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The problem ofminimizing themakespan on single batch processingmachine is studied in this paper. Both job sizes and processing
time are nonidentical and the processing time of each batch is determined by the job with the longest processing time in the batch.
Max–Min Ant System (MMAS) algorithm is developed to solve the problem. A local search methodMJE (Multiple Jobs Exchange)
is proposed to improve the performance of the algorithmby adjusting jobs between batches. Preliminary experiment is conducted to
determine the parameters ofMMAS.Theperformance of the proposedMMAS algorithm is comparedwithCPLEX aswell as several
other algorithms including ant cycle (AC) algorithm, genetic algorithm (GA), and two heuristics, First Fit Longest Processing Time
(FFLPT) and Best Fit Longest Processing Time (BFLPT), through numerical experiment.The experiment results show that MMAS
outperformed others especially for large population size.

1. Introduction

Scheduling of batch processing machine is a typical com-
binatorial optimization problem. Different from traditional
scheduling problems, batch processing machine can process
several jobs simultaneously as a batch. Scheduling batch
processing machine is usually encountered in manufacturing
industry such as heat treatment in metal industry and envi-
ronment stress-screening in integrated circuit production. As
these operations often tends to be the bottleneck of manufac-
turing sequence, scheduling batch processing machine will
effectively promote the completion time of jobs.

The problem was first proposed by Ikura and Gimple [1]
who studied the problemwith identical job sizes and constant
batch processing time and machine capacity was defined by
the number of jobs processed simultaneously. Considering
the burning operation in semiconductor manufacturing, Lee
et al. [2] presented an efficient dynamic programming based
algorithms for minimizing a number of different perfor-
mancemeasures.The same problemwas studied by Sung and
Choung [3] who proposed branch and bound algorithm and
several heuristics to minimize the objective of makespan.

The problem is muchmore complicated when nonidenti-
cal job sizes are considered. Uzsoy [4] studied the problem
of scheduling single batch processing machine under the
objectives of minimizing makespan (𝐶max) and the total
processing time (∑Ci) with nonidentical job sizes. Both
problems were proved to be NP-hard and several heuris-
tics were proposed including First Fit Longest Processing
Time (FFLPT), first fit shortest processing time (FFSPT) et
al. Dupont and Jolai Ghazvini [5] proposed two effective
heuristics’ successive knapsack problem (SKP) and best fit
longest processing time (BFLPT) and later one outperformed
FFLPT. To solve the problem optimally, exact algorithm like
branch and bound was proposed by Dupont and Dhaenens-
Flipo [6], they present some dominance properties for a
general enumeration scheme for the makespan criterion.
Enumeration scheme [7] was also developed combined with
existing heuristics to solve large scale problems.

Since the batch processing machine scheduling problem
is NP-hard [4], various metaheuristic algorithms have been
developed to solve the problem. Melouk et al. [8] studied
the problem using Simulated Annealing (SA), and random
instances were generated to evaluate the effectiveness of the
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algorithm.The same problem was considered by Damodaran
et al. [9] with genetic algorithm (GA). The experiment
showed that GA outperformed SA in run time and solu-
tion quality. Husseinzadeh Kashan et al. [10] proposed
the grouping version of the particle swarm optimization
(PSO) algorithm and the application of which was made
to the single batch-machine scheduling problem. A GRASP
approach developed by Damodaran et al. [11] was used to
minimize the makespan of a capacitated batch processing
machine and the experimental study concluded that GRASP
outperformed other solution approaches. For the problems
considering multimachines, Zhou et al. [12] proposed an
effective differential evolution-based hybrid algorithm to
minimize makespan on uniform parallel batch processing
machines and the algorithm was evaluated by comparing
with a random keys genetic algorithm (RKGA) and a particle
swarm optimization (PSO) algorithm. Similar problem was
studied by Jiang et al. [13] considering batch transportation.
A hybrid algorithm combining the merits of discrete particle
swarm optimization (DPSO) and genetic algorithm (GA)
is proposed to solve this problem. The performance of the
proposed algorithms was improved by using a local search
strategy as well. All of these studies show the effectiveness
of solving batch processing machines problems by using
metaheuristic algorithms.

The studies reviewed above mainly solve the problem
by sequencing the jobs into job list and then grouping
the jobs into batches. Different from the existing studies,
a metaheuristic algorithm MMAS (Max–Min Ant System)
was designed in a constructive way by combining these two
stages of decisions together. That is to say, the batches are
constructed directly without considering job sequences and
then the batches process on a batch processing machine. In
the process of batch construction, jobs to be added to the
existing batches can be selected elaborately by considering
batch utilization and batch processing time. To improve the
global searching ability of MMAS, local searchmethod based
on multiple jobs iterative exchange was proposed.

