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Hyperspectral imaging is a crucial technique for military and environmental monitoring. However, limited equipment hardware
resources severely affect the transmission and storage of a huge amount of data for hyperspectral images. This limitation has the
potentials to be solved by compressive sensing (CS), which allows reconstructing images from undersampled measurements with
low error. Sparsity and incoherence are two essential requirements for CS. In this paper, we introduce surfacelet, a directional
multiresolution transform for 3D data, to sparsify the hyperspectral images. Besides, a Gram-Schmidt orthogonalization is used
in CS random encoding matrix, two-dimensional and three-dimensional orthogonal CS random encoding matrixes and a patch-
basedCS encoding scheme are designed.The proposed surfacelet-based hyperspectral images reconstruction problem is solved by a
fast iterative shrinkage-thresholding algorithm. Experiments demonstrate that reconstruction of spectral lines and spatial images is
significantly improved using the proposed method than using conventional three-dimensional wavelets, and growing randomness
of encoding matrix can further improve the quality of hyperspectral data. Patch-based CS encoding strategy can be used to deal
with large data because data in different patches can be independently sampled.

1. Introduction

Typical hyperspectral imaging (HSI) is acquired on satellites
and aerospace probes and then transmitted to grounds.
The imaging spectrometer can provide tens to hundreds of
narrow-band spectral information for each spatial location.
The huge amounts of data but scarce equipment hardware
resources on satellites and aerospace severely limit the trans-
mission and storage of hyperspectral images [1, 2]. However,
the ground receiving side holds very strong processing
capability. If we transfer the system complexity from the
satellites and aerospace probes to the ground, it is expected
to potentially solve the limitation in traditional high spectral
sampling.

Traditionally, super-resolution reconstruction is used to
improve the spatial resolution ofHSI [3, 4]while compression
can improve the transmission efficiency [5–8]. We acquire
“all” data and then “throw away” most of it in transmission

process. Can we just directly measure the part that we need
to save the cost of storage? Compressed sensing (CS) has been
proposed to solve these contradictions in remote sensing.The
theory of CS shows that a sparse signal can be recovered from
a relatively small number of linear measurements [9, 10]. The
difference between the conventional method and CS based
transmission method is shown in Figure 1.

CS has been widely used in medical imaging [11, 12]
and wireless sensor network [13, 14] to reduce the sampled
data in recent years which has been applied in remote
sensing. Duarte et al. [15] proposed a single-pixel imaging
method. Ma [2] applied CS in single frame imaging. Aravind
et al. [16] used ten spectral bands to compare orthogonal
matching pursuit with simultaneous orthogonal matching
pursuit in reconstruction. Fowler [17] presented compressive-
projection PCA to effectively shift the computational burden
of PCA from the encoder to the decoder.
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Figure 1: Conventional HSI transmission and CS HSI transmission. (a) Conventional sampling, compression, and decompression. (b)
Compressed sensing and sparse reconstruction.

According to the CS theory, the reconstruction error is
bounded by the sparse approximation error [18]. For a signal
x ∈ R𝑁, let x̃ be the solution to obey CS conditions, Ψ𝑇 a
forward transform, and (Ψ

𝑇x)
𝑠
the sparse approximation of

x in transform domain by retaining only the 𝑠-largest entries
ofΨ𝑇x; then, the reconstruction error is

‖x̃ − x‖2 ≤ 𝐶
0
𝜀 +

𝐶
1

√𝑆






Ψ
𝑇x − (Ψ

𝑇x)
𝑠





1
, (1)

where 𝐶
0
, 𝐶
1
are small positive constants and 𝜀 is noise

power [19]. Equation (1) implies that a sparser representation
will reduce the reconstruction error. An optimal sparsifying
transform is always important for sparse image reconstruc-
tion to reduce the reconstruction error.

In this study, we introduce the surfacelet transform (ST)
to sparsely represent hyperspectral images by making use of
the spatial and spectral information.The advantage of ST over
wavelet on sparse HSI data reconstruction is demonstrated,
where the data are reconstructed by using a fast iterative
shrinkage-thresholding algorithm [20]. To further improve
the reconstruction performance, a 3-dimensional (3D) ran-
dom encoding is designed and the Gram-Schmidt orthog-
onalization is adopted. Finally, a patch-based CS encoding
scheme is designed to deal with large size data.

