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We consider a new systemof generalized variational inequalities (SGVI) defined on two closed convex subsets of a realHilbert space.
To find the solution of considered SGVI, a parallelMann iteration process and a parallel 𝑆-iteration process have been proposed and
the strong convergence of the sequences generated by these parallel iteration processes is discussed. Numerical example illustrates
that the proposed parallel 𝑆-iteration process has an advantage over parallel Mann iteration process in computing altering points
of some mappings.

1. Introduction

Variational inequalities are the most interesting and impor-
tant mathematical problems and have been studied inten-
sively in the past years. The variational inequality problem
was first introduced and studied by Stampacchia [1] in 1964,
which is defined as follows.

Let𝐶 be a nonempty closed convex subset of a realHilbert
space 𝐻 and let 𝑇 : 𝐶 → 𝐻 be a nonlinear mapping. Then
the classical variational inequality problem is to find a point𝑥∗ ∈ 𝐶 such that

⟨𝑇𝑥∗, 𝑥 − 𝑥∗⟩ ≥ 0 ∀𝑥 ∈ 𝐶. (1)

The problem (1) is denoted by 𝑉𝐼(𝐶, 𝑇) and the set of
solutions of (1) is denoted and defined by Ω[𝑉𝐼(𝐶, 𝑇)] ={𝑥∗ ∈ 𝐶 : ⟨𝑇𝑥∗, 𝑥 − 𝑥∗⟩ ≥ 0 for all 𝑥 ∈ 𝐶}. We denote
by Fix(𝑇) the set of fixed points of 𝑇. It is well known that
the variational inequality problem (1) is equivalent to the
following fixed point problem:

find 𝑥∗ ∈ 𝐶 such that 𝑥∗ = 𝑃𝐶 (𝐼 − 𝜇𝑇) 𝑥∗, (2)

where 𝑃𝐶 is the metric projection from 𝐻 onto 𝐶, 𝜇 > 0
is a constant, and 𝐼 is the identity mapping from 𝐻 into
itself. It is well known that if the mapping 𝑇 is 𝑘-Lipschitzian
and 𝜂-strongly monotone, then the operator 𝑃𝐶(𝐼 − 𝜇𝑇) is a
contraction on 𝐶 provided that 0 < 𝜇 < 2𝜂/𝑘2. In this case,
the Banach contraction principle guarantees that 𝑉𝐼(𝐶, 𝑇)
has a unique solution 𝑥∗ and the sequence of Picard iteration
method given by

𝑥𝑛+1 = 𝑃𝐶 (𝐼 − 𝜇𝑇) 𝑥𝑛 ∀𝑛 ∈ N (3)

converges strongly to 𝑥∗. This method is called the projected
gradient method [2]. This method has been widely used in
many practical problems, due partially to its fast convergence.

In 2007, Agarwal et al. [3] posed the following query.

Question 1. Is it possible to develop an iterative method
whose rate of convergence is faster than the Picard iteration
method for contraction mappings?

They introduced the following iteration process known
as 𝑆-iteration process as an answer to Question 1: let 𝐶 be a
nonempty convex subset of a normed linear space 𝑋, and let
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𝑇 : 𝐶 → 𝐶 be an operator. Then, for arbitrary 𝑥1 ∈ 𝐶, the𝑆-iteration process is defined by

𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑇𝑥𝑛 + 𝛼𝑛𝑇𝑦𝑛,
𝑦𝑛 = (1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑇𝑥𝑛 ∀𝑛 ∈ N, (4)

where {𝛼𝑛} and {𝛽𝑛} are real sequences in (0, 1) satisfying
some suitable conditions. In [4], Sahu proved that the rate of
convergence of 𝑆-iteration process for contraction mappings
is faster than that of Picard [5] and Mann [6] iteration
processes by providing a numerical example. The 𝑆-iteration
process is more applicable than the Picard [5], Mann [6], and
Ishikawa [7] iteration processes because it converges faster
than these iteration processes for contraction mappings and
also works for nonexpansive mappings. Due to the super rate
of convergence of above iteration process, Agarwal et al. [3]
called it the 𝑆-iteration process. Due to its fastness, in recent
years, the 𝑆-iteration process attractedmany researchers as an
alternate iteration process and is used for solving fixed point
problems, common fixed point problems, convex minimiza-
tion problems, the problem of solving nonlinear operator
equations, and other allied areas (see [8–10]). Moreover, the
idea of 𝑆-iteration process is applied by Cholamjiak et al. [11]
for finding a minimizer of a convex function and fixed points
of nonexpansive mappings in CAT(0) space setting. Sahu [4]
also introduced the notion of 𝑆-operator of a mapping 𝑇
generated by 𝛼 ∈ (0, 1) and 𝑇 and normal 𝑆-iteration process
in the following way: let 𝐶 be a nonempty convex subset of
a normed linear space 𝑋 and let 𝑇 : 𝐶 → 𝐶 be an operator.
Then, for arbitrary 𝑥1 ∈ 𝐶, the normal 𝑆-iteration process is
defined by

𝑥𝑛+1 = 𝑇 [(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑇 (𝑥𝑛)] ∀𝑛 ∈ N, (5)

where {𝛼𝑛} is a sequence of real numbers in (0, 1). In 2017,
Verma and Shukla [12] designed some new algorithms based
on 𝑆-iteration processes andnamed themas 𝑆-iteration-based
forward-backward algorithm (SFBA) andnormal 𝑆-iteration-
based forward-backward algorithm (NSFBA) and performed
the nice experiments of the high-dimensional real datasets for
SFBA, NSFBA, and others.

On the other hand, in Hilbert spaces, projection type
methods have played a very crucial role in the numerical
resolution of variational inequalities depending on their
convergence analysis. By virtue of the projection, in 2011,
Ceng et al. [13] proposed the following iterative method:

𝑥𝑛+1 = 𝑃𝐶 [𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝛼𝑛𝜇𝐹)𝑇𝑥𝑛] ∀𝑛 ∈ N, (6)

where 𝐹 : 𝐶 → 𝐻 is 𝑘-Lipschitzian and 𝜂-strongly monotone
operator with 𝑘 > 0, 𝜂 > 0, 𝑉 : 𝐶 → 𝐻 is an 𝐿-Lipschitzian
mapping with 𝐿 ≥ 0, 𝑇 : 𝐶 → 𝐶 is a nonexpansive mapping
with Fix(𝑇) ̸= 0, {𝛼𝑛} ⊂ (0, 1), and 𝑥1 ∈ 𝐶 an arbitrary initial
point. They proved that the sequence {𝑥𝑛} generated by the
iterative method (6) converges strongly to a fixed point 𝑥∗ of𝑇 which solves the following variational inequality problem:

⟨(𝜇𝐹 − 𝛾𝑉) 𝑥∗, 𝑥 − 𝑥∗⟩ ≥ 0 ∀𝑥 ∈ 𝐶 fl Fix (𝑇) . (7)

In 2001, Verma [14] generalized the concept of variational
inequalities to a system of nonlinear variational inequalities
(SNVI) in the following way: find 𝑥∗, 𝑦∗ ∈ 𝐶 such that

⟨𝜌𝑇 (𝑦∗) + 𝑥∗ − 𝑦∗, 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶,
⟨𝜂𝑇 (𝑥∗) + 𝑦∗ − 𝑥∗, 𝑥 − 𝑦∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (8)

where 𝑇 : 𝐶 → 𝐻 is any mapping and 𝜂 > 0 and 𝜌 > 0 are
constants. To solve (8), he introduced the following iterative
method:

𝑦𝑛 = 𝑃𝐶 [𝑥𝑛 − 𝜂𝑇 (𝑥𝑛)] ,
𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑃𝐶 [𝑦𝑛 − 𝜌𝑇 (𝑦𝑛)] , (9)

and he proved that the sequences {𝑥𝑛} and {𝑦𝑛} generated by
(9) converge to 𝑥∗ and 𝑦∗, respectively. In 2005, Verma [15]
also introduced the general model for two-step projection
methods for applying the approximation solvability of SNVI
inHilbert space setting as follows: let𝐶 be a nonempty closed
convex subset of a realHilbert space𝐻 and let𝑇 : 𝐶 → 𝐻 be a
nonlinear mapping. For arbitrary chosen initial point 𝑥1 ∈ 𝐶,
let {𝑥𝑛} and {𝑦𝑛} be the sequences in 𝐶 defined by

𝑦𝑛 = (1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑃𝐶 [𝑥𝑛 − 𝜂𝑇 (𝑥𝑛)] ,
𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑃𝐶 [𝑦𝑛 − 𝜌𝑇 (𝑦𝑛)] , (10)

where 𝜂 > 0, 𝜌 > 0 and 0 ≤ 𝛼𝑛, 𝛽𝑛 ≤ 1. Further, problem (8)
is equivalent to the following projection formulas:

𝑥∗ = 𝑃𝐶 (𝐼 − 𝜌𝑇) 𝑦∗,
𝑦∗ = 𝑃𝐶 (𝐼 − 𝜂𝑇) 𝑥∗, (11)

for a monotone mapping 𝑇 : 𝐶 → 𝐻. The problem of
finding the solutions of (11) by using iterative methods has
been studied by many authors (see [15–22]). A more general
case has been studied in [23].

Parallel iteration processes have their own advantages.
A variety of problems have been dealt with in these iter-
ation processes (see [24, 25] and the references therein).
Recently, Sahu [26] introduced the notion of altering points
of nonlinear mappings and following the idea of 𝑆-operator
and normal 𝑆-iteration process, he [26] introduced a parallel𝑆-iteration process for finding altering points of nonlinear
mappings as follows.

Let 𝐶1 and 𝐶2 be two nonempty closed convex subsets of
a Banach space 𝑋 and let 𝑇1 : 𝐶1 → 𝐶2 and 𝑇2 : 𝐶2 → 𝐶1
be two mappings.Then, for 𝛼 ∈ (0, 1) and arbitrary (𝑥1, 𝑦1) ∈𝐶1 × 𝐶2, the parallel normal 𝑆-iteration process is defined by

𝑥𝑛+1 = 𝑇2 [(1 − 𝛼) 𝑦𝑛 + 𝛼𝑇1 (𝑥𝑛)] ,
𝑦𝑛+1 = 𝑇1 [(1 − 𝛼) 𝑥𝑛 + 𝛼𝑇2 (𝑦𝑛)] ∀𝑛 ∈ N. (12)

The following convergence result is given in [26].

Theorem 1 (see [26]). Let 𝐶1 and 𝐶2 be two nonempty closed
convex subsets of a Banach space𝑋. Let 𝑇1 : 𝐶1 → 𝐶2 and 𝑇2 :𝐶2 → 𝐶1 be two Lipschitz continuous mappings with Lipschitz
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constants 𝑘1 < 1 and 𝑘2 < 1, respectively. Then the sequence{(𝑥𝑛, 𝑦𝑛)} in𝐶1×𝐶2 generated by the parallel 𝑆-iteration process
(12) converges strongly to a unique point (𝑥∗, 𝑦∗) ∈ 𝐶1 × 𝐶2
such that 𝑥∗ and 𝑦∗ are altering points of mappings 𝑇1 and 𝑇2.

In this paper, motivated by the work of Ceng et al. [13],
Verma [14, 15], Hao et al. [23], and Sahu [26], we consider
a new SGVI defined on two closed convex subsets of a real
Hilbert space and propose a parallelMann and amore general
parallel 𝑆-iteration process for solving considered SGVI in the
context of altering points and study the strong convergence
of the sequences generated by the proposed algorithms to
altering points of some nonlinear mappings.

2. Preliminaries

Throughout this paper, the symbol N stands for the set of all
natural numbers.

Let𝐶 be a nonempty subset of a real Hilbert space𝐻with
inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖, respectively. A mapping𝑇 : 𝐶 → 𝐻 is called

(1) monotone if

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 0 ∀𝑥, 𝑦 ∈ 𝐶, (13)

(2) 𝜂-strongly monotone if there exists a positive real
number 𝜂 such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 ∀𝑥, 𝑦 ∈ 𝐶, (14)

(3) 𝑘-Lipschitzian if there exists a constant 𝑘 ≥ 0 such that
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ 𝑘 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ∀𝑥, 𝑦 ∈ 𝐶, (15)

(4) 𝜃-contraction if there exists a constant 𝜃 ∈ [0, 1) such
that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ 𝜃 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ∀𝑥, 𝑦 ∈ 𝐶, (16)

(5) nonexpansive if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ∀𝑥, 𝑦 ∈ 𝐶. (17)

Definition 2 (see [26]). Let 𝐶1 and 𝐶2 be two nonempty
subsets of a metric space 𝑋. Then 𝑥∗ ∈ 𝐶1 and 𝑦∗ ∈ 𝐶2 are
altering points of mappings 𝑇1 : 𝐶1 → 𝐶2 and 𝑇2 : 𝐶2 → 𝐶1
if

𝑇1 (𝑥∗) = 𝑦∗,
𝑇2 (𝑦∗) = 𝑥∗. (18)

The set of altering points ofmappings𝑇1 and𝑇2 is denoted
and defined by

Alt (𝑇1, 𝑇2) = {(𝑥∗, 𝑦∗) ∈ 𝐶1 × 𝐶2 : 𝑇1 (𝑥∗)
= 𝑦∗, 𝑇2 (𝑦∗) = 𝑥∗} . (19)

We now give some numerical examples in support of the
definition of altering points of some nonlinear mappings as
follows.

Example 3 (see [26]). Let 𝑋 = [0, 1], 𝐶1 = [0, 1/2], and 𝐶2 =[1/2, 1]. Define 𝑇1 : 𝐶1 → 𝐶2 and 𝑇2 : 𝐶2 → 𝐶1 by 𝑇𝑖(𝑥) =1 − 𝑥 for 𝑖 = 1, 2. Note that 𝑇2𝑇1 : 𝐶1 → 𝐶1 is defined by𝑇2𝑇1𝑥 = 𝑇2(1 − 𝑥) = 𝑥. Thus, each point of 𝐶1 is a fixed point
of 𝑇2𝑇1. Then altering points 𝑥∗ ∈ 𝐶1 and 𝑦∗ ∈ 𝐶2 of 𝑇1 and𝑇2 are given by the relation 𝑥∗ + 𝑦∗ = 1. Indeed,

Alt (𝑇1, 𝑇2) = {(𝑥∗, 𝑦∗) ∈ 𝐶1 × 𝐶2 : 𝑥∗ + 𝑦∗ = 1} . (20)

Example 4. Let 𝑋 = R2, 𝐶1 = {(𝑥, 𝑦) ∈ R2 : 𝑥 ≥ 0, 𝑦 ≥ 0},
and 𝐶2 = {(𝑥, 𝑦) ∈ R2 : 𝑥 ≤ 0, 𝑦 ≤ 0}. Let 𝑇1 : 𝐶1 → 𝐶2 and𝑇2 : 𝐶2 → 𝐶1 be two mappings defined, respectively, by

𝑇1 (𝑥, 𝑦) = (−𝑥, − 𝑦 − 1) ∀ (𝑥, 𝑦) ∈ 𝐶1,
𝑇2 (𝑥, 𝑦) = (1 − 𝑥2 , 1 − 𝑦2 ) ∀ (𝑥, 𝑦) ∈ 𝐶2.