The remaining part of this paper is organized as follows.
The mathematic model of the problem studied in this paper
is presented in Section 2. In Section 3, we show the detailed
MMAS algorithm used to solve the problem under the study.
The parameters tuning and the numeric experimentation
are given in Section 4. The paper is finally concluded in
Section 5.

2. Mathematic Model

The problem of scheduling single batch processing machine
is studied and the objective is to minimize makespan. Batch
processing machine can process several jobs as a batch and
all the jobs in that batch have the same start and completion
time. The process cannot be interrupted once the process
begins and no jobs can be added or removed from the
machine until all jobs have been finished. Batch processing
time is determined by the job with longest processing time in
the batch. Jobs are all available at the time of zero.

Symbols and notations used in this paper are listed as
follows:

(1) There are 𝑛 jobs 𝐽 = {1, 2, . . . , 𝑛} to be processed and
each job 𝑗 has nonidentical processing time 𝑝𝑗 and
size 𝑠𝑗.

(2) The capacity of the machine is assumed to be 𝐶 and
each job 𝑗 has 𝑠𝑗 ⩽ 𝐶. Job list 𝐽 will be scheduled
into batches 𝑏 ∈ 𝐵 before they are processed where𝐵 denotes a batch list, that is, a feasible solution, and|𝐵|means the number of batches in𝐵. Processing time
of each batch 𝑏 equals 𝑃𝑏 = max{𝑝𝑗 | 𝑗 ∈ 𝑏}.

(3) The objective is to minimize makespan (𝐶max) which
is equal to the total batch processing time in a solution𝐵.

Base on the assumptions and notations given above, we
can get the following mathematic model of the problem.

min 𝐶max = ∑
𝑏∈𝐵

𝑃𝑏 (1)

s.t. ∑
𝑏∈𝐵,

𝑥𝑗𝑏 = 1 ∀𝑗 ∈ 𝐽 (2)

𝑛∑
𝑗=1

𝑠𝑗 ⋅ 𝑥𝑗𝑏 ≤ 𝐶 ∀𝑏 ∈ 𝐵 (3)

𝑃𝑏 ≥ 𝑝𝑗𝑥𝑗𝑏 ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (4)

𝑥𝑗𝑏 ∈ {0, 1} ∀𝑗 ∈ 𝐽, 𝑏 ∈ 𝐵 (5)

⌈∑𝑛𝑗=1 𝑠𝑗𝐶 ⌉ ≤ |𝐵| ≤ 𝑛 |𝐵| ∈ 𝑍+. (6)

Objective (1) is to minimize the makespan. As only one
processing machine is considered, the makespan is equal to
the total completion time of all batches formed. Constraint
(2) ensures that each job 𝑗 can be assigned exactly to one
batch. Constraint (3) guarantees that total size of jobs in a
batch does not exceed the machine capacity 𝐶. Constraint
(4) explains that the batch processing time is determined by
the job with longest processing time in that batch. Constraint
(5) denotes the binary restriction of variable 𝑥𝑗𝑏 which is
equal to 1 if job 𝑗 is assigned to batch 𝐵 and 𝑥𝑗𝑏 = 0
otherwise. Constraint (6) gives the upper and lower bound
of the number of batches in a feasible solution 𝐵. The lower
bound is calculated when assuming jobs can be processed
partially across the batches [4]. And the upper bound is
generated when each batch accommodates only one job.

3. Max–Min Ant System

MMAS [14] is one of the most successful variants in the
framework of ant colony optimization (ACO) [15, 16] which
have been applied to many combinatorial optimization prob-
lems such as scheduling problems [17], traffic assignment
problems [18], and travelling salesman problems [15]. In
MMAS, pheromone trail limits interval [𝜏min, 𝜏max] is used
to prevent premature convergence and to exploit the best
solutions found during the solution search.The performance
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of the algorithm is significantly affected by the values of
the parameters; thus parameters tuning is performed to
optimize algorithm performance. A local search method is
also developed to enhance the search ability of MMAS.

MMAS is a constructive metaheuristic algorithm which
is able to build a solution step by step. It can be adapted
to various combinatory optimization problems with a few
modifications. Given a list of jobs, MMAS will group the
jobs into batches by adding jobs to the existing or new
batches one at a time. The sequence of selecting jobs to
be constructed into batches depends on the state transition
probability calculated according to density of pheromone
trail and heuristic information of each solution element.
A solution is generated once all jobs are arranged into
a batch.