The remainder of this paper is organized as follows. First,
ST-based compressive sensing HSI reconstruction method
is introduced in Section 2. The experimental results are
presented in Section 3. Finally, conclusions are given in
Section 4.

2. ST-Based Compressive Sensing
HSI Reconstruction

The CS theory comes up with two principles: sparsity, which
asserts that the reconstructed signal is sparsewith a transform
Ψ, and incoherence, which requires that the encoding matrix
Φ is incoherent withΨ [10].

2.1. Sparse Representation of HSI Using Surfacelet Transform.
Wavelet is commonly used as a typical sparse transform for
HSI [21–24]. However, wavelet sometimes fails in sparsely
representing HSI because it has only 7 directions [25–27].

Surfacelet transform (ST), proposed by Lu and Do [25], can
efficiently capture the surface intrinsic geometrical structure
within𝑁-dimensional signals [25]. It offers 3×2𝐿 directional
subbands with decomposition level 𝐿 by combining the
multiscale pyramid with the 3-dimensional directional filter
banks (3D-DFB). Thus, surfacelet with more directions may
help reducing the blocky artifacts caused by orthogonal
wavelets [24, 25].

ST is amultiscale version of the 3D-DFB.The input signal
𝑥[𝑛] first goes through the 3D hourglass filter 𝑃0,0

0,0
(𝜔), which

is a three-channel undecimated filter bank. One branch of
the three-channel structure of 3D-DFB is given by Figure 2.
The output 𝑦[𝑛] is then fed into a 2D filter bank, denoted
by IRC(𝑙2)

12
, which operates on the (𝑛

1
, 𝑛
2
) planes. The tree-

structured filter bank IRC(𝑙2)
12

produces 2𝑙2 output subbands,
denoted by 𝑧

𝑖
[𝑛] for 0 ≤ 𝑖 ≤ 2

𝑙
2 . Each output is then fed

into another 2D filter bank IRC(𝑙3)
13

operating on the (𝑛
1
, 𝑛
3
)

planes. In the end, we get 2𝑙2+𝑙3 outputs, represented by 𝑧
𝑖,𝑗
[𝑛]

for 0 ≤ 𝑖 ≤ 2
𝑙
2 and 0 ≤ 𝑗 ≤ 2

𝑙
3 [25]. 3 × 2

𝐿 spatial domain
basis images of ST with 2 levels of decomposition are shown
in Figure 3.

ST is optimal for the 𝐶
2 singularities, thus providing

sparser representation of smooth curves and surface singu-
larities than wavelet. Theoretically, for the 𝐶2 singularities of
an image x, the best 𝑆-term approximation error ‖x̃

𝑠
− x‖
2

using ST has error decay rate of𝑂(𝑆−2), while this error decay
rate is 𝑂(𝑆−1) for typical wavelets [28, 29]. Figure 4 shows
that a sparser representation is achieved using ST. According
to the CS theory [19], the reconstruction error bound is
proportional to ‖Ψ

𝑇x − (Ψ
𝑇x)
𝑆
‖
1
, where Ψ𝑇 is the forward

transform and 𝑆means the number of preserved coefficients
in transform domain.Therefore, ST is expected to reduce the
image reconstruction error of HSI.

2.2. Incoherence and Gaussian Random Encoding Matrix.
Incoherence means a column of the CS encoding matrix
must be trying the proliferation in the corresponding sparsity
basisΨ. Since this paper focuses on investigating the spatial-
spectral sparsity of HSI, a Gaussian randommatrix is chosen
as Φ because it is incoherent with the entire existing basis
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Figure 2: One branch of the three-channel structure of 3D-DFB.
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Figure 3: 3 × 2
𝐿 basis images of ST in 3D spatial domains with 2-level decomposition.

