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Integrated Deterministic-Probabilistic Safety Assessment (IDPSA) combines deterministic model of a nuclear power plant with a
method for exploration of the uncertainty space. Huge amount of data is generated in the process of such exploration. It is very
difficult to “manually” process and extract from such data information that can be used by a decision maker for risk-informed
characterization, understanding, and eventually decision making on improvement of the system safety and performance. Such
understanding requires an approach for interpretation, grouping of similar scenario evolutions, and classification of the principal
characteristics of the events that contribute to the risk. In this work, we develop an approach for classification and characterization
of failure domains. The method is based on scenario grouping, clustering, and application of decision trees for characterization
of the influence of timing and order of events. We demonstrate how the proposed approach is used to classify scenarios that are
amenable to treatment with Boolean logic in classical Probabilistic Safety Assessment (PSA) from those where timing and order of
events determine process evolution and eventually violation of safety criteria. The efficiency of the approach has been verified with

application to the SARNET benchmark exercise on the effectiveness of hydrogen management in the containment.

1. Introduction

Development of Deterministic Safety Analysis (DSA) and
Probabilistic Safety Analysis (PSA) was crucial step for
establishing state-of-the-art in nuclear power safety design
and licensing. However, in order to avoid stagnation, it is
important to recognize inherent limitations of the classical
approaches and new opportunities provided by the overall
progress of risk analysis science and computational technolo-
gies. For instance, advantage of DSA is that it can model
dynamics of the plant systems driven by physical phenomena
and their response to failures of the equipment or operator
actions. If the “worst” scenarios can be clearly identified,
then conservative treatment of uncertainties in DSA can
be employed to estimate safety margins. The number of
scenarios considered in DSA is usually small with respect to
the actual set of possible accident scenarios, thus outcomes

of DSA are largely affected by the expert judgment. However,
obtaining a priori knowledge about “worst” case scenarios
and “conservative” assumptions about uncertain parameters
for complex systems is not a trivial task. PSA attempts to cover
all possible risk significant scenarios. However, it is not easy to
model a priori unknown dependency of the accident scenario
outcome on the order and timing of the events (e.g., due
to temporary evolution of the system parameters driven by
complex physical processes and interactions) using Boolean
logic of the classical PSA where the result is unambiguously
determined by simple set of events. A robust safety justifica-
tion must be based on both deterministic and probabilistic
considerations to address the effects of the dynamic nature
of mutual interactions between (i) stochastic disturbances
(e.g., failures of the equipment), (ii) deterministic response
of the plant (i.e., transients), (iii) control logic, and (iv)
operator actions. Passive safety systems, severe accident, and
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containment phenomena are examples of the cases when
such dependencies of the accident progression on timing
and order of events are especially important. Integrated
use of deterministic and probabilistic safety analysis is a
means to enable risk-informed decision making based on
consistent evaluation of both the uncertainties arising from
the stochastic nature of events (aleatory uncertainties) and
those arising from lack of knowledge about the processes
relevant to the system (epistemic uncertainties) [1].

Integrated Deterministic-Probabilistic Safety Assessment
(IDPSA) methodologies aim to achieve completeness and
consistency of the analysis through systematic consideration
of different sources of uncertainties including physical pro-
cesses, failures of hardware and software, and human actions.
IDPSA tools usually employ (i) system simulation codes and
models with explicit consideration of the effect of timing on
the interactions between epistemic (modeling) and aleatory
(scenario) uncertainties, (ii) a method for exploration of
the uncertainty space. A review of the IDPSA methods for
nuclear power plant applications can be found in [2].

For decision making, however, it is often insufficient
to merely calculate a quantitative measure for the risk
and respective uncertainties [3]. Detailed exploration of the
uncertainty space usually results in huge amount of the data
generated by the deterministic codes [4]. Therefore, one
of the main problems for application of IDPSA methods
is data post-processing and communication of the analysis
results. Extracted information should be suitable for decision
making and risk-informed characterization and eventually
improvement of safety and performance of the system.
Such understanding requires an approach to the interpre-
tation, grouping of similar scenarios, and classification of
the principal characteristics of the events that contribute to
the risk. Several attempts to solve this problem has been
undertaken. Different approaches have been developed to
transient identification based on pattern classification by
fuzzy C-means clustering [5], identification and classification
of dynamic event tree scenarios via possibilistic clustering
[6], probabilistic clustering for scenario analysis [7]. These
methods use clustering tools and pattern recognition to
identify and group similar scenarios that lead to failure.

