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In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV
(remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication
systems are used.However, if the communication system is applied to rich living creaturemarine environment such as shallow sea, it
suffers fromgenerated ImpulsiveNoise so-called ShrimpNoise, which is randomly generated in timedomain and seriously degrades
communication performance in underwater acoustic network. With the purpose of supporting high performance underwater
communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose
OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency
Domain Diversity Combined Impulsive Noise Canceller.TheOFDM receiver utilizes 20–28KHz ultrasonic channel and subcarrier
spacing of 46.875Hz (MODE3) and 93.750Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise
distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM
transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate
has been decreased by 20–30%.

1. Introduction

Underwater wireless communication system [1] will offer a
wide variety of applications such as natural disaster warning,
remote control of offshore objects, and discovery of new
resources at the bottom of ocean. Emerging underwater
wireless network devices can be equipped onto underwater
vehicles or robots with sensors and video cameras. Then
system in ships can access those sensors and video cameras
through underwater wireless network by acoustic wireless
link. Figure 1 shows an example to control a bottom sea
ROV (remotely operated vehicles), which engages exploring
natural resources by sensors, from water surface operator in
ship through underwater network. Since many living crea-
tures in marine usually attach to communication devices and
they generate impulse type acoustic noise as an interference,
a communication system for underwater application has to

be robust for this Impulsive Noise. Then high bandwidth
acoustic communication system, which is robust for living
creature generating Impulsive Noise, so-called ShrimpNoise,
is required.

In this paper, we have designed underwater acoustic
Orthogonal Frequency DivisionMultiplexing (OFDM) com-
munication system with four receiving transducers diversity
[2–4]. The proposed system utilizes one TX (transmitting)
transducer and four RX (receiving) transducers with center
frequency of 24KHz, 8 KHz bandwidth ultrasonic sound.
161 subcarriers in MODE3 and 81 subcarriers in MODE2
are multiplexes in 8KHz bandwidth. In order to increase
the robustness of the receiver under Impulsive and White
Gaussian Noise circumstances, MRC (maximum ration com-
biner) Frequency Domain Diversity Combined Impulsive
Noise Canceller is newly proposed. Section 2 describes the
statistics analysis of the marine creatures’ Impulsive Noise
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Figure 2: (a) Okinawa experiment at OJIMA fishing port. (b) Shizuoka experiment in UCHIURA barge.

based on measurements at a fishing port in Okinawa and
at a barge in Shizuoka Prefecture. Section 3 shows the
communication systemdesign details including the proposed
Frequency Domain Diversity Combined Impulsive Noise
Canceller. Then, experimental results will be disclosed in
Section 4. Finally, conclusion is given in Section 5.

2. Analysis of Impulsive Noise

We have performed ocean experiments at two sites. One is
OJIMA located at the south of Okinawa Island in Okinawa
Prefecture in Japan. The other is barge in UCHIURA-cove in
Numazu city in Shizuoka, which is roughly 400m offshore
and the sea depth is 30m. Figure 2(a) shows a cross-sectional
view of OJIMA experiment site. Both TX and RX transducers

are set in the depth of 2m, and the distance between TX and
RX is 71.5m. The sea depth is roughly 5m. At the wall of the
wharf, sea creatures are expected to generate Impulsive Noise
as shown in the figure. Figure 2(b) shows a cross-sectional
view of UCHIURA barge experiment site. TX transducer is
set in the depth of 22m, and four RX transducers are set in
the depth of 3m and 9m. At the bottom of the barge, sea
creatures are expected to generate Impulsive Noise as shown
in the figure.

Figure 3 shows a measured received signal of one RX
transducer at UCHIURA barge experiment with RX depth
of 3m. The center portion of the signal is OFDM frame
and another portion corresponds to No signal. Many large
Impulsive Noises are observed. Obviously, a large impulse
gives serious damage to the OFDM signal demodulation.
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Figure 3: Received signal with many Impulsive Noise Peaks.

