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Abstract. Magic state distillation is a critical component in leading proposals for fault-tolerant quantum
computation. Relatively little is known, however, about how to construct a magic state distillation routine
or, more specifically, which stabilizer codes are suitable for the task. While transversality of a non-Clifford
gate within a code often leads to efficient distillation routines, it appears to not be a necessary condition.
Here we have examined a number of small stabilizer codes and highlight a handful of which displaying
interesting, albeit inefficient, distillation behaviour. Many of these distill noisy states right up to the
boundary of the known undististillable region, while some distill toward non-stabilizer states that have not
previously been considered.

1 Introduction

Most efforts towards building a large-scale quantum com-
puter use error-correcting codes to protect the quan-
tum information. However, no matter what code is cho-
sen, the set of gates that are transversal (i.e. manifestly
fault-tolerant) will be non-universal [1], meaning these
operations are insufficient for useful quantum computa-
tion. Therefore, some additional resource will be required
to supplement the limited set of operations. The most
promising technique for circumventing this issue is to sup-
plement the non-universal gate set with a supply of special
resource states, known as magic states. Having access to
pure magic states enables implementation of an additional
unitary operation, which ultimately provides us with a
universal gate set. The magic state distillation protocol,
as introduced by Knill [2] and Bravyi and Kitaev [3], pro-
vides a method of producing these resource states through
an iterative procedure in which less pure magic states are
consumed to produce a higher purity magic state using
only stabilizer operations.

Here we use small stabilizer codes, which means that
the number of qubits, the number of measurements and
the number of nonlocal operations involved in each round
of distillation are all small. While these are attractive fea-
tures, it seems that using a small code limits the amount
of purification that can occur per round of distillation. For
practical purposes, one typically quantifies how many raw
magic states are required to produce a single magic state
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of very high purity (e.g., infidelity of no more than 10−10).
Applying this metric one typically finds that small codes
fare much worse than larger codes like the 15-qubit Reed-
Muller code [3]. If instead we rank codes by their range
of applicability, i.e., the threshold noise rate above which
purification no longer occurs, then smaller codes seem to
fare at least as well as larger codes. Although this may
not be a pressing issue experimentally, since it seems rea-
sonable to expect raw state preparation infidelity on the
order of 10−2–10−4, it is of foundational interest. Bravyi
and Kitaev highlighted the fact that tight magic state dis-
tillation routines imply a sharp transition, as noise is de-
creased, from a circuit that is classically efficiently simu-
lable to one that enables universal quantum computation.
The question of tight distillability for qutrit states was
addressed in references [4,5].

Efficient codes for magic state distillation typically ex-
hibit quadratic (p �→ O(p2)) or cubic (p �→ O(p3)) sup-
pression of the error parameter p. The codes listed here all
exhibit linear error suppression and consequently are not
competitive with existing routines in terms of efficiency.
Nevertheless we feel that exploring the landscape of codes
that achieve distillation is still worthwhile. Reichardt [6]
has previously summarized a handful of known distillation
routines exhibiting the best thresholds.

A number of the codes presented below achieve tight
distillation right up to the boundary of the stabilizer octa-
hedron – the convex hull of Pauli eigenstates depicted in
Figure 1 – whose interior contains states that are provably
undistillable. We also present codes that converge, upon
iteration, to states that are not those that are typically
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Fig. 1. The stabilizer octahedron inscribed within the Bloch
sphere: Six Pauli eigenstates form the vertices of an octahe-
dron. States within the octahedron are provably undistillable
so the best one can hope for is to distill states up to the bound-
ary. The two pure non-stabilizer states singled out here, |H〉
and |T 〉, were shown to be distillable by Bravyi and Kitaev [3].

considered i.e., the H-type and T -type magic states. None
of our codes require twirling (which diagonalizes the state
in the {|H〉, |H⊥〉} or {|T 〉, |T⊥〉} basis) between rounds.

