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Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step
before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to
build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract
discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP)
approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset
IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the
classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP),
stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results
indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with
fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of
the proposed TKCSP approach over several state-of-the-art methods.

1. Introduction

The brain-computer interface (BCI) offers a new pathway
of communication between an external device and the
brain through transforming metabolic or electrophysiolog-
ical brain activities to control messages for devices and
applications. The electroencephalogram (EEG) obtains time
series data with multiple variants recorded at several sensors
pressed on the scalp. It thereby presents electrical potentials
under the induction of brain activities. These are used by
noninvasive BCI systems to convert the mind or intention of
a subject into a control message for certain device, such as a
computer, a neuroprosthesis, or a wheelchair [1–4].

Currently, classification performance promotion of BCI
systems based on the EEG has significant challenges. For
one, it is necessary for a fresh subject to conduct a lengthy
calibration session for sufficient training sample collection to
establish classifiers and extractors of subject-specific features.
The test session later employs the classifiers and extractors

to classify the subjects brain signals. In a recent study on
BCIs, it was shown to be very important to reduce training
sessions on account of the time-consuming, tedious process
of a calibration session. As a result, conducting a performance
promotion using a scarce labeled set is more desirable com-
pared with using a large one. Nevertheless, suitable methods
must be identified to strengthen the performance. This is
because a short calibration session means the availability
of merely a few training samples for target users, which
may result in overfitting or suboptimal feature classifiers or
extractors.

To address the above problem, transfer learning is a
promising approach [5, 6]. It applies data represented in
various feature spaces or obtained from various distributions
for compensating the insufficient labeled data. In the BCI
field, transfer learning has attracted considerable attention
because it enables the establishing of subject-independent
spatial classifiers and/or filters, and it lowers calibration
times. Some studies concentrated on feature representation
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Figure 1: An illustration of subject transfer based BCI system.

transfer methods in EEG classification [7–11]. In this situa-
tion, we encode the knowledge that traverses domains into
a fresh feature representation. Accordingly, precise classifica-
tion performance is thereby expected in settings with a small
sample.

A proposed schedule for practical applications of BCI
systems based on subject transfer is presented in Figure 1 [12].
Thedatasets provided by the source subjects can be stored as a
dataset group. Next, the BCI device can first acquire transfer
data from the source subject groups when it is prepared to
execute classification for the user. In this paper, we thus pro-
pose the transfer kernel common spatial patterns (TKCSP)
method. The TKCSP computation is formulated by BCI
as an optimization problem with multiple subjects, thereby
incorporating data fromother subjects to establish a common
feature space.

2. Transfer Kernel Common Spatial Patterns

This section mentioned a new feature extraction method,
TKCSP, which combines two previous approaches, kernel
common spatial patterns (KCSP) [13] and transfer kernel
learning (TKL) [6]. KCSP is an extraction approach formotor
imagery, and TKL is a promising transfer learning method.
In Sections 2.1 and 2.2, we describe the KCSP algorithm and
the TKL algorithm, respectively. In Section 2.3, we would
propose the TKCSP algorithm in combination with the above
two algorithms.

2.1. Kernel Common Spatial Patterns. The KCSP algorithm
based on CSP is used to find the components with the largest
energy difference between the two experimental conditions
[13–15]. Its basic idea is to find the optimal spatial filter to
maximize the component energy under two sets of experi-
mental conditions after the spatial filtering.

The first step is to calculate the covariance between the
two signals. Consider 𝐸𝑖 as an𝑀×𝑇matrix representing the

𝑖th trial of EEG signals, wherein 𝑀 represents the channel
amount and𝑇 represents the points of time.The class-specific
spatial covariance matrix can hence be acquired by the steps
below.