3.1. Pheromone Trails. When solving the problem of TSP
(travelling salesman problem) by using ant colony optimiza-
tion algorithms [15], the pheromone trails 𝜏𝑖𝑗 are defined
by the expectation of choosing city 𝑗 from city 𝑖, that is,
the amount of pheromone of the arc(𝑖, 𝑗). The city with
higher density of pheromone trail will be selected with a
higher possibility. However, in the problem of scheduling
batch processing machine, each solution is a set of batches
and the sequence of jobs in a batch does not affect the
batch processing time; thus the pheromone trails imply the
expectation of arranging a job into a batch. In this study, we
measure the expectation of adding a job to a batch by using
the average pheromone trails between the job 𝑗 and each job
in batch 𝑏 as follows.

𝜗𝑗𝑏 = 1|𝑏|∑
𝑘∈𝑏

𝜏𝑗𝑘, (7)

where 𝜏𝑗𝑘 means the pheromone trail between job 𝑗 and the
existing job 𝑘 in batch 𝑏. 𝜗𝑗𝑏 denotes the expectation of adding
the job 𝑗 to the current batch 𝑏. |𝑏| denotes the number of jobs
in a batch 𝑏. And this expectation will be used as pheromone
trails in the calculation of state transition probability.

3.2. Heuristic Information. As the objective 𝐶max equals the
total processing time of all batches formed, the quality of a
solution is affected by both the number of batches and the
processing times of each batch in the solution. Thus, two
kinds of heuristic information are considered in this study,
that is, the utilization of machine capacity and efficiency of
batch processing time.

Usually, solutions with smaller number of batches gener-
ate better results. To reduce the unoccupied capacity of each
batch, we add job 𝑗 to batch 𝑏 with the most feasible capacity
in priority according to FFD (first fit decreasing) algorithm in
bin packing problem [19]. The heuristic to add a feasible job𝑗 to batch 𝑏 is defined as follows:

𝜇𝑗𝑏 = 𝑠𝑗. (8)

The processing time of a batch is determined by the job
with the longest processing time in the batch. Obviously, jobs
with similar processing times should be batched together to
increase the efficiency of batch processing time.Thus, we give

another heuristic information for adding job 𝑗 to batch 𝑏 as
follows:

𝜂𝑗𝑏 = 1
1 + 󵄨󵄨󵄨󵄨󵄨𝑃𝑏 − 𝑝𝑗󵄨󵄨󵄨󵄨󵄨 . (9)

3.3. Solution Construction. For each ant 𝑎, a solution is
constructed by selecting anunscheduled job 𝑗 and adding it to
an existing batch 𝑏 according to a state transition probability𝑃𝑎𝑏𝑗. If no existing batches can accommodate the job 𝑗, a
new empty batch will be created and accommodate it. A
solution will be generated when all jobs are scheduled into a
batch. Since a solution construction depends on the sequence
of jobs chosen, solution quality is significantly affected by
state transition probability. The probability is determined by
the pheromone trails and heuristic information between the
current batch and job to be scheduled. The state transition
probability is defined as follows:

𝑃𝑎𝑏𝑗 =
{{{{{{{

𝜗𝛼𝑏𝑗 ⋅ 𝜂𝛽𝑏𝑗 ⋅ 𝜇𝛾𝑏𝑗
∑𝑗∈𝑉 𝜗𝛼𝑏𝑗 ⋅ 𝜂𝛽𝑏𝑗 ⋅ 𝜇𝛾𝑏𝑗 , 𝑗 ∈ 𝑉0, Else,

(10)

where 𝑉 denotes the feasible jobs that can be added to the
current batch 𝑏 such that themachine capacity is not violated.𝛼, 𝛽, and 𝛾 show the relative importance of pheromone
trails and two kinds of heuristic information. For each ant𝑎, a feasible job 𝑗 in 𝑉 will be selected with probability and
added to the current batch or a new batch until all jobs are
scheduled.

3.4. Update of Pheromone Trails. The density of pheromone
trails is an important factor in the process of solution con-
struction, as it indicates the quality of solution components.
When all ants build its feasible solution, the pheromone
trails on every solution component will be updated through
pheromone depositing and evaporating. After each itera-
tion, the pheromone trails of each solution component will
be decreased with the evaporation rate 𝜌 while solution
component of the iterative best solution or the global best
solution will be increased by a quantity Δ𝜏𝑗𝑘. The pheromone
update for each ant 𝑎 at 𝑡th iteration between the solution
components of job 𝑗 and job 𝑘 is performed according to (11)
as follows.
𝜏𝑗𝑘 (𝑡 + 1) = 𝜌𝜏𝑗𝑘 (𝑡) + Δ𝜏𝑗𝑘 (11)

Δ𝜏𝑗𝑘
= {{{

1𝐶𝑎max
, if job 𝑗 and 𝑘 are of the same batch

0, otherwise,
(12)

where 𝜌 (0 ≤ 𝜌 < 1) controls the pheromone evaporation
rate. 𝐶𝑎max denotes the solution makespan get by ant 𝑎.