Then the background noise amplitude distributions are ana-
lyzed. This analysis only observes the background noise and
no OFDM frame signal is included. Figures 4(a) and 4(b) are
background noise distribution at Shizuoka with depth = 3m
and 9m, respectively. Figures 5(a) and 5(b) are accumulated
background noise from + infinity at Shizuoka site with depth
= 3m, 9m. From the figures, more than 99% of the signals
correspond to (a) area, which has relatively small signal
amplitude, that is, low noise power. However, as shown in
figures, relatively large signal amplitude (large noise power)
is observed in the areas (b) and (c). Comparing Figures 4(a)
with 4(b), shallow depth of 3m shows larger signal amplitude.
Therefore, the source of the Impulsive Noise can be expected
at the bottom of the barge.

Background noise distribution data at OJIMA site is also
shown in Figure 4(c). Although the OJIMA site which locates
in semitropical area is a very much different condition as
shown in Figure 2(a) comparing with the Shizuoka barge
2(b), similar distribution data is obtained. Figure 5(c) is
accumulated background noise from + infinity at OJIMA
site. From the figure, roughly 98% of the signals correspond
to (a) area, which has relatively small signal amplitude, that
is, low noise power. Therefore, in order to achieve reliable
digital communication in marine environment, Impulsive
Noisemitigation is required. In the following section, detail of
proposed OFDM receiver with Frequency Domain Diversity
Combined Impulsive Noise Canceller will be described.

3. Communication System Design with
Impulsive Noise Canceller

3.1. Communication System Architecture [5, 6]. Figure 6
shows a block diagram of OFDM communication system
with Frequency Domain Diversity Combined Impulsive
Noise Canceller. The upper side is a transmitter (TX). Bit
information ismapped toQPSK, 16QAM, or 64QAMconstel-
lations. Some BPSK modulated pilot patterns are inserted in
the stream in order to enable a channel estimation at receiver
side (RX). After that, OFDM modulation is performed
through Inverse Fast Fourier Transform (IFFT). Then Guard
Interval (GI) is added to each OFDM symbol. By upconver-
sion block, the modulated baseband signal is upconverted
to passband such as 20–28KHz. TX transducer outputs
ultrasonic sound OFDM signal into the sea water. Through
the underwater acoustic channel, four RX transducers receive
the transmission signal. Then the signals are processed in
reverse order such as amplifying, downconverting to base-
band signal, removing Guard Interval, and FFT. By using
the inserted pilot signal, channel estimation is performed. At
the equalizer block, FFT output data is equalized. The circle-
A and circle-B in the figure correspond to Time Domain
and Frequency Domain Impulsive Noise Cancellation signal
processing block.

Following the equalizer, there are two stages of 4 inputs
Maximum Ratio Combiner (MRC) blocks. Equation (1)
shows the MRC computation [7–9]. MRC(𝑘) is the output of
each MRC block:

MRC (𝑘) =
EQ (𝑘)1 ⋅
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Here, EQ(𝑘)1–4 are 4 equalizer outputs,𝐻(𝑘)1–4 are Channel
Transfer Functions (CTFs) of each underwater channel, index

𝑘 corresponds to subcarrier number, and 𝜎2
𝑛1−4

are estimated
average noise power at each underwater channel. Highlight
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Figure 4: (a) Background noise distribution at Shizuoka (depth = 3m). (b) Background noise distribution at Shizuoka (depth = 9m). (c)
Background noise distribution at Okinawa.

of the system design is frequency domain Impulsive Noise
Canceller with two-stage MRC combiners, although the
reference paper [10] shows a frequency domain Impulsive
Noise Canceller but no diversity combiners. The 1st MRC
combiner’s outputs are utilized to suppress Impulsive Noise
by frequency domain Impulsive Noise Cancellation signal
processing block circle-B.

Table 1 summarizes detail system parameters. Sampling
frequency of the system is 96KHz and two kinds of operation
modes are supported such as MODE2 and MODE3, which
correspond to 93.750Hz and 46.875Hz subcarrier spacing,
respectively. 8 KHz of communication bandwidth is divided
into 81 subcarriers inMODE2 and 161 subcarriers inMODE3.
In order to simplify the design, Guard Interval (GI) length of
a half size of OFDM symbol length 𝑇 is used.

3.2. Time and Frequency Impulsive Noise Cancelling. Because
of the presence of Impulsive Noise so-called Shrimp Noise,

Table 1: System parameters.