𝑅𝑖 =
𝐾 (𝐸𝑖𝐸𝑇𝑖 )

trace (𝐾 (𝐸𝑖𝐸𝑇𝑖 )) ,
(1)

where 𝑖 represents the class label, 𝐾(𝐸𝑖𝐸𝑇𝑖 ) = ⟨𝜑(𝐸𝑖), 𝜑(𝐸𝑖)⟩
represents the kernel function, and ⟨ ⟩ denotes the inner
product. Thus we can replace the computation of the aggre-
gate spatial covariance matrix with 𝑅𝑐 = 𝑅1 + 𝑅2.

Additionally, we can factor 𝑅𝑐 to be 𝑅𝑐 = 𝑈0Λ 𝑐𝑈𝑇0 ,
where 𝑈0 ∈ R𝑛×𝑛 represents a matrix with eigenvectors in a
row, while Λ 𝑐 represents the diagonal matrix of eigenvalues
classified in declining order.

The variances can be equalized by using a whitening
transmission 𝑃 within space that the eigenvectors span in 𝑈0
such that 𝑃 equals

𝑃 = 𝜆1/2𝑈𝑇0 . (2)

Thirdly, the whitening matrix 𝑃 can be used to transform
𝑅1 and 𝑅2 into 𝑆1 and 𝑆2 as

𝑆1 = 𝑃𝑅1𝑃𝑇,
𝑆2 = 𝑃𝑅2𝑃𝑇.

(3)

𝑆1 and 𝑆2 have the same eigenvectors, that is, if

𝑆1 = 𝐵𝜆1𝐵𝑇,
𝑆2 = 𝐵𝜆2𝐵𝑇,

𝜆1 + 𝜆2 = 𝐼,
(4)

where 𝐼 represents the identity matrix. At this point, the sum
is always one for these two corresponding eigenvalues.Hence,
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Input: Data 𝐸.
Output: Common spatial patterns𝑊−1,

and common spatial filters𝑊.
(1) Compute spatial covariance matrix 𝑅𝑖, 𝑖 = 1, 2 by (1)

and the total spatial covariance matrix is 𝑅𝑐 = 𝑅1 + 𝑅2.
(2) Eigen decomposition 𝑅𝑐 = 𝑈𝑐Λ 𝑐𝑈𝑇0 ;

whitening transformation 𝑃 = 𝜆1/2𝑈𝑇0 .
(3) Transform covariance matrices 𝑆1 = 𝑃𝑅1𝑃𝑇, 𝑆2 = 𝑃𝑅2𝑃𝑇.

and eigen decomposition 𝑆1 = 𝐵𝜆1𝐵𝑇, 𝑆2 = 𝐵𝜆2𝐵𝑇.
(4) Construct the spatial filter𝑊 = (𝐵𝑇𝑃)𝑇.

Algorithm 1: Kernel common spatial pattern algorithms.

the eigenvectors having the smallest eigenvalues for 𝑆1 have
the largest eigenvalues for 𝑆2 and vice versa. This property
enables eigenvector 𝐵 to sort these two classes.

Finally, owing to 𝑊 = (𝐵𝑇𝑃)𝑇 as the common spatial
filters, the common spatial patterns are columns of 𝑊−1,
which can be regarded as the source distribution vectors for
time-invariant EEG. Algorithm 1 shows the summary of a
complete KCSP procedure.

2.2. Transfer Kernel Learning. TKL can directly match the
source distribution and target distribution to learn a domain-
invariant kernel space, using the knowledge of the source
domain to help complete the learning tasks in the target
domain. This section begins with definitions of terminology
used, and Notations section presents a summary of com-
monly used notations.

Definition 1. A domain 𝐷 includes a 𝑑-dimensional feature
space F as well as a marginal probability distribution 𝑃(𝑥);
that is,D = {F, 𝑃(𝑥)}, 𝑥 ∈ F.