(21)

Note that 𝑇2𝑇1 : 𝐶1 → 𝐶1 is defined by 𝑇2𝑇1(𝑥, 𝑦) =𝑇2(−𝑥, −𝑦−1) = ((𝑥+1)/2, (𝑦+2)/2). Clearly (1, 2) ∈ 𝐶1 and(−1, −3) ∈ 𝐶2 are fixed points of 𝑇2𝑇1 and 𝑇1𝑇2, respectively.
Therefore, 𝑥∗ = (1, 2) and 𝑦∗ = (−1, −3) are altering points
of mappings 𝑇1 and 𝑇2.

Let𝐶 be a nonempty closed convex subset of𝐻.Then, for
any 𝑥 ∈ 𝐻, there exists a unique nearest point𝑃𝐶(𝑥) of𝐶 such
that

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶 (𝑥)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ∀𝑦 ∈ 𝐶. (22)

The mapping 𝑃𝐶 is called the metric projection [27] from 𝐻
onto 𝐶. It is remarkable that the metric projection mapping𝑃𝐶 is nonexpansive from𝐻 onto 𝐶 (see Agarwal et al. [28]).

We need the following technical lemmas.

Lemma5 (see [28]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻 and let 𝑃𝐶 be the metric projection
from𝐻 onto 𝐶. Given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶, then 𝑧 = 𝑃𝐶(𝑥) if and
only if ⟨𝑥 − 𝑧, 𝑧 − 𝑦⟩ ≥ 0 for all 𝑦 ∈ 𝐶.
Lemma 6 (see [29]). Let 𝐶 be a nonempty subset of a real
Hilbert space 𝐻. Suppose that 𝜆 ∈ (0, 1) and 𝜇 > 0. Let𝐹 : 𝐶 → 𝐻 be a 𝑘-Lipschitzian and 𝜂-strongly monotone
operator. Define the mapping 𝑇𝜆 : 𝐶 → 𝐻 by

𝑇𝜆 (𝑥) = (𝐼 − 𝜆𝜇𝐹) (𝑥) ∀𝑥 ∈ 𝐶, 𝜆 ∈ (0, 1) . (23)

Then 𝑇𝜆 is a contraction provided 0 < 𝜇 < 2𝜂/𝑘2. More
precisely, for 𝜇 ∈ (0, 2𝜂/𝑘2),

󵄩󵄩󵄩󵄩𝑇𝜆 (𝑥) − 𝑇𝜆 (𝑦)󵄩󵄩󵄩󵄩 ≤ (1 − 𝜆𝜏) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ∀𝑥, 𝑦 ∈ 𝐶, (24)

where 𝜏 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝑘2) ∈ (0, 1].
Lemma 7 (see [17]). Let {𝑎𝑛}, {𝑏𝑛}, and {𝑐𝑛} be three nonnega-
tive real sequences satisfying the following conditions:

𝑎𝑛+1 ≤ (1 − 𝛼𝑛) 𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 ∀𝑛 ≥ 𝑛0, (25)

where 𝑛0 is some nonnegative integer, 𝛼𝑛 ∈ (0, 1) with∑∞
𝑛=0

𝛼𝑛 = ∞, 𝑏𝑛 = ∘(𝛼𝑛), and∑∞𝑛=0 𝑐𝑛 < ∞.Then lim𝑛→∞𝑎𝑛 =0.
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Lemma 8 (see [26, Theorem 3.1]). Let 𝐶1 and 𝐶2 be two
nonempty closed subsets of a complete metric space𝑋. Suppose
that 𝑆1 : 𝐶1 → 𝐶2 and 𝑆2 : 𝐶2 → 𝐶1 be two Lipschitz con-
tinuous mappings with Lipschitz constants 𝑘1 and 𝑘2, respect-
ively, such that 𝑘1𝑘2 < 1. Then the following holds:

(a) There exists a unique point (𝑥∗, 𝑦∗) ∈ 𝐶1×𝐶2 such that𝑥∗ and 𝑦∗ are altering points of mappings 𝑆1 and 𝑆2.
(b) For arbitrary 𝑥1 ∈ 𝐶1, a sequence {(𝑥𝑛, 𝑦𝑛)} ∈ 𝐶1 × 𝐶2

generated by

𝑦𝑛 = 𝑆1𝑥𝑛,
𝑥𝑛+1 = 𝑆2𝑦𝑛 ∀𝑛 ∈ N

(26)

converges to (𝑥∗, 𝑦∗).
3. Main Results

In this section, we introduce a new systemof generalized vari-
ational inequalities and new iterative algorithms for solving
the proposed system of generalized variational inequalities in
the framework of real Hilbert spaces.

Let𝐶1 and𝐶2 be nonempty closed convex subsets of a real
Hilbert space 𝐻 and let 𝑇1 : 𝐶1 → 𝐶2 and 𝑇2 : 𝐶2 → 𝐶1 be
somemappings. Let𝑔1, 𝑔2 : 𝐻 → 𝐻 bemappings. Consider a
general system of generalized variational inequalities (SGVI)
defined on 𝐶1 and 𝐶2 as follows.

Find (𝑥∗, 𝑦∗) ∈ C1 × 𝐶2 such that

⟨𝑠𝑇1 (𝑥∗) + 𝑦∗ − 𝑔1 (𝑥∗) , 𝑔1 (𝑦) − 𝑦∗⟩ ≥ 0,
∀𝑦 ∈ 𝐶2,

⟨𝑡𝑇2 (𝑦∗) + 𝑥∗ − 𝑔2 (𝑦∗) , 𝑔2 (𝑥) − 𝑥∗⟩ ≥ 0,
∀𝑥 ∈ 𝐶1,

(27)

where 𝑠 > 0 and 𝑡 > 0 are constants.
Remark 9. If 𝑇1 = 𝑇2 = 𝑇, 𝑔1 = 𝑔2 = 𝐼, and 𝐶1 = 𝐶2 = 𝐶,
then the systemof generalized variational inequalities (SGVI)
(27) reduces to SNVI (8) studied by Verma [14].

The system of generalized variational inequalities (27)
is more general in nature. One can find various systems of
generalized variational inequalities from SGVI (27).

We now discuss some special cases of (27) as follows.
Let 𝑔𝑖 : 𝐻 → 𝐻 be single-valued 𝛿𝑖-strongly monotone,𝜂𝑖-Lipschitz continuous, let 𝐹𝑖 : 𝐶𝑖 → 𝐻 be 𝑘𝑖-Lipschitzian

and 𝜉𝑖-strongly monotone operator with constants 𝑘𝑖, 𝜉𝑖 > 0,
and let 𝑉𝑖 : 𝐶𝑖 → 𝐻 be 𝐿 𝑖-Lipschitzian mapping with con-
stant 𝐿 𝑖 ≥ 0 for 𝑖 ∈ {1, 2}. Suppose that 0 < 𝜇𝑖 < 2𝜉𝑖/𝑘2𝑖 and
0 ≤ 𝛾𝑖 < 𝜏𝑖/𝐿 𝑖, where 𝜏𝑖 = 1−√1 − 𝜇𝑖(2𝜉𝑖 − 𝜇𝑖𝑘2𝑖 ) for 𝑖 ∈ {1, 2}.

If 𝑇𝑖 = 𝜇𝑖𝐹𝑖 − 𝛾𝑖𝑉𝑖 for 𝑖 = 1, 2, then the system of gen-
eralized variational inequalities (27) reduces to the following
system of generalized variational inequalities (SGVI).

