM data write 18.3986

Table 3: Tasks-set used for the experiments.

Set Tasks

Set A aes, des, md5, cubic, fft, rad2deg, mpeg, mp3, patricia

Set B aes, des, md5, cubic, fft, rad2deg, patricia

Set C aes, des, md5, cubic, fft

Set D cubic, fft, rad2deg

Figure 14 gives the results of the proposed stack manage-
ment technique (ours) applied on monotask cases compared
to a management which does not store nor load frames
(static) [42] and to one which uses a circular buffer of frames
(circular) [40]. As ours supersets static and circular, it is not
surprising that it always achieves better results than them. On
average, for the respective 1/3 and 2/3 SPM substack sizes,
static achieves about 39% and 84% of stack-related energy
consumption reduction, circular about 41% and 74%, and
ours does better in both cases with about 49% and 85%.

The variable level of granularity mentioned by [41] is
complex to formulate and implement in practice, but can be
qualitatively compared to our technique. The low granularity
of the frame level is usually compensated by run-time partial
loads and stores whose overhead can be compared favorably
with the variable-level overhead for accessing the dispatched
variables of a frame. However, for the cases where a frame
is larger than the remaining SPM space, even after store
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operations, there would indeed be more energy reduction
if the often accessed variables of such a frame could be
separated from the others at reasonable cost.

Figure 15 gives the results obtained when sharing the
data SPM among the tasks of each set of Table 3 with
the technique proposed in this paper (block) and with
state-of-the-art techniques including a fully off-line spatial
sharing one (space), a temporal sharing one (time) (both are
described in [35]), and a hybrid spatial and temporal one
(hybrid) [37]. The figure also includes the results obtained
when the sizes of the SPM substacks are selected by the
merging technique presented in Section 3.4 (merged). For
fairness of the comparison, the techniques other than merged
also include the stacks, but considered as static memory
objects whose sizes are the corresponding maximum stacks’
requirements. For the case of a 1 KB SPM, on average, space
achieves about 40% of energy consumption reduction, time
about 45% hybrid about 45%, block about 46%, and merged
achieves much better with about 69%. If the SPM size is 4 KB,
these techniques achieve, respectively, about 72%, 79%, 81%,
83%, and 84% of average energy reduction. In all the cases,
merged achieves better or equal than block, block better or
equal than hybrid, and hybrid better or equal than time
and space. The systematic advantage of hybrid, block, and
merged over space and time is due to the fact that the two
latter are part of the solutions explored by the three former
techniques. Moreover these three techniques also include the

overhead in their ILP formulations so that it remains under
control.

Figure 16 gives the results of the same experiments
for the code SPM (the MM is then cached), with space,
time, hybrid, and block (for the code, merged is identical
to block). As the cache consumes much less energy than
the external memory, more SPM is required for achieving
important energy consumption reduction. For the case of a
4 KB SPM, on average, space achieves about 16% of energy
consumption reduction, time about 42%, hybrid about 42%,
and block about 43%. And for the case of an 8 KB SPM, these
techniques achieve, respectively, about 26%, 60%, 60%, and
63%.

While not being the focus of the paper, the execution
speed also benefits from the proposed techniques because
accessing the MM requires much more time than accessing
the SPM. With the processor configuration used for the
experiments, accessing the MM requires about 20 cycles on
average and there is no data cache. Therefore, the speedup
related to the data memory accesses is significant. For
instance, when the SPM size was 2/3 of what the stack
required, the proposed stack management technique (ours)
achieves 77% of speedup related to the memory accesses
(including the overhead of the management). Similarly,
the proposed technique for sharing the SPM among tasks
(block) achieves about 80% of data-access-related speedup
(including the overhead) with a 4 KB SPM. For the code
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accesses, there is a cache though, but using the SPM reduces
the miss rate so that there is actually a slight gain: 4% of
code access-related speedup (including the overhead) with a
4 KB SPM.

4. Conclusions

The paper presented our recent research activities and results
on characterizing and reducing the energy consumption in
embedded systems. Our main focus is on software-directed
approaches for estimating and reducing the energy con-
sumption of embedded real-time systems. As the demands of
system integration, performance, and low power operation
have pushed chip vendors down to 65 nm or below, NRE
(nonrecurring engineering) costs and design complexity
have increased significantly. A remedy for the NRE explosion
is to reduce the number of developments and sell tens of
millions of chips under a fixed hardware design. In such a
situation, embedded software plays much more important
role than today. This paper covered our approach for fast and
accurate energy estimation of software on a given processor
system and software-directed techniques for reducing the
energy required for accessing the memory subsystems in the
embedded processor.

As future work, we plan to place also parts of the heap
into the SPM for achieving more energy consumption reduc-
tion. We also plan to refine the stack approach proposed in
this paper with a grain finer than the frame level while still
being implementable in practice.
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