Parameters Mode
2 3

TX-RX elements 1 TX and 4RX transducer
Sampling frequency 96000Hz
TX center frequency 24000Hz
Band width 8000Hz
FFT size 1024 2048
OFDM symbol length 𝑇 10.667ms 21.333ms
GI length 0.5𝑇 0.5𝑇
Subcarrier spacing 93.75Hz 46.875Hz
Number of subcarriers 81 161

time and frequency domain Impulsive Noise Cancelling
(time-IMP and freq.-IMP) methods [4, 5] are employed
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Figure 5: (a) Accumulated background noise from + infinity at Shizuoka (depth = 3m). (b) Accumulated background noise from + infinity
at Shizuoka (depth = 9m). (c) Accumulated background noise from + infinity at Okinawa.

and further combined with carrier diversity combiner. The
block diagram of time-IMP (circle-A in Figure 6) is shown
in Figure 7(a). It detects Impulsive Noise samples in time
domain and then removes the Impulsive Noise samples
according to

𝑦 (𝑛) =
{

{

{

𝑟 (𝑛) if |𝑟 (𝑛)|2 ≤ 𝛼 ⋅ 𝑃avg
0 otherwise.

(2)

Here 𝑟(𝑛) is 𝑛th time sample of received signal after pream-
plifier, 𝑃avg is the average power of an OFDM symbol, and
𝛼 is threshold parameter. Obviously, if the power of input
signal 𝑟(𝑛) exceeds the threshold of 𝛼 ⋅ 𝑃avg, the signal is
replaced by zero. This method is called “blanking” [10, 11].
In order to determine the threshold parameter 𝛼, cut and
try experimentation was applied and finally 𝛼 = 20 is
determined.The system performance is not so sensitive to the
parameter.

In addition, a frequency domain Impulsive Noise Cancel-
lation is applied.The detail of freq.-IMP (circle-B in Figure 6)
is shown in Figure 7(b). The 1st MRC block generates the
combined consternation of 4 branches equalizers. Then the
following processing is applied in hard decision and pilot
insertion block:

(1) Subcarriers, which should be silent (no data or pilots),
are set to zero.

(2) Subcarriers, which are used as pilots, are replaced by
known pilot values.

(3) Subcarriers, which are used for data transmission, are
demapped to nearest position in constellation plot.

Then succeeding subtraction block computes frequency
domain noise components. In the following blocks, the
frequency domain noise components are converted to a Time
Domain Impulsive Noise. The frequency domain noise is
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Figure 6: Block diagram of OFDM communication system with Frequency Domain Diversity Combined Impulsive Noise Canceller.

multiplied with Channel Transfer Function of branch 𝑖 (𝐻
𝑖
,

𝑖 = 1 to 4) and is IFFTed. If the output of IFFThas a large peak,
it can be considered as estimated Time Domain Impulsive
Noise signal 𝑢(𝑛) according to

𝑢 (𝑛) =
{

{

{

𝑑 (𝑛) if 𝑑 (𝑛)


2
≥ 𝛽 ⋅ 𝜎

2

0 otherwise.
(3)

Here 𝑑(𝑛) is 𝑛th time sample of IFFT output, 𝜎2 is the average
power of the IFFT output, and 𝛽 is threshold parameter.
Obviously, if the power of input signal 𝑑(𝑛) exceeds the
threshold of 𝛽 ⋅ 𝜎2, the signal is considered as an Impulsive
Noise. Then the estimated Time Domain Impulsive Noise
signal 𝑢(𝑛) is converted to frequency domain by FFT block
and division by 𝐻

𝑖
. Finally, the estimated frequency domain

Impulsive Noise is withdrawn from equalized signal of
branch 𝑖 (𝑖 = 1 to 4) EQA

𝑖
. Then the noise reduced outputs

EQB
𝑖
(𝑖 = 1 to 4) are obtained and then they are combined

in the 2nd MRC block to generate further noise reduced
constellation. The parameter 𝛽 is determined by cut and try
experimentations and 𝛽 = 8 is finally applied to the system.
The obtained noise cancel performance is not so sensitive to
the parameter 𝛽.