Find (𝑥∗, 𝑦∗) ∈ 𝐶1 × 𝐶2 such that

⟨𝑠 (𝜇1𝐹1 − 𝛾1𝑉1) (𝑥∗) + 𝑦∗ − 𝑔1 (𝑥∗) , 𝑔1 (𝑦) − 𝑦∗⟩
≥ 0, ∀𝑦 ∈ 𝐶2,

⟨𝑡 (𝜇2𝐹2 − 𝛾2𝑉2) (𝑦∗) + 𝑥∗ − 𝑔2 (𝑦∗) , 𝑔2 (𝑥) − 𝑥∗⟩
≥ 0, ∀𝑥 ∈ 𝐶1.

(28)

Define the mappings 𝑆1 : 𝐶1 → 𝐶2 and 𝑆2 : 𝐶2 → 𝐶1 by
𝑆1 fl 𝑃𝐶

2

[𝑔1 − 𝑠 (𝜇1𝐹1 − 𝛾1𝑉1)] (29)

𝑆2 fl 𝑃𝐶
1

[𝑔2 − 𝑡 (𝜇2𝐹2 − 𝛾2𝑉2)] , (30)

where 𝑠 and 𝑡 are some constants in (0, 1]. Using Lemma 5,
one can easily observe that the SGVI (28) is equivalent to the
following altering point formulation:

to find (𝑥∗, 𝑦∗) ∈ 𝐶1
× 𝐶2 such that

{{{
𝑥∗ = 𝑃𝐶

1

[𝑔2 − 𝑡 (𝜇2𝐹2 − 𝛾2𝑉2)] (𝑦∗) ,
𝑦∗ = 𝑃𝐶

2

[𝑔1 − 𝑠 (𝜇1𝐹1 − 𝛾1𝑉1)] (𝑥∗) .
(31)

First we introduce parallelMann iteration process to solve
system of generalized variational inequalities (28) as follows.

Algorithm 10. For any given (𝑥1, 𝑦1) ∈ 𝐶1 × 𝐶2, let {(𝑥𝑛, 𝑦𝑛)}
be an iterative sequence in 𝐶1 × 𝐶2 defined by

𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆2 (𝑦𝑛) ,
𝑦𝑛+1 = (1 − 𝛼𝑛) 𝑦𝑛 + 𝛼𝑛𝑆1 (𝑥𝑛) , ∀𝑛 ∈ N, (32)

where {𝛼𝑛} is a sequence in [0, 1] and 𝑆1 and 𝑆2 are defined by
(29) and (30), respectively.

Motivated by Sahu [26] and equivalent formulation (31),
we now propose amore general parallel 𝑆-iteration process to
solve SGVI (28) as follows.

Algorithm 11. For any given (𝑥1, 𝑦1) ∈ 𝐶1 × 𝐶2, let {(𝑥𝑛, 𝑦𝑛)}
be an iterative sequence in 𝐶1 × 𝐶2 defined by

𝑥𝑛+1 = 𝑆2 [(1 − 𝛼𝑛) 𝑦𝑛 + 𝛼𝑛𝑆1 (𝑥𝑛)] ,
𝑦𝑛+1 = 𝑆1 [(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆2 (𝑦𝑛)] , ∀𝑛 ∈ N, (33)

where {𝛼𝑛} is a sequence in (0, 1) and 𝑆1 and 𝑆2 are defined by
(29) and (30), respectively.

Before proving our main results, we will prove the
following proposition which will be used in sequel.

Proposition 12. Let 𝐶1 and 𝐶2 be nonempty closed convex
subsets of a real Hilbert space 𝐻. Let 𝑔𝑖 : 𝐻 → 𝐻 be single-
valued 𝛿𝑖-strongly monotone, 𝜂𝑖-Lipschitz continuous, let 𝐹𝑖 :𝐶𝑖 → 𝐻 be 𝑘𝑖-Lipschitzian and 𝜉𝑖-strongly monotone operator
with constants 𝑘𝑖, 𝜉𝑖 > 0, and let 𝑉𝑖 : 𝐶𝑖 → 𝐻 be 𝐿 𝑖-Lipschit-
zian mapping with constant 𝐿 𝑖 ≥ 0 for 𝑖 ∈ {1, 2}. Suppose
that 0 < 𝜇𝑖 < 2𝜉𝑖/𝑘2𝑖 and 0 ≤ 𝛾𝑖 < 𝜏𝑖/𝐿 𝑖, where 𝜏𝑖 =
1 −√1 − 𝜇𝑖(2𝜉𝑖 − 𝜇𝑖𝑘2𝑖 ) for 𝑖 ∈ {1, 2}. Let 𝑠, 𝑡 ∈ (0, 1] and let 𝜃1
and 𝜃2 be real constants defined by

𝜃𝑖 = √1 − 2𝛿𝑖 + 𝜂2𝑖 for 𝑖 = 1, 2. (34)
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Then the mappings 𝑆1 and 𝑆2 defined by (29) and (30) are Lip-
schitz continuous with Lipschitz constants [𝜃1 + (1 − 𝑠(𝜏1 −𝛾1𝐿1))] and [𝜃2 + (1 − 𝑡(𝜏2 − 𝛾2𝐿2))], respectively.
Proof. Let 𝑥, 𝑦 ∈ 𝐶1. Then, we have

󵄩󵄩󵄩󵄩𝑆1 (𝑥) − 𝑆1 (𝑦)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩𝑃𝐶2 [𝑔1 − 𝑠 (𝜇1𝐹1 − 𝛾1𝑉1)] (𝑥)
− 𝑃𝐶

2

[𝑔1 − 𝑠 (𝜇1𝐹1 − 𝛾1𝑉1)] (𝑦)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑔1 (𝑥)
− 𝑠 (𝜇1𝐹1 − 𝛾1𝑉1) (𝑥) − 𝑔1 (𝑦)
+ 𝑠 (𝜇1𝐹1 − 𝛾1𝑉1) (𝑦)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑔1 (𝑥) − 𝑔1 (𝑦)
− (𝑥 − 𝑦) + (𝑥 − 𝑦) − 𝑠 (𝜇1𝐹1 − 𝛾1𝑉1) (𝑥 − 𝑦)󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩𝑔1 (𝑥) − 𝑔1 (𝑦) − (𝑥 − 𝑦)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩(𝑥 − 𝑦)
− 𝑠 (𝜇1𝐹1 − 𝛾1𝑉1) (𝑥 − 𝑦)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦
− (𝑔1 (𝑥) − 𝑔1 (𝑦))󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑥 − 𝑠𝜇1𝐹1 (𝑥) − 𝑦
+ 𝑠𝜇1𝐹1 (𝑦)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑠𝛾1𝑉1 (𝑥) − 𝑠𝛾1𝑉1 (𝑦)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦
− (𝑔1 (𝑥) − 𝑔1 (𝑦))󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩(𝐼 − 𝑠𝜇1𝐹1) (𝑥)
− (𝐼 − 𝑠𝜇1𝐹1) (𝑦)󵄩󵄩󵄩󵄩 + 𝑠𝛾1 󵄩󵄩󵄩󵄩𝑉1 (𝑥) − 𝑉1 (𝑦)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑥
− 𝑦 − (𝑔1 (𝑥) − 𝑔1 (𝑦))󵄩󵄩󵄩󵄩 + (1 − 𝑠𝜏1) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
+ 𝑠𝛾1𝐿1 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑥 − 𝑦 − (𝑔1 (𝑥) − 𝑔1 (𝑦))󵄩󵄩󵄩󵄩
+ (1 − 𝑠 (𝜏1 − 𝛾1𝐿1)) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥 − 𝑦 − (𝑔1 (𝑥) − 𝑔1 (𝑦))󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 − 2 ⟨𝑥
− 𝑦, 𝑔1 (𝑥) − 𝑔1 (𝑦)⟩ + 󵄩󵄩󵄩󵄩𝑔1 (𝑥) − 𝑔1 (𝑦)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥
− 𝑦󵄩󵄩󵄩󵄩2 − 2𝛿1 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 + 𝜂21 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 = (1 − 2𝛿1
+ 𝜂2
1
) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 = 𝜃21 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 .