The goal of this work is to develop methods that will
enable understanding of the outcomes of IDPSA analysis
while maintaining completeness. In order to achieve that, the
methods should reduce the volume of the data generated by
IDPSA tools without loss of important for decision making
information. The strategy for the reduction of the data volume
is based on (i) grouping of different scenarios into different
“classes” according to different failure modes; (ii) identifica-
tion of the scenarios that have “similar” behavior (clustering)
within each class. Condensed information should provide
useful insights into the complex accident progression and
understanding of possible mitigation strategies.

In this work we develop an approach for classification
and characterization of failure domains. Failure domain is a
domain in the space of uncertain parameters where critical
system parameters exceed safety thresholds. The approach is
based on scenario grouping and clustering with application
of decision trees for characterization of the influence of
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timing and order of the events. In this approach decision
trees are constructed to represent failure domain as a set of
leaf nodes and correspondent classification rules that lead to
each node. The approach was applied to classification of the
simulated transients and failure domain identification and
characterization in SARNET benchmark exercise [8].

In this paper we extend our previous work [9] by
improving the methods, providing detailed description of the
approaches. Specifically, the clustering algorithms and visu-
alization techniques for decision trees have been significantly
improved with respect to [9]. In addition, we consider appli-
cation of developed methods in decision support context.

In Section2 we provide general description of the
approach. In Section 3 we describe a hypothetical accident
scenario in a typical French design of Pressurized Water
Reactor (PWR). An example of application of the proposed
approach to the selected accident scenario is presented in
Section 4, followed by the discussion and conclusions.

2. Classification Approach

Methodologies that take into account uncertainty in timing of
events can produce potentially unlimited number of transient
scenarios for a single initiating event. For decision making,
handling of the huge amount of data is a challenge. The devel-
opment of insights and understanding requires interpretation
of the scenario evolutions in order to identify the principal
characteristics of the events that contribute to the risk. In
order to solve this problem we develop an approach based on
clustering and decision trees for explaining the structure of
the clustered data (see Figure 1).

The main steps of this approach are briefly explained
below. Firstly, the scenario grouping is performed (see
Section 2.1). The main idea of this step is to focus the analysis
on the sequences intractable in classical PSA. Thus, scenarios
where the order and timing of events are not important
are grouped first and excluded from further considerations
as those directly amenable to PSA analysis. Then we group
scenarios where the order of events is important but not their
timing. Remaining group of scenarios contains sequences
where the outcome depends on the order and timing of the
events.

Next, Principal Component Analysis (PCA) [10, 11] is
carried out in order identify and quantifying a group of
principal components which have the largest influence on the
system response (see Section 2.2). Then, based on the PCA
results the clustering analysis is performed using Adaptive
Mesh Refinement (AMR) method (see Section 2.3.1). In the
final step a decision tree is built for each failure mode using
clustering results data [12]. Decision tree is used for data rep-
resentation that explains failure domain-cluster structure (see
Section 2.4). The structure is easy to visualize and interpret
in the decision-making process. Finally, information of the
leaf nodes is used for failure domain probability calculation.
Decision tree classification algorithm performs orthogonal
partitioning of the search space using data impurity measure
as a splitting criterion [10, 13].
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FIGURE 1: Grouping and classification approach.

2.1. Scenario Grouping. System codes are used in IDPSA in
order to evaluate temporal evolution of the accident progres-
sion for different time dependent sequences of the events
such as activation or failure of safety systems (e.g., reactor
protection system and emergency core cooling system). The
main purpose of scenario grouping is to identify and separate
sequences of events that can be treated in classical PSA, that
is, those where order and timing of events have no effect
on the outcome (safe or failure end state). The approach is
represented in Figure 2.