4. Experimental Results

Table 2 summarizes ocean experiment parameters for both
Okinawa OJIMA fishing port site and Shizuoka UCHIURA
barge site. In Okinawa site, horizontal underwater com-
munication is carried out while vertical communication is
experimented in Shizuoka site, for The four RX transducers
are placed as linear array with 20 cm pitch. Figures 8(a) and
8(b) are MODE3 and MODE2 constellations in Okinawa
site, respectively. Upper four constellations correspond to
branches 1 to 4 2nd MRC inputs. The bottom constellation
is 2nd MRC output. The horizontal axis of each figure shows
real part of digital modulation, while the vertical axis corre-
sponds to imaginary part. According to the figures, carrier
diversity combining MRC successfully reduces variance of
constellation points.

Figures 9(a) and 9(b) are the OFDM symbol by symbol
bit error rate (BER) comparisons between frequency domain
Impulsive Noise cancellation ON and OFF for MODE3
16QAM modulation in Okinawa site and MODE2 16QAM
in Shizuoka site, respectively. The solid line corresponds to
freq.-IMP OFF and the dashed line corresponds to ON.
Horizontal axis shows BER and vertical axis shows OFDM
symbol number. According to the figures, the proposed
Frequency Domain Diversity Combined Impulsive Noise
Canceller effectively reduces symbol by symbol BER values.
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Table 2: Ocean experiment parameters.

Parameters Place
Okinawa Shizuoka

Type of
experiment site Fishing port Barge

Number of
transducers 1 TX and 4RX 1 TX and 4RX

RX transducer
array Linear with 20 cm pitch Linear with 20 cm pitch

Modulation QPSK/16QAM QPSK/16QAM
TX-RX distance 71.5m 13m
Transmission
direction Horizontal Vertical

Ocean depth 5m 30m
Transducer
depth (TX/RX) 2m/2m 22m/9m

Figure 10 summarizes BER comparisons for Frequency
Domain Diversity Combined Impulsive Noise Canceller for
freq.-IMP ON and OFF. In spite of place of experiment site,
approximately 20–30% of BER reduction has been obtained
by the proposed Frequency Domain Diversity Combined
Impulsive Noise Canceller.

Finally, Figures 11(a) and 11(b) showmeasured communi-
cation system performance in Okinawa site with enabling the
proposed Impulsive Noise Canceller. In addition, BER data

is also measured with moving the TX transducer speed such
as 0.0m/s (stable), 0.3, and 0.6m/s for QPSK modulation
and 0.0m/s (stable) and 0.3m/s for 16QAM. Since MODE2
OFDM symbol length of 10.667ms as shown in Table 1 is half
of MODE3, the Guard Interval length of MODE2 is shorter
than MODE3. Therefore it is considered that high level
modulation of 16QAM of MODE2 is largely affected by Inter
Symbol Interference (ISI). As you can see from those figures,
MODE2 shows higher robustness for moving cases such as
strangeness for Doppler Effect because of shorter OFDM
symbol length of MODE2. Once forward error correction
such as TURBO CODE with code rate 𝑅 = 1/3 is applied
to this system, all error free communications (BER = 0) for
QPSK modulation of all speeds and 16QAM stable case have
been confirmed.

5. Conclusion

In this paper, an ultrasonic OFDM transceiver architecture
with four diverse receivers supporting 2 MODEs is proposed
with enhancement of Impulsive Noise insusceptibility. It
utilizes 20–28KHz ultrasonic channel and subcarrier spacing
of 46.875Hz (MODE3) and 93.750Hz (MODE2) OFDM
modulations.

Two different environment ocean experiments were con-
ducted to evaluate the statistics of Impulsive Noise so-
called Shrimp Noise, which is generated by living creatures
in marine environment. To deal with challenges posed by
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the Impulsive Noise interference, we have employed a Fre-
quency Domain Diversity Combined Impulsive Noise Can-
celler.

Measured data at a fishing port in Okinawa and at
a barge in Shizuoka Prefecture are disclosed and in both
environment randomly generated Time Domain Impulse
Noise distribution is observed. Although more than 90 to
99% of background noise shows AWGN type distribution,
less than 1 to 10% noise components show large amplitude
such as Impulsive Noise.

By enabling the proposed MRC combined Frequency
domain Impulsive Noise Canceller, 20–30% BER reduction
has been successfully obtained. In addition, 71.5m shallow
fishing port horizontal underwater communication BER
is also shown using QPSK and 16QAM modulations. By
applying TURBO 𝑅 = 1/3 forward error correction, all
error free communications using QPSK and 16QAMwith not
moving case are also confirmed.
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