2 Background

Here we briefly summarize notation and terminology as-
sociated with both magic state distillation and with the
type of quantum codes that we have used.

2.1 Magic state distillation, thresholds and yields

Magic state distillation routines are described in terms
of stabilizer error correcting codes, which in turn are de-
scribed by a set of generators {Gi} consisting of Pauli op-
erators. The protocol (see e.g. [7]) consists of iteratively
applying the following steps:

1. Prepare n copies of the input state ρ⊗n
in , where n is the

size of the code.
2. Perform Pauli measurements corresponding to each of

the n− k generators Gi, and postselect on the desired
outcome.

3. Optionally perform a Clifford transformation based on
the measurement outcome.

When successful, the output state(s) will be purified in
the direction of the target magic state. Typically k = 1
and consequently an [[n, k = 1, distance]] stabilizer code
is used (see [8–10] for k ≥ 2 however).

For simplicity, one can assume that input states suffer
from depolarizing noise and take the form

ρM = (1 − p)|M〉〈M | + p
�2

2
, (1)

where |M〉 is the target magic state. The maximum value
of p for which distillation is possible even in principle,
which we call poct, is when ρM crosses the boundary
into the stabilizer octahedron. With reference to Figure 1,
|H〉-type states are of the form |H〉 = (|0〉 + eiπ/4|1〉)/√2
or any image of this under a Clifford gate, while |T 〉-type

states have Bloch vectors of the form (±1,±1,±1)/
√

3.
The simple geometry allows us to find poct = (1−1/

√
2) ≈

0.2929 for |H〉-type states and poct = (1−1/
√

3) ≈ 0.4226
for T -type states.

The yield [11] of a magic state distillation routine is
defined as:

Y (p, pout) =
∏

k=1...N

p
(k)
s

n
, (2)

where N is the total number of iterations needed to ob-
tain pout starting at initial error rate p, and p

(k)
s is the

probability of success on the kth iteration. This quantity
relates to the efficiency/resource overhead of a magic state
distillation routine.

2.2 Codeword stabilized quantum codes

The Pauli measurements associated with a stabilizer code
can be written in binary symplectic notation so that
G = (Xx1 ⊗ Xx2 ⊗ . . . ⊗ Xxn)(Zz1 ⊗ Zz2 ⊗ . . . ⊗ Zzn)
becomes (x1, x2, . . . , xn|z1, z2, . . . , zn). An n-qubit stabi-
lizer code with n generators has k = 0 and consequently
specifies a 1-dimensional subspace of Hilbert space i.e., a
stabilizer state. By applying local Cliffords (the unitaries
that map Pauli operators to Pauli operators under conju-
gation), a generic stabilizer state (X |Z) can be brought to
the form (�n|Γ ) where Γ is the adjacency matrix of the
graph. When stabilizer states take this particular form
they are called graph states, sometimes denoted |Γ 〉.

The majority of magic state distillation routines pre-
sented here will be described by codeword stabilized
(CWS) codes (see [12]). In this representation, the code
is given by a graph state written as an adjacency matrix,
Γ ∈ �

n×n
2 , as well as a classical codeword, w ∈ �

n
2 . We

may choose the logical basis state |0L〉 of our code to be
the state

|0L〉 = |Γ 〉 =
∑

x∈�n
2

ix
T Γx|x〉. (3)

Subsequently the logical |1L〉 operator is given by:

|1L〉 = Zw|0L〉 =
∑

x∈�n
2

ix
T Γx+2wT x|x〉, (4)

where w is the codeword and Zw denotes the product of
Z operators

Zw = Zw1 ⊗ . . . ⊗ Zwn . (5)

The unitary encoding/decoding associated with these
codes is quite straightforward as illustrated in Figure 2b –
it involves controlled-Z rotations applied to qubits whose
vertices are connected by edges in the graph. A convenient
way of visualizing CWS codes is to display the graph and
highlight the subset of vertices 1 ≤ i ≤ n such that wi = 1
see Figures 3, 4 and 6.
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√

2

(b)

Fig. 2. Creating the graph state associated with a given
graph amounts to performing controlled-Z rotations between
qubits whose vertices are connected by an edge in the graph.
(a) Graph with labelled vertices. (b) The graph state prepara-
tion circuit for the above graph.