The numeric algorithm used in scenario grouping is
similar to those used in sequence pattern analysis [14]. Each
event is represented by a unique number. Thus each simulated
transient is represented by a sequence of numbers. Then, for
the whole data set, all possible patterns are identified and split
into two categories with the same (1) sets of events and (2)
order of events. It is important to note that the first category
can contain several patterns of the second category (e.g., the
set [2,3] in the first category will represent sequences (2, 3)
and (3,2) in the second category). Then the following steps
of the grouping algorithm are performed:

(1) The sets of events that always lead to either failure
or safe condition are identified for further treatment
in PSA. If the same set of events can lead to both
failure and safe states it means that timing and/or
order of events can be important. Such sets of events
are treated further in Steps (2) and (3).

(2) The sequences of events which always lead to either
failure or safe condition are identified. If the same
sequence of the events can lead to both failure and safe
conditions it is a sign that the influence of timing of
the events is important.

(3) The sequences of events where outcome depends on
the timing of the events and parameter uncertainty
and requires respective dynamic treatment are con-
sidered further in the following steps of the analysis,
that is, PCA and data transformation, Scenario Clus-
tering, and so forth (see also Figure 1).

2.2. Principal Component Analysis. Principal Component
Analysis (PCA) is a technique for revealing the relationships
between variables in a data set by identifying and quan-
tifying a group of principal components. These principal
components are composed of transformations of specific
combinations of input variables that relate to a given output
(or target) variable [11]. Each principal component accounts
for a decreasing amount of the variations in the raw data
set; that is, the first principal component is responsible for
the largest possible variance (accounts for as much of the
variability in the data as possible), and each succeeding

component in turn has the highest variance possible under
the constraint that it has to be orthogonal to (i.e., uncorrelated
with) the preceding components.

The main purpose of application of PCA in the classifica-
tion approach is to transform the data without rescaling into
anew orthogonal coordinate system that optimally describes
the variance in a single dataset. The data transformation is
defined by

X*T _ XTW (1)

where X*T and XT are the new and old vectors of observa-
tions and W is the matrix of principal component coefficients
(eigenvectors of the covariance matrix xx7T) [u].

2.3. Scenario Clustering. The purpose of clustering analysis
is to assign members to each group such that members of
a group are more similar (according to specific criteria) to
each other than to those in other groups (clusters). Clustering
analysis is the task of grouping a set of objects in a way
that objects within one group (or cluster) are more similar
than those in the other groups. It can be achieved by various
algorithms that can differ significantly in their notion of
what constitutes a cluster and how to efficiently find them.
There are several clustering algorithms that methodologically
can be separated into connectivity models (hierarchical
clustering [15]), centroid based clustering (K-means [15]),
distribution based clustering, density based clustering [16],
artificial neural networks [17], fuzzy clustering, clustering
methodologies based on evolutionary algorithms (Genetic
Algorithms [18]), and grid based clustering methodologies
[12]. The methodology presented in this paper is based
on grid based clustering algorithms with adaptive mesh
refinement [12, 19].

2.3.1. Grid Based Clustering. Grid-based clustering methods
partition the space into a finite number of cells that form a
grid structure on which all of the operations for clustering
are carried out. The main advantage of the approach is its
computational efficiency [19-21].

Given a set of n-dimensional data and the input param-
eter, cell size, the search space is partitioned into nonover-
lapping rectangular n-dimensional units (cells) of the size &.
For the sake of conservatism we do not use density threshold
for the unit’s selectivity parameter (amount of scenarios
contained in the unit). Although it might be used in the future
development with adaptation of adaptive mesh refinement
(AMR) algorithms under conservatism constraints no failure
scenarios can be identified as an outlier [19].

Once grid is defined, the algorithm looks for the clusters
of cells that contain failure scenarios of the same failure mode.
Two cells can form a cluster if they have a common face. The
algorithm presents large amount of scenarios with different
failure modes as a finite number of cells grouped into clusters
corresponding to the same failure mode.