[9, 10]. If each spatial image is encoded separately, Φ can be
represented by block matrix:

Φ =

[
[
[
[

[

Φ
1

0 ⋅ ⋅ ⋅ 0
0 Φ
2
⋅ ⋅ ⋅ 0

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ Φ
𝐿

]
]
]
]

]

, (2)

where Φ
𝑖
(1 ≤ 𝑖 ≤ 𝐿) is an encoding matrix for the band

𝑖 of HSI. When Φ
1

= Φ
2

= ⋅ ⋅ ⋅ = Φ
𝐿
, that is, each 2D

image is encoded with the same encoding matrix, then Φ is
called 2D random encoding matrix; when Φ

1
̸= Φ
2

̸= ⋅ ⋅ ⋅ ̸=

Φ
𝐿
, that is, each 2D image is encoded differently, then Φ is

called 3D random encoding matrix. Physically, 3D random
encoding means that digital micromirror device (DMD)
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Figure 4: The 𝑆-term approximation errors and reconstructed images when ‖Ψ
𝑇x − (Ψ

𝑇x)
𝑆
‖
1
= 4 × 10

3, (a) Lunar Lake HSI data, (b) the
𝑆-term approximation error, (c) the original 5th band, (d) sparsely represented image using wavelet (PSNR = 33.12 dB), and (e) sparsely
represented image using surfacelet (PSNR = 38.46 dB).

arrays are different for different bands. The performance of
both encoding schemes will be discussed in Section 3.

In order to improve the performance of the recovered
signal, a Gram-Schmidt orthogonalization (GSO) is used
in CS encoding matrix. Given one band random encoding
matrix Φ

𝑖
(1 ≤ 𝑖 ≤ 𝐿) and the 𝑛th column denote as v

𝑛
, the

GSO is expressed by

v
𝑛
= v
𝑛
−

𝑛−1

∑

𝑚=1

⟨v
𝑛
, v
𝑚
⟩ v
𝑚
, 2 ≤ 𝑛 ≤ 𝐽,

𝜑
𝑛
=

v
𝑛





v
𝑛






2

2

, 1 ≤ 𝑛 ≤ 𝐽.

(3)

The new matrix Φ
𝑖
= (𝜑
1
,𝜑
2
, . . . ,𝜑

𝐽
) is adopted as the

CS encoding matrix of one spectral band.The randomness of
the matrix is not affected by GSO. In the following, columns
of eachΦ

𝑖
are processed with GSO.

2.3. Reconstruction Algorithm. For HSI x = (x(1), x(2), . . .,
x(𝐿)) ∈ R𝑀×𝑁×𝐿, where x(𝑖) represents the 𝑖th spectral

band image, 𝑀 × 𝑁 represent the spatial dimensions, and 𝐿

represents the spectral depth of HSI. Let x
𝑖
= vec(x(𝑖)) (1 ≤

𝑖 ≤ 𝐿), where x
𝑖
is a column vector of the 𝑖th band HSI with

size𝑀𝑁× 1. The data acquisition model for CS is given by

y =

[
[
[
[

[

y
1

y
2

.

.

.

y
𝐿

]
]
]
]

]

=

[
[
[
[

[

Φ
1

0
𝐽×𝑀𝑁

⋅ ⋅ ⋅ 0
𝐽×𝑀𝑁

0
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Φ
2

⋅ ⋅ ⋅ 0
𝐽×𝑀𝑁

.

.

. d
.
.
.

0
𝐽×𝑀𝑁

0
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𝐿

]
]
]
]

]

[
[
[
[

[

x
1

x
2

.

.

.

x
𝐿

]
]
]
]

]

, (4)

where Φ
𝑖
∈ R𝐽×𝑀𝑁 (𝐽 < 𝑀𝑁) is a random encoding matrix

for the 𝑖th spectral band image and y
𝑖
∈ R𝐽×1 is the acquired

undersampled data. The sampling ratio is defined as

CSR =

𝐽

𝑀𝑁

, (5)

where CSR < 1, which means the HSI are undersampled.
In this paper, ST is adopted to provide sparser representa-

tion of HSI data and is expected to reduce the reconstruction
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Figure 5: Parallel processing of compressive sampling on HIS.

error. Let Ψ represent inverse ST and let Ψ𝑇denote forward
ST; CS recovers x by solving [18, 19]

�̂� = arg min
𝛼

{𝜆‖𝛼‖1 +




y −ΦΨ𝛼



2

2
} , (6)

where 𝛼 = Ψ
𝑇x, ‖ ⋅ ‖

𝑝
(𝑝 = 1, 2) stands for 𝑙

𝑝
-norm, and

𝜆 is the regularization parameter which decides the tradeoff
between the sparsity and the data fidelity. Many researchers
seek for a simple and fast algorithm to solve (6), such as the
conjugate gradient [30], Bregman iteration [31, 32], low rank
reconstruction [33], and other methods. In this paper, we
choose FISTA to solve (6) because of its simplicity and fast
convergence, whose convergence rate is𝑂(𝑘−2), where 𝑘 is an
iteration counter [20].