(35)

From (35), we have
󵄩󵄩󵄩󵄩𝑆1 (𝑥) − 𝑆1 (𝑦)󵄩󵄩󵄩󵄩
≤ 𝜃1 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1)) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
= [𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1))] 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 .

(36)

Thus 𝑆1 is [𝜃1 + (1 − 𝑠(𝜏1 − 𝛾1𝐿1))]-Lipschitz continuous.
Similarly, we can show that 𝑆2 is [𝜃2 + (1 − 𝑡(𝜏2 − 𝛾2𝐿2))]-

Lipschitz continuous.

Now we are ready to present our main results. First we
establish the convergence analysis of Algorithm 10 for solving
SGVI (28).

Theorem 13. Let𝐶1 and𝐶2 be nonempty closed convex subsets
of a real Hilbert space 𝐻. Let 𝑔𝑖 : 𝐻 → 𝐻 be single-valued𝛿𝑖-strongly monotone, 𝜂𝑖-Lipschitz continuous, let 𝐹𝑖 : 𝐶𝑖 →𝐻 be 𝑘𝑖-Lipschitzian and 𝜉𝑖-strongly monotone operator with
constants 𝑘𝑖, 𝜉𝑖 > 0, and let 𝑉𝑖 : 𝐶𝑖 → 𝐻 be 𝐿 𝑖-Lipschitzian

mapping with constant 𝐿 𝑖 ≥ 0 for 𝑖 ∈ {1, 2}. Suppose that0 < 𝜇𝑖 < 2𝜉𝑖/𝑘2𝑖 and 0 ≤ 𝛾𝑖 < 𝜏𝑖/𝐿 𝑖, where 𝜏𝑖 = 1 −
√1 − 𝜇𝑖(2𝜉𝑖 − 𝜇𝑖𝑘2𝑖 ) for 𝑖 ∈ {1, 2}. Let 𝑠, 𝑡 ∈ (0, 1] and let
𝜃1 and 𝜃2 be real constants defined by (34). Let 𝑆1 and 𝑆2 be
defined by (29) and (30), respectively. For given initial point(𝑥1, 𝑦1) ∈ 𝐶1×𝐶2, let {(𝑥𝑛, 𝑦𝑛)} be an iterative sequence defined
by parallelMann iteration process (32), where {𝛼𝑛} is a sequence
in [0, 1] such that ∑∞

𝑛=1
𝛼𝑛 = ∞. Assume that the following

condition is satisfied:

𝜃1𝑠 < (𝜏1 − 𝛾1𝐿1) ,
𝜃2𝑡 < (𝜏2 − 𝛾2𝐿2) .

(37)

Then we have the following:

(i) There exists a unique point (𝑥∗, 𝑦∗) ∈ 𝐶1 × 𝐶2, which
solves SGVI (28).

(ii) The sequence {(𝑥𝑛, 𝑦𝑛)} generated by parallel Mann
iteration process (32) converges strongly to the point(𝑥∗, 𝑦∗).

Proof. (i) It follows from Lemma 8 and (31).
(ii) By (31), (32), and Proposition 12, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥∗󵄩󵄩󵄩󵄩
= 󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆2 (𝑦𝑛) − (1 − 𝛼𝑛) 𝑥∗ − 𝛼𝑛𝑥∗󵄩󵄩󵄩󵄩
≤ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 𝛼𝑛 󵄩󵄩󵄩󵄩𝑆2 (𝑦𝑛) − 𝑥∗󵄩󵄩󵄩󵄩
= (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 𝛼𝑛 󵄩󵄩󵄩󵄩𝑆2 (𝑦𝑛) − 𝑆2 (𝑦∗)󵄩󵄩󵄩󵄩
≤ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩
+ 𝛼𝑛 [𝜃2 + (1 − 𝑡 (𝜏2 − 𝛾2𝐿2))] 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩 .

(38)

Again, by Proposition 12 that 𝑆1 : 𝐶1 → 𝐶2 is [𝜃1 + (1 − 𝑠(𝜏1 −𝛾1𝐿1))]-Lipschitz continuous and using (31) and (32), we have
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦∗󵄩󵄩󵄩󵄩
≤ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩
+ 𝛼𝑛 [𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1))] 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 .

(39)

Set

𝜃 = max {𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1)) , 𝜃2
+ (1 − 𝑡 (𝜏2 − 𝛾2𝐿2))} . (40)

From (38) and (39), we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥∗󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦∗󵄩󵄩󵄩󵄩
≤ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩
+ 𝛼𝑛 [𝜃2 + (1 − 𝑡 (𝜏2 − 𝛾2𝐿2))] 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩
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+ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩
+ 𝛼𝑛 [𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1))] 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 𝛼𝑛𝜃 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩
+ (1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩 + 𝛼𝑛𝜃 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩

= (1 − 𝛼𝑛 (1 − 𝜃)) (󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩) .
(41)

Now, we define the norm ‖ ⋅ ‖1 on 𝐻 × 𝐻 by ‖(𝑥, 𝑦)‖1 =‖𝑥‖+‖𝑦‖ for all (𝑥, 𝑦) ∈ 𝐻×𝐻.Therefore, using (41), we have
󵄩󵄩󵄩󵄩(𝑥𝑛+1, 𝑦𝑛+1) − (𝑥∗, 𝑦∗)󵄩󵄩󵄩󵄩1
= 󵄩󵄩󵄩󵄩(𝑥𝑛+1 − 𝑥∗, 𝑦𝑛+1 − 𝑦∗)󵄩󵄩󵄩󵄩1
= 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥∗󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦∗󵄩󵄩󵄩󵄩
≤ (1 − 𝛼𝑛 (1 − 𝜃)) (󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩)
= (1 − 𝛼𝑛 (1 − 𝜃)) 󵄩󵄩󵄩󵄩(𝑥𝑛, 𝑦𝑛) − (𝑥∗, 𝑦∗)󵄩󵄩󵄩󵄩1 .

(42)

Noticing that ∑∞
𝑛=1

𝛼𝑛 = ∞ and 𝜃 ∈ (0, 1). Therefore, from
Lemma 7, we have lim𝑛→∞‖(𝑥𝑛, 𝑦𝑛) − (𝑥∗, 𝑦∗)‖1 = 0. Thus,
we get lim𝑛→∞‖𝑥𝑛 − 𝑥∗‖ = lim𝑛→∞‖𝑦𝑛 − 𝑦∗‖ = 0 and hence{𝑥𝑛} and {𝑦𝑛} converge to 𝑥∗ and 𝑦∗, respectively.
Corollary 14. Let 𝐶1 and 𝐶2 be nonempty closed convex
subsets of a real Hilbert space 𝐻. Let 𝐹𝑖 : 𝐶𝑖 → 𝐻 be 𝑘𝑖-
Lipschitzian and 𝜉𝑖-strongly monotone operator with constants𝑘𝑖, 𝜉𝑖 > 0 and let𝑉𝑖 : 𝐶𝑖 → 𝐻 be 𝐿 𝑖-Lipschitzian mapping with
constant 𝐿 𝑖 ≥ 0 for 𝑖 ∈ {1, 2}. Suppose that 0 < 𝜇𝑖 < 2𝜉𝑖/𝑘2𝑖
and 0 ≤ 𝛾𝑖 < 𝜏𝑖/𝐿 𝑖, where 𝜏𝑖 = 1 − √1 − 𝜇𝑖(2𝜉𝑖 − 𝜇𝑖𝑘2𝑖 ) for𝑖 ∈ {1, 2}. Let 𝑠, 𝑡 ∈ (0, 1]. Define mappings 𝑆1 : 𝐶1 → 𝐶2 and𝑆2 : 𝐶2 → 𝐶1 by