Mesh Refinement. In the adaptive mesh refinement technique
the algorithm starts with initial coarse grid. Then, the algo-
rithm identifies the regions with transition between “safe”
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FIGURE 2: Scenario grouping algorithm.

and “failure” and introduces higher resolution subgrids only
in those regions. Finer subgrids are added recursively until
either a given maximum level of refinement is reached or
the local resolution criterion for the boundary between “safe”
and “failure” regions is achieved. Thus in an adaptive mesh
refinement computation grid spacing is fixed for the base grid
only and is determined locally for the subgrids according to
the requirements of the problem.

2.4. Application of Decision Trees. A grid based clustering
algorithm performs orthogonal partitioning of the uncer-
tainty space, similar to the partitioning of learning data set in
the decision tree. Therefore, complexity of the decision trees
can significantly reduce when using clustering results data
rather than row scenario data.

A decision tree is a classification and data-mining tool for
extraction of useful information contained in large data sets.
An instance is classified by starting at the root node of the
tree, testing the attribute specified by this node, then moving
down the tree branch corresponding to the value of the
attribute in the given example. This process is then repeated
recursively for the subtree rooted at the new nodes until no
further branching in the tree can be made or some stopping
preset conditions are met [10, 13]. A flow-chart-like structure
is generated in which internal nodes represent test on an
attribute, each branch represents outcome of test and each leaf
node represents class label (decision taken after computing all
attributes). Decision trees can be used as a powerful visual
and analytical decision support tool; especially in case of
multidimensional data, visualization of results in the original
space is nontrivial. Decision tree can be constructed using
different data impurity measures (e.g., Gini impurity measure
and information gain measure) to select the best split among
the candidate attributes at each step while growing the tree
[13]. Decision trees also can be used as a predictive model

which maps observations about an item to conclusions about
the item’s target value.

2.4.1. Classification and Regression Decision Trees. Most algo-
rithms that have been developed for learning decision trees
are variations on a core algorithm that employs a top-down,
greedy search through the space of possible decision trees
[10, 22]. The best split is identified by a splitting criterion that
uses different data impurity measures (e.g., Gini impurity and
information gain measure). In this work we use Classification
and Regression Tree (CART) with Gini criterion. CART
is a nonparametric decision tree learning technique that
produces either classification or regression trees, depending
on whether the dependent variable is categorical or numeric,
respectively [23].

The Gini impurity index (commonly used in CART) at
node t is defined as

Gini(t) =Y p(jl1t)plilt), 2)
j#i
where 7 and j are the categories of the target variable, p(j, )
and p(i, t) are proportion of cases in node t with attributes
i and j, respectively. Thus, when the cases in a node are
evenly distributed across the target categories, the Gini index
takes its maximum value 1 — 1/k, where k is the number of
categories for the target variable. The minimum value is zero
and it occurs when all the data at a node belongs to one target
category.
The Gini criterion for split at s at a node t is defined as

Ginigy (s,t) = Gini () - p; Gini (t;) - prGini (tg), (3)

where p; is the proportion of cases in t sent to the left child
node and py is the proportion of cases in ¢ sent to the right
child node. s € S refers to a particular generic split among all
possible sets of splits S.
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The split s is chosen to maximize the value of Ginigy; (s, £).
Since Gini(t) is constant for any split s on node ¢, it can be
alternately said that the split s is to be chosen such that the
quantity

Gain (s,t) = p,Gini (¢,) + prGini (tg) (4)

is minimized [23].

2.4.2. Probability Estimation Using Decision Trees. The fail-
ure domain is represented by agglomerations (clusters) of
nonoverlapping cells (grids) in the uncertainty space. If all
points in the uncertainty space are equally probable then the
probability of the failure domain is the ration of the volume
of the failure domain to the total volume of the uncertainty
space.

Decision tree represents the failure domain by final nodes
in the tree and respective classification rules that lead to these
nodes. The probability of each cell can be obtained as average
probability of scenarios contained in correspondent cell:

Nicen

ﬁ _ Zi=1 Pi (5)

= N

scen

and the probability of a failure mode i is

N M;
pi=Y Y& (6)

j=lk=1

where 7 is dimensionality, £” is cell volume, p, is average
probability of scenarios contained in cell k, M; are cells
contained in the final failure node (leaf) j, and N is total
amount of failure nodes (leafs). Depending on the values p,
it is possible to assign weights per each cell when building a
tree, so the scenarios (cells) with higher probability are likely
to be classified into the same final node.