To solve (6), the smallest Lipschitz constant [20] of
the gradient ‖y −ΦΨ𝛼‖2

2
is 𝐺 = 2𝜆max((ΦΨ)

𝑇
(ΦΨ)). The

Lipschitz constant ensures the convergence of algorithm [34].
Taking 𝛼

0
= 0 and 𝑡

1
= 1 as the initial values, the threshold

is 𝜆/𝐺. For 𝑘 ≥ 1, solutions are found by iterating from (7) as
follows:

�̂�
𝑘
= 𝛼
𝑘
−

1

𝐺

(Ψ
𝑇
Φ
𝑇
(ΦΨ𝛼

𝑘
− y)) ,

𝛼
𝑘
= max {


�̂�
𝑘





− threshold, 0}

+
sgn (�̂�

𝑘
) ,

𝑡
𝑘+1

=

1 + √1 + 4𝑡
2

𝑘

2

,

𝛼
𝑘+1

= 𝛼
𝑘
+ (

𝑡
𝑘
− 1

𝑡
𝑘+1

) (𝛼
𝑘
− 𝛼
𝑘−1

) .

(7)

The maximum number of iterations of FISTA is set as 200 to
achieve stable solutions. The final output is x̂ = Ψ𝛼

𝑘
.

2.4. Patch-Based Compressed Sensing with Surfacelet Recon-
struction (PCSST). For a larger HSI data x, bigger encoding
matrix may exceed the memory of computer or leads long
computation time. In this case, a patch-based sampling
operation can be used. Let R be a patch operator and let

R
𝑙
(1 ≤ 𝑙 ≤ 𝐿) divide the 𝑙th band of x into 𝑛 patches, and

then the data acquisition model for CS is given by

y =

[
[
[
[

[

y
1

y
2

.

.

.

y
𝐿

]
]
]
]

]

=

[
[
[
[

[

Θ
1

0 ⋅ ⋅ ⋅ 0
0 Θ
2
⋅ ⋅ ⋅ 0

.

.

. d
.
.
.

0 ⋅ ⋅ ⋅ Θ
𝐿

]
]
]
]

]

[
[
[
[

[

R
1
x
1

R
2
x
2

.

.

.

R
𝐿
x
𝐿

]
]
]
]

]

, (8)

where y
𝑖
(1 ≤ 𝑖 ≤ 𝐿) denotes measurements of patches in 𝑖th

band of x andΘ
𝑖
satisfiesΘ

𝑖
= (Θ
𝑖1
,Θ
𝑖2
, . . . ,Θ

𝑖𝑛
)
𝑇, whereΘ

𝑖𝑗

means random encoding on each block. In our scheme, the
encoding on different patches of each band is different and
these patches are nonoverlapped.

PCSST allows implementing the proposed method on
a larger dataset. It has the potential to allow for parallel
computing as shown in Figure 5 and also provides the
possibility to reduce the complexity of sensor arrays since the
sensing detectors independently sample the data in different
patches.

3. Experimental Results

Experiments are conducted in three aspects. First, better
reconstructed signal using ST than using wavelet is demon-
strated. Second, improving the randomness of encoding
matrix for each spectral band is shown to improve the
recovery quality and the reconstruction performance of two
encoding schemes is compared. Third, a patch-based CS
encoding scheme is designed to deal with large data.

The HSI data is obtained from U.S. AVRIS website,
including Moffet Field and Lunar Lake [35]. These data
contain 224 spectral bands with spatial size 64×64, and every
pixel is encodedwith 16 bits. Linear interpolation is employed
to fix the junk bands [36] and maintain the consistency of
spectral lines, and all data are normalized.