In general, if two domains 𝑍 and 𝑋 have different
marginal distributions or feature spaces, they will have
difference; that is,F𝑍 ̸= F𝑋 ∨ 𝑃(𝑧) ̸= 𝑃(𝑥).
Definition 2. Given domain D, a classifier 𝑓(𝑥) and a cardi-
nality label setY compose a taskT; that is,T = {Y, 𝑓(𝑥)},
in which 𝑦 ∈ Y, and the interpretation of 𝑓(𝑥) = 𝑃(𝑦 | 𝑥)
can be conditioned probability distribution.

In general, if two tasks T𝑍 and T𝑋 have different
conditioned distributions or label spaces, they will have a
difference; that is,Y𝑍 ̸= Y𝑋 ∨ 𝑃(𝑦 | 𝑧) ̸= 𝑃(𝑦 | 𝑥).
Problem 3 (transfer kernel learning). Given an unlabeled
target domain 𝑋 = {𝑥1, . . . , 𝑥𝑛} and a labeled source domain
𝑍 = {(𝑧1, 𝑦1), . . . , (𝑧𝑚, 𝑦𝑚)} with F𝑍 = F𝑋, Y𝑍 =
Y𝑋, 𝑃(𝑧) ̸= 𝑃(𝑥), and 𝑃(𝑦 | 𝑧) ̸= 𝑃(𝑦 | 𝑥), a kernel
𝑘(𝑧, 𝑥) = ⟨𝜙(𝑧), 𝜙(𝑥)⟩with an invariable domain is learned so
that 𝑃(𝜙(𝑧)) ≃ 𝑃(𝜙(𝑥)). Suppose 𝑃(𝑦 | 𝜙(𝑧)) ≃ 𝑃(𝑦 | 𝜙(𝑥)),
then a kernel machine targeting 𝑍 can effectively generalize
𝑋.

Firstly, calculate the target kernel function, the source
kernel function, and the cross-kernel function. Assume an

input kernel function 𝑘 is given to us, for example, Laplacian
kernel 𝑘(𝑧, 𝑥) = 𝑒𝛾|𝑧−𝑥| or Gaussian kernel 𝑘(𝑧, 𝑥) = 𝑒𝛾‖𝑧−𝑥‖2 ,
then the target kernel𝐾𝑋, the source kernel𝐾𝑍, and the cross-
domain kernel 𝐾𝑍𝑋 can be computed. A domain-invariant
kernel 𝐾𝑍∪𝑋 can be learned by utilizing these three kernels.
Under this challenging situation, the sufficient matching of
marginal distributions plays an indispensable role in efficient
learning of the domain transfer.

To require two datasets (for example, target data 𝑋 and
source data 𝑍) to conform to similar distributions of the
feature space, that is, 𝑃(𝜙(𝑧)) ≃ 𝑃(𝜙(𝑥)), requiring them
to have similar kernel matrices is sufficient, that is, 𝐾𝑍 ≃
𝐾𝑋 [16]. Nevertheless, kernel matrices depend on data and
the direct evaluation of closeness between varied kernels is
improbable because of the varying dimensions; that is, 𝐾𝑍 ∈𝑅𝑚×𝑚, 𝐾𝑋 ∈ 𝑅𝑛×𝑛 [17]. To solve this issue, the Nyström
kernel approximation idea is adopted for the generation of
an extrapolated source kernel 𝐾𝑍 ∈ 𝑅𝑚×𝑚 by an eigensystem
of target kernel 𝐾𝑋. Next, 𝐾𝑍 can arise to kernel 𝐾𝑍 as the
ground truth source and can be comparable to a spectral
kernel design. Figure 2 shows the whole learning procedure.

Secondly, Nyström kernel approximation is adopted to
execute eigensystem extrapolation [16]. To this end, standard
eigendecomposition is adopted on the target kernel 𝐾𝑋

𝐾𝑋Φ𝑋 = Φ𝑋Λ𝑋, (5)

which provides the eigensystem {Λ𝑋, Φ𝑋} of target kernel𝐾𝑋.
Thirdly, we assess the eigensystemon source data𝑍byuti-

lizing theNyström approximation theorem.The derivation of
the eigenvectorsΦ𝑍 for extrapolated source kernel𝐾𝑍 is

Φ𝑍 ≃ 𝐾𝑍𝑋Φ𝑋Λ−1𝑋 , (6)

where 𝐾𝑍𝑋 ∈ R𝑚×𝑛 is the cross-domain kernel matrix
between 𝑍 and𝑋, assessed by kernel function 𝑘.