3 Results

All stabilizer codes are local Clifford equivalent to some
CWS stabilizer code. Consequently CWS stabilizer codes
form a subset of all stabilizer codes and so checking all
combinations of graphs, Γ , and codewords, w, may still
miss stabilizer codes that are useful for distillation. Nev-
ertheless, for n ≤ 4 qubits we iterated over all graphs
on n vertices and for n ∈ {5, 6} qubits we iterated over
non-isomporphic graphs on n vertices. We were primarily
focused on recording those CWS codes that achieve tight
distillation but we also noted a number of non-tight codes
that distilled to target states other than |H〉.

With the exception of one code, the codes that we
present will be depicted graphically. This concise represen-
tation is possible because of the CWS formalism that we
described in Section 2.2. All the codes that we present con-
verge, upon repeated iteration, to a pure state on the sur-
face of the Bloch sphere. We give this point in coordinates
(x, y, z) where x = Tr(|M〉〈M |X) etc. Codes that we de-
scribe below as being tight obey the following property: all
non-stabilizer states in the same quadrant as |M〉 are dis-
tillable. For instance, if |M〉 has Bloch vector (x, 0, z) with
x, z > 0 then all states ρ satisfying Tr(Xρ) + Tr(Zρ) > 1
converge to |M〉 under repeated iteration. (We confirmed
this numerically by taking a random sample of 1000 points
from the relevant region).

3.1 Codes achieving tight distillation

A 3-qubit code with generators

G1 Z I Z

G2 X Z X

ZL X X Y

XL I X Z

(6)

(a)

(b)

(c)

(d)

(e)

Fig. 3. Codeword stabilized quantum codes with tight dis-
tillation thresholds. The classical codeword w associated with
each graph is the binary vector with a “1” in lighter pink posi-
tions and “0” in darker blue positions. (a) This code converges

to (x, y, z) = (sin θ, 0, cos θ) where θ = arctan
√

(
√

5 − 1)/2.

(b) This code converges to (x, y, z) = (0.66796, 0., 0.7442).
(c) This code converges to (x, y, z) = (0.81281, 0, 0.58252).
(d) This code converges to (x, y, z) = (0.64969, 0, 0.7602).
(e) This code converges to (x, y, z) = (1, 0, 1)/

√
2.

corresponding to the logical basis states

|0L〉 =
1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

−i

0

0

1

0

i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |1L〉 =
1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i

0

1

0

0

−i

0

−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

distills an equatorial state in the y-z plane with Bloch co-
ordinates (0,−.83929,−.54369) up to a tight error thresh-
old of poct = .276921.
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(a)

(b)

(c)

(d)

(e)

Fig. 4. Codeword stabilized quantum codes with tight dis-
tillation thresholds. The classical codeword w associated with
each graph is the binary vector with a “1” in lighter pink posi-
tions and “0” in darker blue positions. (a) This code converges
to (x, y, z) = (0.84893, 0., 0.52851). (b) This code converges
to (x, y, z) = (0.63544, 0., 0.77215). (c) This code converges to
(x, y, z) = (0.81281, 0., 0.58252). (d) This code converges to
(x, y, z) = (0.84534, 0., 0.53423). (e) This code converges to
(x, y, z) = (0.58252, 0., 0.81281).

Other codes achieving tight distillation are given in
pictorial form in Figures 3 and 4. It is a straightforward
exercise to recover the generators and logical operators if
necessary. The 5-qubit code in Figure 3e distills to the
|H〉-type magic state but is more efficient than the (also
tight) 7-qubit Steane code. The efficiency of these codes
is compared in Figure 5.