The pheromone trails are limited in the interval of[𝜏min, 𝜏max] in MMAS algorithm. We set 𝜏max = 1/[𝜌 × 𝐶∗max]
and 𝜏min = 𝜏max/2𝑛 in this study according to Stützle and
Hoos [14]. 𝐶∗max is the global best makespan that ants have
found.
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3.5. Local Search Algorithm. Solution qualities can be effec-
tively improved when local search methods are applied in
metaheuristics [20]. That is because greedy strategies are
usually adopted in local search methods and local optimal
can be easily found in the neighborhood of a given solution.
Metaheuristics’ ability in global optimal searching can be
enhanced by combining their advantages in exploring solu-
tion space with local search methods.

As batch processing time is determined by the job with
the longest processing time in the batch, jobs with smaller
processing time have no effect on batch processing time.
Local search method can be applied to decrease batch
processing time by batching jobs with similar processing time
together.

Definition 1. The job 𝑖 with longest processing time in batch𝑏 is called dominant job 𝑑𝑏. The total processing time of jobs
without dominant job is denoted as dominated job processing
time, noted as𝐷𝑇.
Proposition 2. Themakespan will be minimized by maximiz-
ing𝐷𝑇.
Proof. We have 𝐶max = ∑𝑏∈𝐵max{𝑝𝑗 | 𝑗 ∈ 𝑏} for a given
solution 𝐵. According to Definition 1, 𝐷𝑇 = ∑𝑏∈𝐵(∑𝑗∈𝑏 𝑝𝑗 −
max{𝑝𝑗 | 𝑗 ∈ 𝑏}) = ∑𝑏∈𝐵∑𝑗∈𝑏 𝑝𝑗 − ∑𝑏∈𝐵max{𝑝𝑗 | 𝑗 ∈ 𝑏};
thus we have 𝐶max = ∑𝑏∈𝐵∑𝑗∈𝑏 𝑝𝑗 − 𝐷𝑇. As the total job
processing time∑𝑏∈𝐵∑𝑗∈𝑏 𝑝𝑗 is constant for a given instance,
themakespanwill beminimizedwhenDT ismaximized.

Definition 3. For each batch 𝑏, the sum of its remain-
ing capacity and the size of dominant job 𝑑𝑏 is called
exchangeable capacity EC𝑏; we denote EC𝑏 = 𝐶 − ∑𝑖∈𝑏 𝑠𝑖 +𝑠𝑗=argmax{𝑝𝑗|𝑗∈𝑏}.

Proposition 4. Given 𝑝𝑏 ⩾ 𝑝𝑞, larger DT will be obtained by
exchange 𝑑𝑏 of batch 𝑏 with 𝑚 jobs in batch 𝑞 where ∑𝑚𝑖=1 𝑠𝑖 ≤𝐸𝐶𝑞 and max{𝑝𝑖 | 𝑖 = 1, . . . , 𝑚} ≤ max{𝑝𝑗 | 𝑗 ∈ 𝑞}, while the𝐶max does not increase.

Proof. Given two batches 𝑏 and 𝑞, 𝑝𝑏 ⩾ 𝑝𝑞, jobs in batch𝑏 can be divided into three sets {𝑑𝑏}, 𝑚 jobs 𝑀, and other
jobs 𝑂, where ∑𝑚𝑖=1 𝑠𝑖 ≤ EC𝑞 and max{𝑝𝑖 | 𝑖 = 1, . . . , 𝑚} ≤
max{𝑝𝑗 | 𝑗 ∈ 𝑞}. Jobs in batch 𝑞 can be divided into sets {𝑑𝑞}
and other jobs𝑂󸀠. Therefore, we have 𝐶max = 𝑝𝑑𝑏 +𝑝𝑑𝑞 . After
the exchange is applied to batches, we have 𝐶󸀠max = 𝑝𝑑𝑏 + 𝑝󸀠𝑑𝑞 ,
where 𝑝󸀠𝑑𝑞 = max{𝑝𝑖 | 𝑖 ∈ 𝑀 ∪ 𝑂󸀠}. As 𝑝𝑑𝑞 ≥ {𝑝𝑖 | 𝑖 ∈𝑀 ∪ 𝑂󸀠}, the relation 𝐶󸀠max ≤ 𝐶max is satisfied. According to
Proposition 2, there is 𝐶max = ∑𝑗∈𝑏∪𝑞 𝑝𝑗 − 𝐷𝑇; a minor 𝐶max
indicates a larger DT. Proposition 4 holds.