The initial Nyströmmethod directly utilizes target eigen-
values Λ𝑋 and extrapolated source eigenvectors Φ𝑍 to make
approximation for the source kernel 𝐾𝑍. In essence, the
distribution difference across domains is embodied by the
Nyström approximation error; that is, error is close to 0 if
and only if 𝑃(𝑧) ≃ 𝑃(𝑥). An invariant kernel extrapolated
to varied domains will be achieved if an extrapolated kernel
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Figure 2: Complete procedure of transfer kernel learning.

can be found for realizing a minimized Nyström approxima-
tion error, thereby facilitating a more efficient cross-domain
generalization.

The spectral kernel design idea is adopted to establish a
new kernel matrix from extrapolated eigensystem to reduce
the Nyström approximation error [18]. The key construction
of target kernel 𝐾𝑋 can thus be preserved by the kernel
matrix generated via extrapolated eigensystem Φ𝑍; however,
the flexibility of the reshaping could be retained to keep the
distribution difference minimized.

Fourthly, eigenspectrum Λ𝑋 can be relaxed in the pri-
mary Nyström approach to be parameters Λ that can be
learned resulting in a kernel family extrapolated from the
target eigensystem yet assessed on the source data. The
extrapolated source kernel𝐾𝑍 is obtained as follows:

𝐾𝑍 = Φ𝑍ΛΦ𝑇𝑍. (7)

The critical structures of the target domain can be
preserved by this kernel family, that is, eigenvectors Φ𝑍.
Moreover, the free eigenspectrum Λ remains undetermined.
Unlike a conventional spectral kernel design that learns the
parameters through Λ trained on the spectral kernel towards
a previous kernel calculated in the same domain, kernel
matching can be performed across domains.

Fifthly, we strive to minimize the approximation error
between the ground truth source kernel𝐾𝑍 and the extrapo-
lated source kernel𝐾𝑍 for explicitly minimizing the distribu-
tion difference herein by utilizing the squared loss

min
Λ

󵄩󵄩󵄩󵄩󵄩𝐾𝑍 − 𝐾𝑍
󵄩󵄩󵄩󵄩󵄩
2

F
= 󵄩󵄩󵄩󵄩󵄩Φ𝑍ΛΦ𝑇𝑍 − 𝐾𝑍

󵄩󵄩󵄩󵄩󵄩
2

F

𝜆𝑖 ≥ 𝜁𝜆𝑖+1, 𝑖 = 1, . . . , 𝑛 − 1
𝜆𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

(8)

where Λ = diag(𝜆1, . . . , 𝜆𝑛) belongs to the 𝑛 nonnegative
eigenspectrum parameters, while 𝜁 ≥ 1 belongs to the
eigenspectrum damping factor [19].

The marginal distributions of multiple source domains
can be matched with the target domain using the generalized
transfer kernel learning (TKL) approach. This approach can
be conducted by the source-specific eigenspectrum Λ learn-
ing for every source domain separately in the initial place.
Secondly, existing learning algorithms of multiple sources
are used to implement consensus forecasting for the target

domain on the basis of predicting multiple source domains
[20, 21].

Sixthly, the standard quadratic programming possessing
(QP) linear constraints are used herein to show the solution
of the TKL optimization problem (8). Here, 𝑛 eigenspectrum
parameter is denoted as 𝜆 = (𝜆1, . . . , 𝜆𝑛); that is,Λ = diag(𝜆).
Equation (8) is reformulated in the matrix form by linear
algebra

min
𝜆

𝜆𝑇𝑄𝜆 − 2𝛾𝑇𝜆
𝐶𝜆 ≥ 0
𝜆 ≥ 0.