𝑆1 fl 𝑃𝐶
2

[𝐼 − 𝑠 (𝜇1𝐹1 − 𝛾1𝑉1)] ,
𝑆2 fl 𝑃𝐶

1

[𝐼 − 𝑡 (𝜇2𝐹2 − 𝛾2𝑉2)] . (43)

For given initial point (𝑥1, 𝑦1) ∈ 𝐶1 × 𝐶2, let {(𝑥𝑛, 𝑦𝑛)} be an
iterative sequence in 𝐶1 × 𝐶2 defined by

𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆2 (𝑦𝑛) ,
𝑦𝑛+1 = (1 − 𝛼𝑛) 𝑦𝑛 + 𝛼𝑛𝑆1 (𝑥𝑛) , ∀𝑛 ∈ N, (44)

where {𝛼𝑛} is a real sequence in [0, 1] such that ∑∞
𝑛=1

𝛼𝑛 = ∞.
Assume that condition (37) of Theorem 13 is satisfied. Then
the sequence {(𝑥𝑛, 𝑦𝑛)} generated by (44) converges strongly to
the unique point (𝑥∗, 𝑦∗), which solves system of generalized
variational inequalities

⟨𝑠 (𝜇1𝐹1 − 𝛾1𝑉1) (𝑥∗) + 𝑦∗ − 𝑥∗, 𝑦 − 𝑦∗⟩ ≥ 0,
∀𝑦 ∈ 𝐶2,

⟨𝑡 (𝜇2𝐹2 − 𝛾2𝑉2) (𝑦∗) + 𝑥∗ − 𝑦∗, 𝑥 − 𝑥∗⟩ ≥ 0,
∀𝑥 ∈ 𝐶1.

(45)

Proof. The proof follows from Theorem 13 by taking 𝑔1 =𝑔2 = 𝐼.
Now we study the convergence analysis of Algorithm 11,

that is, the parallel 𝑆-iteration process defined by (33) for
solving SGVI (28).

Theorem 15. Let𝐶1 and𝐶2 be nonempty closed convex subsets
of a real Hilbert space 𝐻. Let 𝑔𝑖 : 𝐻 → 𝐻 be single-valued𝛿𝑖-strongly monotone, 𝜂𝑖-Lipschitz continuous, let 𝐹𝑖 : 𝐶𝑖 →𝐻 be 𝑘𝑖-Lipschitzian and 𝜉𝑖-strongly monotone operator with
constants 𝑘𝑖, 𝜉𝑖 > 0, and let 𝑉𝑖 : 𝐶𝑖 → 𝐻 be 𝐿 𝑖-Lipschitzian
mapping with constant 𝐿 𝑖 ≥ 0 for 𝑖 ∈ {1, 2}. Suppose that0 < 𝜇𝑖 < 2𝜉𝑖/𝑘2𝑖 and 0 ≤ 𝛾𝑖 < 𝜏𝑖/𝐿 𝑖, where 𝜏𝑖 = 1 −
√1 − 𝜇𝑖(2𝜉𝑖 − 𝜇𝑖𝑘2𝑖 ) for 𝑖 ∈ {1, 2}. Let 𝑠, 𝑡 ∈ (0, 1] and let
𝜃1 and 𝜃2 be real constants defined by (34). Let 𝑆1 and 𝑆2 be
defined by (29) and (30), respectively. For given initial point(𝑥1, 𝑦1) ∈ 𝐶1 × 𝐶2, let {(𝑥𝑛, 𝑦𝑛)} be an iterative sequence in𝐶1 ×𝐶2 defined by parallel 𝑆-iteration process (33), where {𝛼𝑛}
is a sequence in (0, 1). Assume that condition (37) ofTheorem 13
is satisfied. Then we have the following:

(i) There exists a unique point (𝑥∗, 𝑦∗) ∈ 𝐶1 × 𝐶2, which
solves SGVI (28).

(ii) The sequence {(𝑥𝑛, 𝑦𝑛)} generated by parallel 𝑆-
iteration process (33) converges strongly to the point(𝑥∗, 𝑦∗).

Proof. (i) It follows from Lemma 8 and (31).
(ii) From (31), (33), and Proposition 12, we have

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦∗󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑆1 [(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆2 (𝑦𝑛)]
− 𝑆1 (𝑥∗)󵄩󵄩󵄩󵄩 ≤ (𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1)))
⋅ 󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆2 (𝑦𝑛) − 𝑥∗󵄩󵄩󵄩󵄩 ≤ (𝜃1
+ (1 − 𝑠 (𝜏1 − 𝛾1𝐿1))) {(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩
+ 𝛼𝑛 󵄩󵄩󵄩󵄩𝑆2 (𝑦𝑛) − 𝑥∗󵄩󵄩󵄩󵄩} = (𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1)))
⋅ {(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 𝛼𝑛 󵄩󵄩󵄩󵄩𝑆2 (𝑦𝑛) − 𝑆2 (𝑦∗)󵄩󵄩󵄩󵄩}
≤ (𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1))) {(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩
+ 𝛼𝑛 (𝜃2 + (1 − 𝑡 (𝜏2 − 𝛾2𝐿2))) 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩} .

(46)

Similarly

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥∗󵄩󵄩󵄩󵄩 ≤ (𝜃2 + (1 − 𝑡 (𝜏2 − 𝛾2𝐿2)))
⋅ {(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩
+ 𝛼𝑛 (𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1))) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩} .

(47)

Set

𝜃 = max {𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1)) , 𝜃2
+ (1 − 𝑡 (𝜏2 − 𝛾2𝐿2))} . (48)
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From (46) and (47), we get
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥∗󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦∗󵄩󵄩󵄩󵄩 ≤ (𝜃2
+ (1 − 𝑡 (𝜏2 − 𝛾2𝐿2))) {(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩
+ 𝛼𝑛 (𝜃1 + (1 − 𝑠 (𝜏1 − 𝛾1𝐿1))) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩} + (𝜃1
+ (1 − 𝑠 (𝜏1 − 𝛾1𝐿1))) {(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩
+ 𝛼𝑛 (𝜃2 + (1 − 𝑡 (𝜏2 − 𝛾2𝐿2))) 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩}
≤ 𝜃 {(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩 + 𝛼𝑛𝜃 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩}
+ 𝜃 {(1 − 𝛼𝑛) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 𝛼𝑛𝜃 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩} = 𝜃 (1
− 𝛼𝑛 (1 − 𝜃)) 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 𝜃 (1 − 𝛼𝑛 (1 − 𝜃)) 󵄩󵄩󵄩󵄩𝑦𝑛
− 𝑦∗󵄩󵄩󵄩󵄩 = 𝜃 (1 − 𝛼𝑛 (1 − 𝜃)) [󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩] .

(49)

Now, we define the norm ‖ ⋅ ‖1 on𝐻×𝐻 by ‖(𝑥, 𝑦)‖1 = ‖𝑥‖ +‖𝑦‖ for all (𝑥, 𝑦) ∈ 𝐻 × 𝐻. Therefore, using (49), we have
󵄩󵄩󵄩󵄩(𝑥𝑛+1, 𝑦𝑛+1) − (𝑥∗, 𝑦∗)󵄩󵄩󵄩󵄩1
= 󵄩󵄩󵄩󵄩(𝑥𝑛+1 − 𝑥∗, 𝑦𝑛+1 − 𝑦∗)󵄩󵄩󵄩󵄩1
= 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥∗󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦∗󵄩󵄩󵄩󵄩
≤ 𝜃 (1 − 𝛼𝑛 (1 − 𝜃)) [󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥∗󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦∗󵄩󵄩󵄩󵄩]
= 𝜃 (1 − 𝛼𝑛 (1 − 𝜃)) 󵄩󵄩󵄩󵄩(𝑥𝑛, 𝑦𝑛) − (𝑥∗, 𝑦∗)󵄩󵄩󵄩󵄩1 .