According to Proposition 4, multiple jobs can be
exchanged iteratively between batches to decrease batch
processing time. For a given solution 𝑆, the number of batches
is limited by the total number of jobs where each job is
grouped as one batch.The detailed procedure of the proposed
local search algorithmMJE (Multiple Jobs Exchange) is listed
as follows:

M

Batch k

Size

Time

p q

Batch k − 1

Δk−1 Δ k

Figure 1: Notations description of AlgorithmMJE.

Order batches and jobs for a given solution S

according to Proposition 4

No

End

Yes

Start

K = n

Exchange dominant job of k with m jobs in k − 1

Initialize parameter k = 0, n = |S|

Figure 2: Flow chart of algorithm MJE.

Algorithm MJE (Multiple Jobs Exchange)

Step 1. For the iterative best solution 𝑆, arrange the batches
in decreasing order of their processing time and order jobs of
each batch in decreasing order of job size.

Step 2. Initialize parameter 𝑘 = 0, set 𝑛 = |𝑆|, Δ 𝑘 is
the remaining capacity of batch 𝑘, and 𝑝 and 𝑞 denote the
dominated job of batch 𝑘 − 1 and batch 𝑘, respectively.
Step 3. If 𝑘 = 𝑛, exit; else 𝑘 = 𝑘 + 1.
Step 4. Exchange the job 𝑞 of batch 𝑘 with𝑚 (𝑚 > 0) jobs𝑀
in batch 𝑘 − 1 if max{𝑝𝑖 | 𝑖 ∈ 𝑀} ≤ 𝑝𝑞,∑𝑖∈𝑀 𝑠𝑖 ≤ 𝑠𝑞 + Δ 𝑘 and𝑠𝑞 ≤ ∑𝑖∈𝑀 𝑠𝑖 + Δ 𝑘−1; go to Step 3.

Corresponding notations are illustrated in Figure 1.
Theflowchart of algorithmMJE is provided as in Figure 2.

3.6. Algorithm Framework of MMAS with Local Search.
According to basic framework of ant algorithms [16], the
framework of MMAS to solve the problem under study is
given as follows.

Algorithm MMAS

Step 1. Initialize parameters in MMAS including 𝛼, 𝛽, 𝛾, and𝜏(0).
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Start

Initialize ant population A, job set J

For each Ant a in A

Existing jobs can be 
added to current batch

For each job j in J

Add job j to the current batch according to state 
transition probability

Yes

Create a new 
batch for ant a

Yes

No

All jobs have been assigned

Yes

Solutions have been
constructed for all ants

No
No

Yes

Apply local search method MJE

Update pheromone trails

Nc =

Yes

No

Output the global optimal solution

End

Initialize parameters , , ,  (0), Nc,NcＧ；Ｒ

NcＧ；Ｒ

Figure 3: Flow chart of algorithmMMAS.

Step 2. Initialize ant population.

Step 3. Select a unscheduled job for each ant 𝑎 and add the
job to a new batch.

Step 4. Arrange the next unscheduled feasible job with the
maximum state transition probability calculated by (10) into
the current batch.

Step 5. If there are existing jobs that can be added to the
current batch, then go to Step 4.
Step 6. If there are jobs unscheduled, then go to Step 3.
Step 7. Apply local search methodMJE to iteration solutions.

Step 8. Update pheromone trails according to formula (11).

Step 9. If the termination condition is satisfied, then output
the solution. Else go to Step 2.

To illustrate the procedure of MMAS more logically, the
flow chart of algorithmMMAS is provided as in Figure 3.

4. Experimentation

4.1. Experimental Design. Random instances were generated
to verify the effectiveness of the proposed algorithm. Three
factors were considered in the numeric experiment including
number of jobs 𝐽, job processing time 𝑃, and job size 𝑆.
24 (4 ∗ 2 ∗ 3) problem categories were generated and
denoted in the form of 𝐽𝑖𝑃𝑗𝑆𝑘 (𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2;𝑘 = 1, 2, 3). Factors and levels are shown in Table 1.
The machine capacity is assumed to be 10 for all problem
instances.

For example, 𝐽1𝑃2𝑆3 represented the category of
instances with 10 jobs, jobs’ processing time were randomly
generated from a discrete uniform [1, 20] distribution, and
jobs’ sizes were randomly generated from a discrete uniform[4, 8] distribution.
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10
9
8
7
6
5
4
3
2
1



2 3 4 5 6 7 8 9 101


>360

<345
345–350
350–355
355–360

Cmax

>1560

<1542
1542–1550
1550–1555
1555–1560

Cmax

Figure 4: Contour lines of 𝐶max influenced by parameters 𝛼, 𝛽, and 𝛾 for different problem categories.