(9)

The following are the respective definitions of QP coeffi-
cient matrices 𝑄, 𝛾 and constraint matrix

𝑄 = (Φ𝑇𝑍Φ𝑍) ⊙ (Φ𝑇𝑍Φ𝑍)
𝛾 = diag (Φ𝑇𝑍𝐾𝑍Φ𝑍)
𝐶 = 𝐼 − 𝜁𝐼,

(10)

where 𝜁 ≥ 1 represents the eigenspectrum damping factor,
which is also the only tunable parameter within TKL. Addi-
tionally, 𝐼 ∈ R𝑛×𝑛 denotes the identity matrix, and 𝐼 ∈ R𝑛×𝑛
represents the first diagonal matrix with the nonvanishing
elements.

Finally, constructing the domain-invariant kernel 𝐾𝐴 on
the target and source data 𝐴 = 𝑍 ∪𝑋 is straightforward with
the learned optimal eigenspectrum parameters Λ. According
to spectral kernel design, we can generate 𝐾𝐴 from the
eigensystem {Λ,Φ𝐴} invariant to domain

𝐾𝐴 = [
[
Φ𝑍ΛΦ𝑇𝑍 Φ𝑍ΛΦ𝑇𝑋
Φ𝑍ΛΦ𝑇𝑋 Φ𝑋ΛΦ𝑇𝑋

]
]
= Φ𝐴ΛΦ𝑇𝐴, (11)

where Φ𝐴 ≜ [Φ𝑍; Φ𝑋] belongs to extrapolated eigenvectors
on all data 𝐴. We can directly feed the kernel𝐾𝐴 invariant to
the domain to normal kernel machines, for example, KCSP,
for facilitating the cross-domain generalization and predic-
tion. Algorithm 2 shows the summary of a complete proce-
dure.
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Input: Data𝑋; kernel 𝑘; eigen-damping factor 𝜁.
Output: Domain-invariant kernel𝐾𝐴.
(1) Compute the target kernel function𝐾𝑋, the source kernel

function 𝐾𝑍, and cross-domain kernel function
𝐾𝑍𝑋 by kernel 𝑘.

(2) Eigendecompose the target kernel function 𝐾𝑋 for the
eigensystem {Λ𝑋, Φ𝑋} by (5).

(3) Extrapolate for source eigenvector Φ𝑍 via Nyström
approximation by (6).

(4) Generate the extrapolated source kernel 𝐾𝑍 by (7)
(5) Minimize the approximation error between the ground

truth source kernel 𝐾𝑍 and the extrapolated source
kernel 𝐾𝑍 by (8).

(6) Solve QP problem (9) for eigenspectrum 𝜆.
(7) Construct domain-invariant kernel 𝐾𝐴 by (11).

Algorithm 2: TKL algorithm.

Input: Data 𝐸𝑋, 𝐸𝑍.
Output: Common Spatial Patterns𝑊−1.
(1) Compute transfer kernel𝐾𝐴 by Algorithm 2.
(2) Compute spatial covariance matrix 𝑅𝑖 = 𝐾𝐴/trace(𝐾𝐴), 𝑖 = 1, 2.

And the total spatial covariance matrix is 𝑅𝑐 = 𝑅1 + 𝑅2.
(3) Eigen decomposition 𝑅𝑐 = 𝑈𝑐Λ 𝑐𝑈𝑇0 ;

whitening transformation 𝑃 = 𝜆1/2𝑈𝑇0 .
(4) Transform covariance matrices 𝑆1 = 𝑃𝑅1𝑃𝑇, 𝑆2 = 𝑃𝑅2𝑃𝑇

and eigen decomposition 𝑆1 = 𝐵𝜆1𝐵𝑇, 𝑆2 = 𝐵𝜆2𝐵𝑇.
(5) Construct the spatial filter𝑊 = (𝐵𝑇𝑃)𝑇.