(50)

Since 𝜃(1 − 𝛼𝑛(1 − 𝜃)) ≤ 𝜃 < 1, we obtain that
lim𝑛→∞‖(𝑥𝑛, 𝑦𝑛) − (𝑥∗, 𝑦∗)‖1 = 0. Thus, we get lim𝑛→∞‖𝑥𝑛 −𝑥∗‖ = lim𝑛→∞‖𝑦𝑛−𝑦∗‖ = 0 and hence {𝑥𝑛} and {𝑦𝑛} converge
to 𝑥∗ and 𝑦∗, respectively.
Corollary 16. Let 𝐶1 and 𝐶2 be nonempty closed convex
subsets of a real Hilbert space 𝐻. Let 𝐹𝑖 : 𝐶𝑖 → 𝐻 be 𝑘𝑖-
Lipschitzian and 𝜉𝑖-strongly monotone operator with constants𝑘𝑖, 𝜉𝑖 > 0 and let𝑉𝑖 : 𝐶𝑖 → 𝐻 be 𝐿 𝑖-Lipschitzian mapping with
constant 𝐿 𝑖 ≥ 0 for 𝑖 ∈ {1, 2}. Suppose that 0 < 𝜇𝑖 < 2𝜉𝑖/𝑘2𝑖 and
0 ≤ 𝛾𝑖 < 𝜏𝑖/𝐿 𝑖, where 𝜏𝑖 = 1−√1 − 𝜇𝑖(2𝜉𝑖 − 𝜇𝑖𝑘2𝑖 ) for 𝑖 ∈ {1, 2}.
Let 𝑠, 𝑡 ∈ (0, 1] and let 𝑆1 and 𝑆2 be defined by (43). For given
initial point (𝑥1, 𝑦1) ∈ 𝐶1 × 𝐶2, let {(𝑥𝑛, 𝑦𝑛)} be an iterative
sequence in 𝐶1 × 𝐶2 defined by

𝑥𝑛+1 = 𝑆2 [(1 − 𝛼𝑛) 𝑦𝑛 + 𝛼𝑛𝑆1 (𝑥𝑛)] ,
𝑦𝑛+1 = 𝑆1 [(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆2 (𝑦𝑛)] , ∀𝑛 ∈ N, (51)

where {𝛼𝑛} is a real sequence in (0, 1). Assume that condition
(37) ofTheorem 13 is satisfied.Then the sequence {(𝑥𝑛, 𝑦𝑛)} gen-
erated by (51) converges strongly to the unique point (𝑥∗, 𝑦∗),
which solves system of generalized variational inequalities

⟨𝑠 (𝜇1𝐹1 − 𝛾1𝑉1) (𝑥∗) + 𝑦∗ − 𝑥∗, 𝑦 − 𝑦∗⟩ ≥ 0,
∀𝑦 ∈ 𝐶2,

⟨𝑡 (𝜇2𝐹2 − 𝛾2𝑉2) (𝑦∗) + 𝑥∗ − 𝑦∗, 𝑥 − 𝑥∗⟩ ≥ 0,
∀𝑥 ∈ 𝐶1.

(52)

Proof. The proof follows from Theorem 15 by taking 𝑔1 =𝑔2 = 𝐼.
4. Numerical Example

In this section, we discuss an example which leads to Theo-
rems 13 and 15.The graphs are also presented for showing how
the sequences {𝑥𝑛} and {𝑦𝑛} generated by both the algorithms,
Algorithms 10 and 11, converge to the solutions of SGVI (28).

Example 17. Let 𝐻 = R, 𝐶1 = (−∞, 0], and 𝐶2 = [0,∞).
Let 𝑔1 and 𝑔2 be two mappings from𝐻 onto itself defined by𝑔1(𝑥) = (2𝑥 − 3)/3 for all 𝑥 ∈ 𝐻 and 𝑔2(𝑥) = (5𝑥 − 10)/6 for
all 𝑥 ∈ 𝐻, respectively. Let 𝐹1 : 𝐶1 → 𝐻 and 𝐹2 : 𝐶2 → 𝐻 be
two mappings defined by 𝐹1(𝑥) = 2𝑥 − 3 for all 𝑥 ∈ 𝐶1 and𝐹2(𝑥) = 3𝑥 − 2 for all 𝑥 ∈ 𝐶2, respectively. Let 𝑉1 : 𝐶1 → 𝐻
and𝑉2 : 𝐶2 → 𝐻 be two mappings defined by𝑉1(𝑥) = 1−4𝑥
for all 𝑥 ∈ 𝐶1 and 𝑉2(𝑥) = 6 − 6𝑥 for all 𝑥 ∈ 𝐶2, respectively.
Then𝑔𝑖 is 𝛿𝑖-stronglymonotone and 𝜂𝑖-Lipschitzianmapping
for 𝑖 ∈ {1, 2}. We have 𝛿1 = 2/3 = 𝜂1 and 𝛿2 = 5/6 = 𝜂2. Also𝐹𝑖 is 𝜉𝑖-strongly monotone and 𝑘𝑖-Lipschitzian mapping for𝑖 ∈ {1, 2}. We have 𝜉1 = 2 = 𝑘1 and 𝜉2 = 3 = 𝑘2. Moreover𝑉𝑖 is 𝐿 𝑖-Lipschitzian mapping for 𝑖 ∈ {1, 2}. We have 𝐿1 = 4
and 𝐿2 = 6. We take 𝜇1 = 1/2, 𝜇2 = 1/3, 𝜏1 = 1 = 𝜏2 and𝛾1 = 1/12, 𝛾2 = 5/72. Define {𝛼𝑛} in [0, 1] by 𝛼𝑛 = 𝑛/(𝑛 + 1),𝑇1 = 𝜇1𝐹1 − 𝛾1𝑉1, and 𝑇2 = 𝜇2𝐹2 − 𝛾2𝑉2. Then 𝑇1(𝑥) = (16𝑥 −19)/12 and 𝑇2(𝑥) = (51𝑥 − 39)/36.

Therefore 𝑆1 and 𝑆2 can be expressed as

𝑆1 fl 𝑃𝐶
2

[𝑔1 − 𝑠𝑇1] ,
𝑆2 fl 𝑃𝐶

1

[𝑔2 − 𝑡𝑇2] , (53)

where 𝑠 > 0 and 𝑡 > 0 are constants.
Let 𝑠 = 1 and 𝑡 = 1. Then,

𝑆1 (𝑥) = 𝑃𝐶
2

[(−8𝑥 + 7)12 ] = (7 − 8𝑥)
12 ∀𝑥 ∈ 𝐶1,

𝑆2 (𝑥) = 𝑃𝐶
1

[(−7𝑥 − 7)12 ] = −(7𝑥 + 7)12 ∀𝑥 ∈ 𝐶2.
(54)

It can be easily seen that 𝑆1 : 𝐶1 → 𝐶2 is (2/3)-Lipschitzian
and 𝑆2 : 𝐶2 → 𝐶1 is (7/12)-Lipschitzian. Also

𝜃1𝑠 − (𝜏1 − 𝛾1𝐿1) = √1 − 2𝛿1 + 𝜂21 − (𝜏1 − 𝛾1𝐿1)
= −13 < 0,

𝜃2𝑡 − (𝜏2 − 𝛾2𝐿2) = √1 − 2𝛿2 + 𝜂22 − (𝜏2 − 𝛾2𝐿2)
= − 5

12 < 0.