Table 1: Factors and levels.

Factors Levels
𝐽 𝐽1 = 10; 𝐽2 = 20; 𝐽3 = 50; 𝐽4 = 100𝑃 𝑃1: 𝑈[1, 10]; 𝑃2: 𝑈[1, 20]𝑆 𝑆1: 𝑈[1, 10]; 𝑆2: 𝑈[2, 4]; 𝑆3: 𝑈[4, 8]
𝑈means data are generated from discrete uniform distribution.

4.2. Parameter Tuning. As each ant will build feasible solu-
tions with probability, a large population of ants will enhance
the algorithm’s ability in exploring solution space while more
times of iteration help to make better use of pheromone
trails and heuristic information. However, the algorithm is
much more time consuming with larger number of ants and
iterations. Preliminary tests were done and the results showed
that to increase the number of iteration yields better results
in a given run time. That is easy to be understood as the
algorithm inclines to perform randomly search in the initial
stages and more empirical results are considered along with
the increasing of iterations. To obtain a tradeoff between
solution quality and time cost, ant population was set to 30
and iterations were set to 80 in this study.

It can be seen from formula (10) that there is exponential
relationship between state transition probability, pheromone
trails, and heuristic information.Thus, the probability ismore
sensitive to these factors with larger parameters 𝛼, 𝛽, and 𝛾.
To verify the influence of these parameters, preliminary tests
were done to choose the parameters levels as well. 𝛼 = 1 was
used as a reference level to study the effect of parameters 𝛽
and 𝛾 on makespan in the interval of [1, 10]. The results are
shown in Figure 4.

It can be observed from Figure 4 that medium 𝛽 and
smaller 𝛾 should be used for instances of 𝑆2 categories with
small jobs to obtain bettermakespanwhile the larger 𝛾 should
be adopted for instances of 𝑆3 categorieswith large jobs on the
contrary. For instances of 𝑆1 categories with mixed job sizes,
smaller values for 𝛽 and medium 𝛾 seem better compared

Table 2: Values for parameters.

Run code 𝛽 𝛾
𝑆1 3 5𝑆2 6 3𝑆3 6 8

with the former two categories. All instances generate bad
results when 𝛽 is too close to 1. Large size jobs usually have
lower flexibility when arranged in batches compared with
small size jobs. So high level of 𝛾 is used to arrange large size
jobs first with high probability for instances with large jobs.
Similarly, big 𝛽 is used to batch jobs with similar processing
time together to increase the efficiency of batch processing
time. According to the analysis above, three levels for each
parameter are selected in this study as shown in Table 2.

Pheromone trails evaporate at each iteration and the
speed is controlled by the parameter 𝜌. (1 − 𝜌) means
evaporation rate. A high evaporation rate leads to a constant
change of pheromone trails on each solution element while a
low rate results in the pheromone trails on solution elements
that cannot evaporate in time.

Pheromone trails of each solution element is limited
in the interval of [𝜏min, 𝜏max] in MMAS algorithm. The
pheromone trails are usually set to a high value of 𝜏max at
the beginning of running in order to improve the searching
ability in solution space. If a solution element is always in the
state of evaporation and its pheromone trail decreases to 𝜏min
just after 𝑁𝑐 iterations then we have 𝜏min = 𝜏max ⋅ 𝜌𝑁𝑐. Since𝜏min = 𝜏max/2𝑛 as mentioned above, it can be derived that𝜌𝑁𝑐 = 1/2𝑛; that is, 𝑁𝑐 = log1/2𝑛𝜌 , 0 < 𝜌 < 1, where 𝑛 is the
number of jobs. The relationship between 𝑁𝑐 and 𝜌 for 100
jobs is described in Figure 5.

It can be seen from Figure 5 that 𝑁𝑐 increases dramati-
cally when 𝜌 > 0.6; thus 𝜌 is set to 0.6 in this study in order
to ensure the pheromone trails evaporate not too quickly or
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Table 3: Results of MMAS compared with CPLEX.