Algorithm 3: Transfer kernel common spatial pattern algorithm.

2.3. Transfer Kernel CSP. When transfer kernel 𝐾𝐴 replaces
kernel 𝐾(𝐸𝑖𝐸𝑇𝑖 ) in (1), we can build the TKCSP. For all
methods based on the kernel, linear kernel is adopted by us;
that is, 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑇𝑖 𝑥𝑗. Then 𝑅𝑖 = 𝐾𝐴/trace(𝐾𝐴) can be
used to estimate the spatial covariance. Algorithm 3 presents
a summary of a complete TKCSP procedure.

We can compute the filtration of a trial𝐸𝑗 by𝑊 = (𝐵𝑇𝑃)𝑇
as the projection matrix [14]:

𝑍𝑖 = 𝑊 × 𝐸𝑖. (12)

Decomposing the EEG based on (6) can be used to
obtain the features utilized for classification. For every
imagined movement direction, the classifier construction
employs the variances owned by merely a small amount of
𝑚 signals that are the fittest for discrimination. The signals
𝑍𝑝 (𝑝 = 1 ⋅ ⋅ ⋅ 2𝑚) maximizing the variance difference of
motor imagery EEG on the left versus the right belong to
those associated with the largest eigenvalues 𝜆1 and 𝜆2.These
signals are blank in the last and first rows in 𝑍 because of the
computation of𝑊

𝑓𝑝 =
var (𝑍𝑝)

∑2𝑚𝑖=1 var (𝑍𝑖)
. (13)

Table 1: Data description for dataset IVa in BCI Competition III.

Subject aa al av aw ay
Number of training samples 168 224 84 56 28
Number of test samples 112 56 196 224 252

The linear classifier can be calculated by using the feature
vectors 𝑓𝑝 of right and left trials. The log-transformation
contributes to approximating the standard data distribution.

3. Experiments

3.1. Data Preparation. In this study, we employed the IVa
dataset from BCI Competition III [22]. The dataset includes
EEG data containing a classification task of motor imagery
with two levels: (1) imagery movement of the right hand
(denoted by R) and (2) imagery movement of the right foot
(denoted by F). We employed 118 electrodes to measure
EEG signals in every trial from five different subjects, and
each subject involved the performance of 280 trials. Table 1
presents a summary of the data descriptions, in which the
number of subjects av, aw, ay of training samples is fewer
than those of the test samples.
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Table 2: Classification accuracy of TKCSP on the dataset.

Source Target
aa (%) al (%) av (%) aw (%) ay (%)

aa - 80.58 50.17 84.33 80.41
al 67.20 - 63.87 90.58 81.98
av 50.00 86.11 - 80.10 55.13
aw 62.23 93.88 54.39 - 50.00
ay 50.00 91.00 65.67 50.00 -
aa + al - - 57.43 87.69 84.65
aa + av - 84.58 - 81.56 74.11
aa + aw - 87.80 51.76 - 51.53
aa + ay - 84.58 - 81.56 74.11
al + av 59.27 - - 88.35 50.00
al + aw 68.10 - 61.96 - 50.00
al + ay 62.92 - 68.47 78.16 -
av + aw 52.44 93.11 - - 50.00
av + ay 45.30 89.38 - 74.98 -
aw + ay 58.60 91.65 61.25 - -
aa + al + av - - - 88.10 73.25
aa + al + aw - - 50.00 - 58.60
aa + al + ay - - 58.47 80.01 -
aa + av + aw - 83.37 - - 50.00
aa + av + ay - 85.68 - 78.10 -
aa + aw + ay - 89.59 50.00 - -
al + av + aw 62.56 - - - 50.00
al + av + ay 52.10 - - 75.48 -
al + aw + ay 63.13 - 52.47 - -
av + aw + ay 55.65 91.67 - - -
al + av + aw + ay 62.07 - - - -
aa + av + aw + ay - 87.68 - - -
aa + al + aw + ay - - 60.63 - -
aa + al + av + ay - - - 81.20 -
aa + al + av + aw - - - - 53.19

Each trial was considered an 𝑀 × 𝑇 matrix 𝐸𝑖, in
which 𝑀 represents the electrode amount and the time
point amount sampled. EEG signals measured were band-
pass decomposed (8–30Hz). SVM (Support VectorMachine)
involving linear kernel was utilized as the classifier. The
proportion of the number of samples properly classified to the
aggregate number of used samples in this test was employed
to evaluate the classification precision.