3. Application

In order to illustrate proposed approach we chose a bench-
mark exercise developed in the framework of the SARNET
[8].

The exercise is based on a hypothetical accident transient
in typical French 900 MWe PWR (3 loops, with Passive
Autocatalytic Recombiners, PAR).

The transient description is as follows:

(i) Loss of coolant accident (LOCA) with a 3" -break size
on cold leg of Reactor Coolant System (RCS) (INI -
initiation event).

(ii) The Safety Injection System (SIS) and Containment
Heat Removal System (CHRS or spray system) which
are not available until the beginning of core dewater-
ing.

(iii) The steam generators which are available but not used
by the operators.

(iv) No water injection (SIS) occurring before core dewa-
tering.

(v) The reactor operating at nominal power before the
initiating event.
(vi) The calculated core dewatering occurring at 4080s

(1h 08mn); the vessel rupture occurring at 14220 s
(3h 57 min) if no action is undertaken.

During the core degradation phase, the following assump-
tions are used:

(i) A water injection (SIS) means is available (with an
“average” flow rate) and can be used by the operators.

(ii) The spray system (CHRS) is available and can be used
by the operators.

(iii) Water injection after the beginning of clad oxidation
causes an increase of the hydrogen flow rate towards
containment.

(iv) Hydrogen combustions (hereafter called IGNI event)
can occur if the containment gas mixture is flamma-
ble; recombiners, because of their high temperature,
can initiate a combustion; such combustions can be
total (all the hydrogen in the containment is burnt)
or not.

For the full list of assumptions made in the benchmark
exercise see [8]. For determining the limit of inflammability
for the gas mixture Shapiro diagram is used (see Figure 3).

Table 1 gives the limit for inflammability in terms of molar
fractions of H, versus H,O.

Water Injection. If water injection occurs before total core
uncovery (5875s), it is assumed that little hydrogen is pro-
duced and the vessel rupture is avoided. The probability of
this scenario is 0.5.

The probability that water injection is available between
total core uncovery (5875s) and vessel rupture (14220s) is
0.5. The probability of water injection initiation timing is
uniformly distributed in the time interval between total core
uncovery and vessel rupture.

Spray System Activation. The probability that the spray system
can be activated after core uncovery (4080 s) and before vessel
rupture is equal to 0.5. If the spray system can be activated, the
probability of spray system activation is uniformly distributed
in the time interval between core uncovery (4080 s) and vessel
rupture.

Delay before Combustion. A delay before combustion
becomes shorter as H, concentration increases. To determine
this delay, the following rules are used [8]:

(i) If hydrogen concentration (H,) < hydrogen inflam-
mability limit (H,;z), no combustion can occur.

(ii) If H, = H,p inflammability limit, the probability of
delay before the first (or after previous) combustion is
uniformly distributed between 0 and 4 hours.

(iii) If H, > hydrogen ignition limit (H,;5), the prob-
ability of delay before the first (or after previous)
combustion is uniformly distributed between 0 and
20 minutes.
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FIGURE 3: Shapiro diagram [8].

TABLE 1: Limit for inflammability.

Inflammability limit for H, molar

Molar fraction of H,O, % .
fraction, %

0 4
10 4.5
20 5.5
30 6.7
40 8.1
50 10.1

If Hy; < H, < H,g, the probability of delay before first (or
after previous) combustion is uniformly distributed between
0 and AT, (see (7)):

AT (H ) — 4 (HZ B HZIG) -0.333 (HZ B HZIF)
e ? HZIF - HZIG '

7)

In this work we consider only containment pressure of
P im = 0.3MPa threshold as a failure criterion for the sake
of simplicity. Using Monte Carlo sampling over 443200
scenarios has been generated for INT (initiating event) + all
possible combinations of SIS, CHRS, and IGNT, with different
timing of these events.