Y (p, 10−4)

10−23

10−37

10−51

10−65

10−79

0.05 0.10 0.15 0.20 0.25

p

Fig. 5. Curves showing the yield (efficiency) of various tight
distillation routines as a function of input noise rate p. From
bottom to top we have (i) the 7-qubit Steane code as applied
by Reichardt [13] (ii) the 5-qubit code in Figure 3e, (iii) 3-qubit
code from Figure 3a and (iv) the 3-qubit code in equation (6).

3.2 Codes not achieving tight distillation

Here we highlight a small number of codes that, even
though they do not achieve tight distillation, we still find
to be noteworthy.

The |T 〉-type states (depicted in Fig. 1) were shown to
be distillable by Bravyi and Kitaev [3] using the perfect
[[5, 1, 3]] code. We are not aware of any additional routines
for |T 〉 states that have subsequently been developed. This
is in marked contrast to |H〉-type distillation for which a
number of codes have been found. For this reason we note
the existence of a 4-qubit code in Figure 6b that also con-
verges to |T 〉-type states. A visual comparison with the
[[5, 1, 3]] code in Figure 6a indicates that they are closely
related. Unfortunately, the threshold for the new code is
worse than that of the [[5, 1, 3]] code. Finding tight dis-
tillation routines for the |T 〉 direction was already known
to be more complex than the |H〉 case because of a no-go
theorem in reference [14].

In Figure 6c we depict a code that distills |π/3〉 =
(|0〉 + eiπ/3|1〉)/√2. This is particulary interesting as the
associated gate U = diag(1, eiπ/3) is not transversal for
any stabilizer code [15] which prevents it from being distil-
lable by the most commonly used distillation techniques.

It is of interest to find distillation routines that distill
|V 〉-type magic states, which look like (x, y, z) = (3

5 , 0, 4
5 )

http://www.epj.org
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(a)

(b)

(c)

(d)

Fig. 6. Codeword stabilized quantum codes that do not
achieve tight thresholds. (a) This is the well-known 5-qubit
code in CWS form, which Bravyi and Kitaev showed dis-
tilled |T 〉. (b) This code also distills to |T 〉 albeit less ef-
ficiently and with a worse threshold than the above code.
Note that a trivial Z correction must be applied in between
rounds. (c) This code converges to a state Clifford-equivalent
to |π/3〉 = (|0〉+eiπ/3|1〉)/√2. The limiting state has Bloch vec-

tor (x, y, z) = ( 1
2
, 0,

√
3

2
). (d) This code converges to (x, y, z) =

(0.60965, 0., 0.79267).

in the Bloch sphere picture. Supplementing Cliffords with
such states leads to a set of gates – the V -basis – that is
highly efficient for gate synthesis [16]. We did not find such
a code but in Figure 6d we depict a code that converges
to a nearby state (x, y, z) = (0.60965, 0., 0.79267).

4 Conclusions

We have presented a collection of qubit magic state distil-
lation schemes using small stabilizer codes, most of which
achieve tight distillation up to the edge of the stabilizer

octahedron. Two codes that are not tight were still noted
because they converge to |T 〉 and |π/3〉 respectively. Our
distillation routines converge to equatorial states, which
means that they can be used to implement rotations
about a Pauli axis using standard half-teleportation tech-
niques [3]. We have noted that inefficiency of our routines
relates to linear error suppression and leave as open ques-
tion whether there is some way of boosting their efficiency
by combining them with other codes or techniques. An-
other possible avenue is to use these codes to convert non-
stabilizer states of one type to another, as was done in
e.g., [17]. For example, if we have access to almost pure
|H〉 states (after using the Reed-Muller code, say) then in-
put these to the |π/3〉 routine, the output is an almost pure
state somewhere between |H〉 and |π/3〉. Further analysis
of the relative merits of methods such as this is left for
future work.
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