Our establishment of a dataset (containing the target
domain and source domain) for cross-domain classification
is described as follows. The dataset of each subject could
become the target domain (ay, aw, av, al, aa), while the
dataset of other subjects could become the source domains.
This strategy of dataset construction ensured the relevance
between domains of unlabeled and labeled data, as they were
located in the same top-level categories. Accordingly,𝐶14+𝐶24+𝐶34 + 𝐶44 = 15 datasets of the source domains were generated
for each target domain. It was possible to generate five dataset
groups, including 5 × 15 = 75 datasets.

3.2. Experimental Results. In this section, TKCSP and six
competitive methods are evaluated based on classification
accuracy [8, 11, 23]. We established five dataset groups from
the dataset described above. Each dataset group includes four
source subjects in source domains and one target subject as
target domain. If one subject is the target domain, it will
no longer appear in the source domains, so that each target
domain corresponds to 15 different source domains. The
first column of Table 2 shows the different source domains,
and the second column to the sixth column of Table 2
show the classification accuracy of each target domain in
its source domains, respectively. Among them, the highest
classification accuracy of target domain aa was 68.10% and
the corresponding source domain was al + aw; the high-
est classification accuracy of target domain al was 93.88%
and the corresponding source domain was aw; the highest
classification accuracy of target domain av was 68.47% and
the corresponding source domain was al + ay; the highest
classification accuracy of target domain aw is 68.10% and the
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(a) The target subject is aa; the source subjects are al, av, aw, ay, al + av,
al + aw, al + ay, av + aw, av + ay, aw + ay, al + av + aw, al + av + ay, av +
aw + ay, al + av + aw + ay
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(b) The target subject is al; the source subjects are aa, av, aw, ay, aa +
av, aa + aw, aa + ay, av + aw, av + ay, aw + ay, aa + av + aw, aa + av +
ay, av + aw + ay, aa + av + aw + ay
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(c) The target subject is av; the source subjects are aa, al, aw, ay, aa +
al, aa + aw, aa + ay, al + aw, al + ay, aw + ay, aa + al + aw, aa + al + ay,
al + aw + ay, al + av + aw + ay
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(d) The target subject is aw; the source subjects are aa, al, av, ay, aa +
al, aa + av, aa + ay, al + av, al + ay av + ay, aa + al + av, aa + al + ay, al
+ av + ay, aa + al + av + ay
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(e) The target subject is ay; the source subjects are aa, al, av, aw, aa +
al, aa + av, aa + aw, al + av, al + aw, av + aw, aa + al + av, aa + al + aw,
al + av + aw, aa + al + av + aw

Figure 3: Classification accuracy of TKCSP and CSP on the dataset.

corresponding source domain is al; the highest classification
accuracy of target domain ay is 68.10% and the corresponding
source domain is aa + al.

To be complete, we detail the results of TKCSP method
and CSP approach on all of 5 dataset groups in Figures
3(a), 3(b), 3(c), 3(d), and 3(e), where each figure presents
the results of each group. In Figure 3, the blue dashed
line indicates the classification accuracy of CSP algorithm,
the red solid line indicates the classification accuracy of
TKCSP algorithm in different source domains, and the
green square indicates the best classification accuracy of
TKCSP. The horizontal axis of green square is corresponding
to the optimal source domain. The results show that the

classification accuracy of TKCSP method is better than that
of CSP algorithm.