4. Results

Performing grouping analysis we identified the following pos-
sible sequences of the events: [INI SIS]; [INI SIS CHRS];
[INI SIS IGNI]; [INI SIS CHRS IGNI]; [INI CHRS];

[INI CHRS SIS];[INI CHRS IGNI]; [INI CHRS SIS IGNI]J;
[INI CHRS IGNI SIS]. Classification analysis suggests
that sets of events [INI, CHRS], [INI, SIS], [INI, CHRS, SIS],
and [INIL SIS, CHRS] do not cause containment over
pressurization when they are not followed by hydrogen
ignition event (IGNI). Sequences [INI CHRS IGNI] and
[INI CHRS IGNI SIS] also do not generate pressure
spike big enough to cause containment failure. In the
sequences [INI SIS IGNI], [INI SIS CHRS IGNI], and
[INI CHRS SIS IGNI| the outcome depends on the
timing of ignition (IGNI) and safety systems actuation (see
Table 2 for conditional containment failure probabilities for
these sequences). In Figure 4 we illustrate an example of
application of clustering analysis and decision trees for the
sequences that require dynamic treatment.

The advantage of using PCA and coordinate system
defined by the principal components of the failure domain
is that it significantly reduces the complexity of the decision
tree. In case of the transformed coordinate system the
decision tree was able to characterize almost 50% of the data
set separating the major part of failure scenarios from safe
scenarios only in 2 cuts. The results can be transferred back
into original coordinate system simply by inverting (1) as
follows:

X" = (x"-c)w", (8)

where W is orthogonal matrix (W' = W™') with princi-
pal component coefficients (eigenvectors of the covariance
matrix XX7). In this particular case the values of the W
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FIGURE 4: Scenario Grouping.

matrix correspond to ~18.2 degrees rotation counterclock-
wise, and the variables are defined through the linear com-
bination of variables in original coordinate system:

SIS* = 0.95 * SIS + 0.31 * IGNI + 0.31,

9
IGNI" = —0.31 * SIS + 0.95 % IGNI — 0.007.

The new variables represent linear combinations of all the
original parameters involved. The decision tree rules (e.g.
SIS™ > 2955 sec) in new variables can be also interpreted in
the original coordinate system.

Figures 5 and 6 illustrate the results of clustering analysis
for the sequence [INI SIS IGNI]| with uniform grid. The
cells that contain failure scenarios are grouped into cluster
representing the failure domain. For each cell in the cluster
the algorithm calculates correspondent probability of failure
(Figure 7).

TaBLE 2: Containment failure probabilities.

Containment failure probability p

Sequence (P>P.)
[INT, SIS, IGNTI] 0.51379
[INT, SIS, CHRS, IGNI] 0.07221
[INI, CHRS, SIS, IGNI] 0.00189

Different values of probabilities in the different parts of
the failure domain correspond to different H, concentrations
and respective probability distributions for the time delays
of ignition event [8]. For instance, in Figure 8, H, con-
centration is below ignition limit and above inflammability
limit; therefore the time delay before the first combustion is
uniformly distributed between 0 and AT, (H,) (see (7)). In
Figure 9, H, concentration is above its inflammability and
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ignition limits, therefore, according to [8], time delay before
combustion is uniformly distributed between 0 and 20 mins.

Failure domain structure can be represented using clus-
tering data and decision tree. To illustrate the approach
and to provide a possibility to compare failure domains,
presented in Figures 5 and 6, the results are visualized with
the decision trees. In this work we use limited amount of
uncertain parameters for the sake of visual comparison of
the data representation; however, the main advantage of the
decision tree approach is the ability to represent complex
failure domains with four or more uncertain parameters,
when it is difficult to visualize results using other methods.
Decision tree complexity depends on the shape of the failure
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domain and level of details (initial grid and refinement
step). However, it is possible to prune decision tree, so
the complexity and precision are kept in acceptable levels.
Pruning is the process of reducing a tree by turning some
branch nodes into leaf nodes and removing the leaf nodes
under the original branch [24]. Trees are pruned based on an
optimal pruning scheme that first prunes branches giving less
improvement in error cost.