To evaluate the performance, the mean-square-error
(MSE), peak signal-to-noise ratio (PSNR), and structural
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similarity (SSIM) [37] are adopted as criteria to measure the
reconstruction error. Their definitions are

MSE =

1

𝑀 ⋅ 𝑁

𝑀

∑

𝑗=1

𝑁

∑

𝑖=1

(𝑥(𝑖, 𝑗) − 𝑥(𝑖, 𝑗))
2
,

PSNR = 10 log
10
(

1

MSE
) ,

SSIM (𝑥, 𝑥) =

(2𝜇
𝑥
𝜇
𝑥
+ 𝐶
1
) (2𝜎
𝑥𝑥

+ 𝐶
2
)

(𝜇
2

𝑥
+ 𝜇
2

𝑥
+ 𝐶
1
) (𝜎
2

𝑥
+ 𝜎
2

𝑥
+ 𝐶
2
)

,

(9)

where 𝑥 denotes the original image, 𝜇
𝑥
and 𝜎

𝑥
are mean and

standard deviation of 𝑥, 𝑥 stands for the recovered image,
𝜇
𝑥
and 𝜎

𝑥
are mean and standard deviation of 𝑥; 𝐶

1
, 𝐶
2

are small constant, and 𝐶
1
= 𝐶
2
= 0.08 is adopted in our

work, which is used to avoid instability when either (𝜇2
𝑥
+𝜇
2

𝑥
)

or (𝜎2
𝑥
+ 𝜎
2

𝑥
) is very close to zero [37]. Mean SSIM index is

adopted in this paper. Simulations run on a dual core 2.5 GHz
CPU laptop with 4GB RAM. A fast ST implementation in C
language is adopted.

3.1. Surfacelet and Wavelet with 2D Encoding. To simulate
the CS data acquisition, the HSI are undersampled by
random encoding matrix Φ. 50% sampled data means Φ

𝑖
∈

R(64
2
/2)×64

2

for x
𝑖

∈ R64
2
×1
(1 ≤ 𝑖 ≤ 224). In order to

improve the quality of the recovered signal, Gram-Schmidt
orthogonalization is used to obtain the CS encoding matrix.
With the 2D encoding matrix (i.e., each band has the same
encoding matrix), the ST-based reconstruction is compared
with the 3D wavelets-based reconstruction. Daubechies fil-
ters “db4” with 2 levels of decomposition is used, and there
are 7 directional subbands for 3D wavelet. The multiscale
pyramid with 2 decomposition levels is chosen, and there
are 12 directional subbands for ST. The complexity of ST is
𝑂(𝑛 log

10
𝑛) and wavelet is 𝑂(𝑛).

In order to well discuss the relationship between 𝜆 and
PSNR, we compared the PSNR performance from 𝜆 = 10 to
𝜆 = 10

−4 as shown in Figure 6. 𝜆 = 10
−2 is empirically chosen

to give optimal PSNR in our work. As shown in Figure 7, ST
significantly improves the PSNR of each spectral band more
than 3D wavelet. Edges and curves are better reconstructed
using ST than 3D wavelets as shown in Figure 8. At a given
spatial location, the spectral line reconstructed using ST is
much more consistent with the ground truth than wavelets
as shown in Figure 9. Under different sampling ratios, ST
achieves much better PSNRs than wavelet as shown in
Figure 10, and more advantage of ST is seen at low ratios.
Besides, ST shows better performance for the Lunar Lake
dataset which has richer geometric textures thanMoffet Field
dataset. Running time (unit: second) based on ST and WT
with different sampled rate is shown in Table 1.

3.2. 2D and 3D Encoding Matrix. The performance of 2D
encoding and 3D encoding schemes is compared in this
section. The recovered spatial images with two encoding
schemes are shown in Figure 11. Edges and curves are better
reconstructed using 3D encoding than 2D encoding. The
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Figure 6: PSNR performance versus different 𝜆. Note: test is
performed on Lunar Lake dataset at sampling ratio 𝑅 = 0.4.

recovered spectral lines using 3D encoding are more con-
sistent with ground truth than using 2D encoding as shown
in Figure 12. The improvement is more obvious for Moffet
Field dataset with textures in low intensities as shown in
Figures 11(a) and 12(a). These results imply that increasing
the encoding randomness among different bands will achieve
better reconstruction.

3.3. Reconstruction with PCSST. We tested the methods on
Lunar Lake data with size 256 × 256 × 224. A reconstructed
spectral band is shown in Figure 13. The image structures
recovered by surfacelet are much sharper than wavelet.