Table 3 lists the classification (recognition) precisions
of five comparison approaches and TKCSP on dataset IVa.
Figure 4 visually depicts the results for improved accessibility.
The performance achieved by TKCSP is significantly better
than those achieved by the five comparison approaches.
Several observations can be made from these results.

Firstly, TKCSP achieves classification precision on the aw
and aa datasets as 90.58% and 68.47%, respectively.These are
higher than those of the five comparison approaches. More-
over, TKCSP achieves an average classification precision on
these datasets as 81.14%, providing a significant performance



8 Computational and Mathematical Methods in Medicine

Table 3: Comparison of classification accuracy for TKCSP and 6
competitive methods.

Subject aa al av aw ay Mean
(%) (%) (%) (%) (%) (%)

CSP 66.07 96.43 63.30 71.88 54.40 70.42
RCSP 71.43 96.43 63.30 71.88 86.90 77.98
CSP SJ-to-SJ 67.76 98.41 60.20 78.72 74.78 75.97
ssCSP 67.00 94.62 58.26 89.35 85.71 78.99
mtCSP 72.33 94.62 68.39 65.57 83.14 76.81
ss + mtCSP 71.43 94.63 66.32 88.40 74.93 79.17
TKCSP 68.10 93.88 68.47 90.58 84.65 81.14
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Figure 4: Comparison of classification accuracies for TKCSP and 6
competitive methods.

improvement of 1.97% over ss + mtCSP, the best competitive
approach. It is strongly verified by the consistent performance
improvements on these datasets that TKCSP can successfully
establish powerful domain kernels for classification of cross-
domain motor imagery.

Then, a composite covariance matrix as a weighted total
of covariance matrices, including subjects resulting in a
composite CSP, is determined by CSP for subject-to-subject
transfer (CSP SJ-to-SJ). This approach thus achieves an
average classification precision of 75.97%.

Thirdly, regularizingCSP (RCSP) is intended to regularize
the covariance matrix to the mean covariance matrix of other
subjects for improving its estimation performance. Such
regularization is particularly promising in settings with small
samples. Furthermore, this approach achieves an average
classification precision of 77.98%.

Finally, the stationary subspace CSP (ssCSP) focuses
on the nonstationarity issue while multitask CSP (mtCSP)
focuses on the estimation issue. The combined mtCSP and

ssCSP (ss + mtCSP) method employs both approaches. That
is, the nonstationary subspace acquired by ssCSP is firstly
projected, and then the spatial filters are computed with
mtCSP by regularization parameters acquired when it is
applied to the initial data.The three above approaches achieve
an average classification precision of 78.99%, 76.81%, and
79.17%, respectively.

In particular, TKCSP can assess the various cluster struc-
tures and naturally matches them betweenmultiple domains.
This procedure is achieved by TKCSP through the matching
between the source domain kernel and kernel extrapo-
lated from the target domain, while simultaneously increas-
ing (declining) the domain-invariant (domain independent)
eigenspectrum. The superior performance of TKCSP can be
explained by this advantage.

4. Conclusion

In this paper, we proposed the TKCSP method to lower
the training trial amount and improve the performance via
learning a domain-independent kernel. To this end, direct
matching of distributions between target subjects and source
subjects within the kernel space is conducted. TKCSP and
six competitive approaches were evaluated on EEG datasets
provided by BCI Competition III. The results showed that
the performance of the best approach, RCSP, was better
than that of CSP by nearly 1.97% in terms of the mean
classification precision. The results also revealed that RCSP
can perform effective subject-to-subject transfer. Therefore,
the behaviors matched with knowledge of neurophysiology
could be classified by the TKCSP approach.

Notations

𝑍,𝑋 : Source/target domain
𝑚, 𝑛 : Source/target examples
𝑑, 𝑐 : Features/classes
𝛾, 𝜁 : Eigenvectors/damping factor
X: Input data matrix
K: Kernel matrix
Φ: Eigenvector matrix
Λ: Eigenvalue matrix.
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