After computing an exhaustive tree, the algorithm elimi-
nates nodes that do not contribute to the overall prediction,
decided by another essential ingredient, the cost of complex-
ity. This measure is similar to other cost statistics, such as
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FIGURE 10: Decision tree fitted into clustering results data for the sequence [INI SIS IGNI] (sec) with pruning.
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FIGURE 11: Decision tree fitted into clustering results data for the sequence [INI SIS IGNI] (sec) with pruning (SIS*, IGNI*: in coordinate

system defined by principal components of the dataset).
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FIGURE 12: Cluster representation of the failure domain (red) and
safety domain (green) for the sequence [INI SIS CHRS IGNI].
Axes scaled between 0 and 1.

Mallows’ C,, [25], which adds a penalty for increasing the
number of parameters in a model [24].

Decision tree results for the sequence [INI SIS IGNI]
indicate that containment failure is possible if IGNT* event
occurs in the time window between 1230.55 and 4444.07 sec
(in coordinate system defined by principal components of
the dataset). Depending on the timing of the occurrence
of the events, H, combustion within this time window can
challenge containment integrity.

CHRS

0o 01 02 03 04 05 06 07 08 09 1
SIS

F1GURE 13: Cluster representation of the failure domain (red) and
safety domain (green) for the sequence [INI SIS CHRS IGNI]in
terms of controllable events, axes scaled between 0 and 1.

The pruning (cutting) in the decision trees is done at
the point where the further refinement will not improve the
results and, on the other hand, increase the complexity of the
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FIGURE 14: Decision tree fitted into clustering results data for the sequence [INI SIS CHRS IGNI] (sec) for controllable variables.

decision tree. Decision trees (Figures 10 and 11) are built with
data set in both original coordinate system and coordinate
system defined by its principal components (Figures 5and 6).

4.1. Decision Support Model. Let us consider as an example
of sequence [INI SIS CHRS IGNI]. Figure 12 shows cluster
representation of the failure domain in this sequence.

When it comes to decision support, H, ignition event
(IGNI) in this sequence is entirely stochastic event; that
is, the operator has no control over it. On contrary, water
injection (SIS) and containment spray (CHRS) systems can
be actuated by operator at specified moment of time and,
therefore, they are controllable. Decision trees can be used
to build decision support model based on the controllable
events; that is, decision trees can help us to find an answer to
the question “what can be done in case of LOCA initiating
event to avoid containment failure?” Figure 13 illustrates
failure domain for the sequence [INI SIS CHRS IGNI]
in terms of controllable events SIS and CHRS. Based on
the clustering results we build a decision tree in variables
representing time delays for actuation of the safety systems
(SIS and CHRS) and correspondent outcome (Figures 14
and 15). Obtained results indicate that for the sequence
[INI SIS CHRS IGNI]| containment failure can be avoided
in case of early actuation of water injection and containment
spray systems (in the range of ~492 seconds) or in case of
late activation of containment spray (over ~4000-6944 sec
depending on the actuation time of water injection).

5. Discussion

In this work we present an approach for grouping and clas-
sification of typical “failure/safe” scenarios identified using
IDPSA methods. This approach allows the classification of
scenarios that are directly amenable in classical PSA and
scenarios where order of events, timing, and parameter
uncertainty affect the system evolution and determine viola-
tion of safety criteria.

We use grid based clustering with AMR and decision
trees for characterization of the failure domain. Clustering
analysis is used to represent the failure domain as a finite
set of the representative scenarios. Decision trees are used to
visualize the structure of the failure domain. Decision trees
can be applied to the cases where four or more uncertain
parameters are included in the analysis and it is difficult to
visualize results in three-dimensional space.

Proposed approach helps to present results of the IDPSA
analysis in a transparent and comprehendible form, amenable
to consideration in the decision-making process. Useful
insights into the complex accident progression logic can be
obtained and used for development of understanding and
mitigation strategies of the plant accidents including severe
accidents. The insights can be employed to reduce unnec-
essary conservatism and to point out areas with insufficient
conservatism in deterministic analysis. Results of the analysis
can be also used to facilitate connection between classical
PSA and IDPSA analysis.
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FIGURE 15: Decision tree fitted into clustering results data for the sequence [INI SIS CHRS IGNI] (sec) for controllable variables (SIS*,
CHRS": in coordinate system defined by principal components of the dataset).
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