Problem category MMAS CPLEX
Min Max Avg Optimal (%) AvgTime (s) AvgTime (s)

𝑆1𝐽1𝑃1 20.00 60.00 36.64 100.00 0.11 0.64𝐽1𝑃2 33.00 127.00 71.98 100.00 0.10 0.63𝐽2𝑃1 43.00 105.00 69.13 100.00 0.33 1.18𝐽2𝑃2 81.00 198.00 131.70 96.00 0.33 1.42
𝑆2𝐽1𝑃1 13.00 29.00 20.90 100.00 0.22 0.44𝐽1𝑃2 23.00 58.00 40.24 100.00 0.22 0.45𝐽2𝑃1 28.00 48.00 37.97 100.00 0.81 28.04𝐽2𝑃2 46.00 94.00 71.94 99.00 0.82 26.90
𝑆3𝐽1𝑃1 27.00 64.00 44.12 100.00 0.08 0.59𝐽1𝑃2 50.00 124.00 85.53 100.00 0.08 0.58𝐽2𝑃1 56.00 122.00 87.84 100.00 0.23 1.07𝐽2𝑃2 106.00 217.00 167.18 100.00 0.23 1.12
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Figure 5: Relationship between𝑁𝑐 and 𝜌.

slowly and the solution space can be explored in a reasonable
run time.

4.3. Performance Comparison for Small Scale Instances. As
shown in Table 3, the results obtained from MMAS is
compared with that from CPLEX (a commercial solver
for linear and mixed-integer problems). Due to the NP-
hardness of the problem, only small scale instances of 𝐽1
and 𝐽2 problem categories are solved by using CPLEX. The
minimum, maximum, and average value of 𝐶max reported
from MMAS are listed in columns 3 to 5. The average run
time of MMAS and CPLEXT are given in columns 7 and
8. Column 6 indicates the percent of the optimal values
obtained by using MMAS compared with the results from
CPLEX.

Nearly all small scale instances can be solved optimally
by using MMAS except several instances from 𝐽2𝑃2𝑆1 and𝐽2𝑃2𝑆2 with relative larger solution space. MMAS is com-
petitive in computational time compared with CPLEX for all
instances. Computational time of all instances fromMMAS is
less than 1 second. The computational time of CPLEX varies
greatly depending on the solution space of an instance.

4.4. Algorithm Performance Evaluation. To evaluate the per-
formance of the algorithm for all problem categories, MMAS
designed in this paper was comparedwithGA [9]. A basic ant
algorithm ant cycle (AC) was coded to solve the problem as
well and the parameters used were as prescribed in Cheng
et al. [21]. Two well-known heuristics FFLPT and BFLPT
were also compared withMMAS in the experiment study. 100
instances were generated for each problem category and the
best result of 10 runs for each instance was eventually used.

Comparison of various algorithms is summarized in
Table 4. Column 1 in Table 4 presents the run code. Column 2
shows the results of MMAS compared with other algorithms
where B, E, and I mean themakespan obtained byMMAS are
better than, equal to, or inferior to that of other algorithms,
respectively. Columns 3–6 report the proportion that the
makespan obtained by using MMAS compared with that of
other algorithms in 100 instances of 𝑆1 problem categories.
Columns 7–10 and columns 11–14 are similar to columns 3–6.
For example, the first number of 0.01 indicates that there is
a proportion of 0.01 results reported by MMAS better than
that generated by AC. As the problem under study is strongly
NP-hard, the solution space is to explode along with the
population size increasing form 𝐽1 to 𝐽4. On the other hand,
smaller job sizes give more combination of batches; thus the
solution space becomes smaller for 𝑆3 problem categories
compared with 𝑆1 for a given number of jobs.

It can be seen from Table 4 that MMAS outperforms
other algorithms on the whole. Several results reported by
MMAS inferior to those generated by other algorithms have
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Table 4: Results of MMAS compared with other algorithms.

Run code Cp. 𝑆1 𝑆2 𝑆3
AC GA BFLPT FFLPT AC GA BFLPT FFLPT AC GA BFLPT FFLPT

𝐽1𝑃1 B 0.01 0.02 0.16 0.17 0.00 0.10 0.16 0.16 0.00 0.01 0.07 0.07
E 0.99 0.98 0.84 0.83 1.00 0.90 0.84 0.84 1.00 0.99 0.93 0.93
I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

𝐽1𝑃2 B 0.02 0.02 0.10 0.13 0.01 0.14 0.19 0.19 0.00 0.03 0.08 0.11
E 0.98 0.98 0.90 0.87 0.99 0.86 0.81 0.81 1.00 0.97 0.92 0.89
I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

𝐽2𝑃1 B 0.04 0.45 0.47 0.59 0.01 0.31 0.32 0.32 0.00 0.07 0.14 0.20
E 0.96 0.55 0.53 0.41 0.99 0.69 0.68 0.68 1.00 0.93 0.86 0.80
I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

𝐽2𝑃2 B 0.13 0.42 0.41 0.57 0.06 0.32 0.33 0.34 0.00 0.14 0.19 0.29
E 0.87 0.58 0.59 0.43 0.94 0.68 0.67 0.66 1.00 0.86 0.81 0.71
I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