4. Conclusions

Compressive sensing is a new sampling theorem. In this
paper, the surfacelet transform is introduced into hyper-
spectral image reconstruction from compressive sampled
data.The surfacelet transform is a directionalmultiresolution
transform for 3D data, which is applied to sparsify the
hyperspectral images for the first time. Simulations are
conducted in three aspects. First, better reconstructed signal
using surfacelet than using wavelet is demonstrated. Second,
improving the randomness of encoding matrix for each
spectral band is shown to improve the recovery quality.
Third, a patch-based CS encoding scheme is designed to
deal with large data. It provides the possibility to reduce
the complexity of sensor arrays because sensing detectors
in different patches independently sample data. Experiments
demonstrate that reconstruction of spectral lines and spatial
images is significantly improved using the proposed method
than using conventional three-dimensional wavelets.

In the future, ourwork includes the following two aspects.
The first aspect is optimizing sparse representation of

hyperspectral imaging, for example, combining adaptive
sparse representation [38–40] and surfacelet transform. An
adaptive dictionary may provide a sparser representation
leading to a lower reconstruction error. Therefore, it is
meaningful to try a low-complexity training method in the
future.
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Figure 7: PSNR performance using wavelet and surfacelet when sampling ratio is 0.40. (a) Moffet Field dataset and (b) Lunar Lake dataset.
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Figure 8:The reconstructed 199th band ofMoffet Field and 5th band of Lunar Lake usingwavelets or surfacelet when sampling ratio𝑅 = 0.40.
(a) and (d) are original Moffet Field and Lunar Lake bands, (b) PSNR = 24.31 dB, SSIM = 0.9020 and (e) PSNR = 32.91 dB, SSIM = 0.9462

are recovered bands using wavelet, and (c) PSNR = 30.75 dB, SSIM = 0.9384 and (f) PSNR = 35.88 dB, SSIM = 0.9553 are reconstructed
bands using surfacelet.
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Figure 9: Reconstructed spectral line when sampling ratio 𝑅 = 0.40. (a) Moffet Field dataset and (b) Lunar Lake dataset.
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Figure 10: PSNR and SSIM at different sampling ratios. (a), (c) PSNR and SSIM for Moffet Field dataset and (b), (d) PSNR and SSIM for
Lunar Lake dataset.
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(a) (b) (c)

(d) (e) (f)

Figure 11: The reconstructed 199th band of Moffet Field and 5th band of Lunar Lake using 2D encoding and 3D encoding when sampling
ratio 𝑅 = 0.3. (a) and (d) are original Moffet Field and Lunar Lake bands, (b) PSNR = 26.84 dB, SSIM = 0.9120 and (e) PSNR = 33.65 dB,
SSIM = 0.9330 are recovered bands using 2D encoding matrix for each band and (c) PSNR = 34.99 dB, SSIM = 0.9600 and (f) PSNR =

37.84 dB, SSIM = 0.9701 are reconstructed bands using different encoding matrix for each band.
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Figure 12: Reconstructed spectral line when sampling ratio 𝑅 = 0.3. (a) Moffet Field dataset and (b) Lunar Lake dataset.
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Table 1: Running time (unit: second) based on ST and WT with different sampled rate.

Sampling ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ST 458.9 629.7 833.8 1002.9 1224.2 1381.8 1544.9 1758.7
WT 989.8 1115.5 1359.7 1639.9 1871.6 2089.6 2324.1 2452.9
Note: the ST is implemented in C and WT is implemented in MATLAB.

(a) (b) (c)

Figure 13: Patch-based compressed sensing ST reconstruction. (a)The original 5th band of 256×256 Lunar Lake dataset, (b) the patch-based
reconstructed image using wavelet when undersampled rate 𝑅 = 0.4 and the PSNR = 32.92 dB, SSIM = 0.9551, and (c) the patch-based
reconstructed image using ST when undersampled rate 𝑅 = 0.4 and the PSNR = 34.99 dB, SSIM = 0.9876.

The second aspect is overlapping patches compressed
sensing reconstruction. Overlapping patches can reduce
the “block artifacts.” But overlapping also introduces more
encoded data and higher computations on image reconstruc-
tions. Trading the compressive sampling rate with image
qualities using overlapping and speeding up the reconstruc-
tion algorithm [41] will be discussed in the future.
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