(55)

One can observe that all the conditions of Theorems 13 and
15 are satisfied.
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Table 1: Numerical values of 𝑥𝑛 and 𝑦𝑛.
𝑛 Parallel Mann iteration process Parallel 𝑆-iteration process

𝑥𝑛 𝑦𝑛 𝑥𝑛 𝑦𝑛1 −4.000000000000000 4.000000000000000 −4.000000000000000 4.000000000000000
7 −1.847585060258671 1.950379984812855 −1.531137975937710 1.612050811863993
14 −1.529511272915085 1.610309552955496 −1.511402781884560 1.590950939614087
21 −1.512204443955688 1.591807954179574 −1.511363702883595 1.590909162022088
28 −1.511400117495092 1.590948090842850 −1.511363636469492 1.590909091022255
35 −1.511365162111111 1.590910722002483 −1.511363636363799 1.590909090909265
42 −1.511363698691403 1.590909157540259 −1.511363636363637 1.590909090909091
49 −1.511363638868444 1.590909093586843 −1.511363636363637 1.590909090909091
56 −1.511363636463094 1.590909091015415 −1.511363636363636 1.590909090909091
63 −1.511363636367549 1.590909090913274 −1.511363636363637 1.590909090909091
70 −1.511363636363790 1.590909090909254 −1.511363636363637 1.590909090909091
77 −1.511363636363642 1.590909090909097 −1.511363636363637 1.590909090909091
84 −1.511363636363637 1.590909090909091 −1.511363636363636 1.590909090909091
91 −1.511363636363637 1.590909090909091 −1.511363636363637 1.590909090909091
98 −1.511363636363637 1.590909090909091 −1.511363636363637 1.590909090909091

Now we will find the general term of the sequences {𝑥𝑛}
and {𝑦𝑛} generated by the iteration process (32). For arbitrary𝑥1 ∈ 𝐶1 and 𝑦1 ∈ 𝐶2,

𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆2 (𝑦𝑛)
= 𝑥𝑛𝑛 + 1 −

𝑛 (7𝑦𝑛 + 7)12 (𝑛 + 1)
= 1
12 (𝑛 + 1) [12𝑥𝑛 − 7𝑛𝑦𝑛 − 7𝑛] ,

𝑦𝑛+1 = (1 − 𝛼𝑛) 𝑦𝑛 + 𝛼𝑛𝑆1 (𝑥𝑛)
= 𝑦𝑛𝑛 + 1 +

𝑛 (7 − 8𝑥𝑛)12 (𝑛 + 1)
= 1
12 (𝑛 + 1) [12𝑦𝑛 − 8𝑛𝑥𝑛 + 7𝑛] .

(56)

Hence

𝑥𝑛+1 = 1
12 (𝑛 + 1) [12𝑥𝑛 − 7𝑛𝑦𝑛 − 7𝑛] ,

𝑦𝑛+1 = 1
12 (𝑛 + 1) [12𝑦𝑛 − 8𝑛𝑥𝑛 + 7𝑛] ∀𝑛 ∈ N.

(57)

Also, we will find the general term of the sequences {𝑥𝑛} and{𝑦𝑛} generated by the iteration process (33). For arbitrary𝑥1 ∈𝐶1 and 𝑦1 ∈ 𝐶2,
𝑥𝑛+1 = 𝑆2 [(1 − 𝛼𝑛) 𝑦𝑛 + 𝛼𝑛𝑆1 (𝑥𝑛)]

= 𝑆2 [ 𝑦𝑛𝑛 + 1 +
𝑛 (7 − 8𝑥𝑛)12 (𝑛 + 1) ]

= 1
144 (𝑛 + 1) [56𝑛𝑥𝑛 − 84𝑦𝑛 − 133𝑛 − 84] ,

𝑦𝑛+1 = 𝑆1 [(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑆2 (𝑦𝑛)]
= 𝑆1 [ 𝑥𝑛𝑛 + 1 −

𝑛 (7𝑦𝑛 + 7)12 (𝑛 + 1) ]

= 1
144 (𝑛 + 1) [56𝑛𝑦𝑛 − 96𝑥𝑛 + 140𝑛 + 84] .

(58)

Hence

𝑥𝑛+1 = 1
144 (𝑛 + 1) [56𝑛𝑥𝑛 − 84𝑦𝑛 − 133𝑛 − 84] ,

𝑦𝑛+1 = 1
144 (𝑛 + 1) [56𝑛𝑦𝑛 − 96𝑥𝑛 + 140𝑛 + 84]

∀𝑛 ∈ N.
(59)

It is clear from (57) and (59) that the sequences {𝑥𝑛} and {𝑦𝑛}
generated by the proposed iterative algorithms converge to
the altering points 𝑥∗ ∈ 𝐶1 and 𝑦∗ ∈ 𝐶2 of the mappings𝑆1 and 𝑆2, where 𝑥∗ = −1.511363636363637 and 𝑦∗ =1.590909090909091. The numerical values of {𝑥𝑛} and {𝑦𝑛}
have been calculated for different starting values of 𝑥1 and 𝑦1
in Tables 1 and 2, respectively, and the convergence of both
the sequences is shown in Figures 1 and 2, respectively.

5. Conclusions

In this paper, we have considered a new system of gen-
eralized variational inequalities (SGVI) defined on closed
convex subsets of a real Hilbert space. It has been shown
that the considered SGVI is equivalent to altering points
problem of some nonlinear mappings. We have proposed
two algorithms, Algorithms 10 and 11, for solving considered
SGVI. An example is given in support of our main results.
We observed that the sequence generated by Algorithm 11
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Table 2: Numerical values of 𝑥𝑛 and 𝑦𝑛.
𝑛 Parallel Mann iteration process Parallel 𝑆-iteration process

𝑥𝑛 𝑦𝑛 𝑥𝑛 𝑦𝑛
1 −5.000000000000000 10.000000000000000 −5.000000000000000 10.000000000000000
7 −2.316760667744464 2.451261819028022 −1.558731808819676 1.641509397106758
14 −1.554814798532934 1.637363641212413 −1.511457370603911 1.591009289899863
21 −1.513376896656526 1.593061316754131 −1.511363795641447 1.590909261181073
28 −1.511450986841399 1.591002473172358 −1.511363636617098 1.590909091180052
35 −1.511367289637843 1.590912996409872 −1.511363636364025 1.590909090909507
42 −1.511363785601782 1.590909250451687 −1.511363636363637 1.590909090909092
49 −1.511363642361179 1.590909097320727 −1.511363636363637 1.590909090909091
56 −1.511363636601778 1.590909091163675 −1.511363636363636 1.590909090909091
63 −1.511363636373005 1.590909090919107 −1.511363636363637 1.590909090909091
70 −1.511363636364002 1.590909090909482 −1.511363636363637 1.590909090909091
77 −1.511363636363651 1.590909090909106 −1.511363636363637 1.590909090909091
84 −1.511363636363637 1.590909090909092 −1.511363636363636 1.590909090909091
91 −1.511363636363637 1.590909090909091 −1.511363636363637 1.590909090909091
98 −1.511363636363637 1.590909090909091 −1.511363636363637 1.590909090909091
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Figure 1: Convergence of sequences {𝑥𝑛} and {𝑦𝑛} generated by
parallel Mann iteration process (32).

converges faster than Algorithm 10 to altering points of some
nonlinear mappings 𝑆1 and 𝑆2.
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