𝐽3𝑃1 B 0.43 0.84 0.83 0.93 0.23 0.89 0.91 0.91 0.00 0.30 0.30 0.43
E 0.57 0.16 0.17 0.07 0.75 0.11 0.09 0.09 1.00 0.70 0.70 0.57
I 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

𝐽3𝑃2 B 0.60 0.90 0.85 0.99 0.39 0.87 0.87 0.87 0.12 0.27 0.27 0.39
E 0.40 0.10 0.15 0.01 0.60 0.13 0.13 0.13 0.88 0.73 0.73 0.61
I 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

𝐽4𝑃1 B 0.78 0.93 0.90 1.00 0.49 0.99 0.99 0.99 0.05 0.18 0.18 0.30
E 0.21 0.06 0.09 0.00 0.49 0.01 0.01 0.01 0.95 0.82 0.82 0.70
I 0.01 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

𝐽4𝑃2 B 0.92 0.95 0.92 0.98 0.51 0.99 0.99 0.99 0.35 0.22 0.22 0.30
E 0.05 0.04 0.06 0.02 0.43 0.00 0.00 0.00 0.65 0.78 0.78 0.70
I 0.03 0.01 0.02 0.00 0.06 0.01 0.01 0.01 0.00 0.00 0.00 0.00

been earmarked by rectangle. For 𝐽1 problem categories,
results obtained from MMAS are mostly equal to that from
other algorithms. A percentage of about 16% results from
MMAS is better than that fromalgorithmsBFLPT andFFLPT
for 𝑆1 and 𝑆2 problem categories. The percentage is 7% for𝑆3 problem categories, which is because more results are
the same for all algorithms in a small solution space. Up
to 14% reported by MMAS are better than GA for 𝐽1𝑃2𝑆3
problem category. The advantage of MMAS to algorithms
like GA, BFLPT, and FFLPT is much more remarkable for𝐽2 problem categories. More better results can be found by
MMAS than AC and the percentage is up to 6% to 13% for𝐽2𝑃2 problem categories. More than 80% results obtained
from MMAS are better than that from GA, BFLPT, and
FFLPT for 𝐽3𝑆1 and 𝐽3𝑆2 problem categories. About 23% to
43% percent of results fromMMAS are better than AC while
the latter reports few better results. For 𝐽4 problem categories,
more than 90% results generated by MMAS are better than
that from algorithms AC, GA, BFLPT, and FFLPT for large
job population instances. Almost all other algorithms report
several better results than MMAS for 𝐽4 problem categories.

Based on the analysis given above, MMAS possesses
higher ability in solution space exploring. It outperforms all
other algorithms for almost all instances especially for large
job population. As MMAS is exploring solution space in
probability, the optimal solution cannot be guaranteed with
a limited population and iterations. Therefore, several results

obtained from MMAS are inferior to other algorithms even
to effective heuristics like BFLPT and FFLPT.

The makespan increases for 𝑃2 problem categories com-
pared with 𝑃1 problem categories but there is no significant
performance change for various algorithms.

To illustrate the gap between MMAS and other algo-
rithms for different population size, the average percentage of
results with better makespan obtained by MMAS compared
with other algorithms is given in Figure 6.

Averagely, a percentage of 10% results obtained from
MMAS are better than that from other algorithms for 𝐽1
problem categories while the number is 70% for 𝐽4. Algo-
rithm AC is the second best algorithm compared to GA and
the other two heuristics. BFLPT and FFLPT are all effective
in solving the problem especially for small population size.
BFLPT is generally better than FFLPT for almost all problem
categories and BFLPT is also used in GA to generate initial
solutions.

5. Conclusions and Future Work

The problem of scheduling single batch processing machine
was studied in this paper. An improved ant algorithmMMAS
(Max–Min Ant System) was designed and applied to solve
the problem. Parameters of MMAS were determined by
preliminary experiment and a local search method MJE
was also presented to improve the performance of MMAS.
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Figure 6: Average percentage of results obtained from MMAS
compared with that from other algorithms.

Optimal objectives can be obtained by using MMAS in less
computational time compared to CPLEX for small scale
problems. To evaluate the performance of MMAS, it was
compared with basic ant algorithm AC (Ant Cycle), GA
(Genetic Algorithm), and the other two well-known heuris-
tics of scheduling batch processing machine, that is, FFLPT
(First Fit Longest Processing Time) and BFLPT (Best Fit
Longest Processing Time). The numeric experiment showed
that MMAS outperformed other algorithms for almost all
instances in various problem categories especially for larger
population size.

Considering the good performance of MMAS, better
heuristics mechanism can be designed and applied to other
problems of scheduling batch processing machine. The
problem under study with other objectives and problem
constraints including release times and due dates can be
studied as well.
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