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Abstract We investigate regularization of scalar one-loop
integrals in the Pauli–Villars subtraction scheme. The results
depend on the number of subtractions, in particular the
finite terms that survive after the divergences have been
absorbed by renormalization. Therefore the process of Pauli–
Villars regularization is ambiguous. We discuss how these
ambiguities may be resolved by applying an asymptoti-
cally large number of subtractions, which results in a reg-
ularization that is automatically valid in any number of
dimensions.

The regularization method of Pauli–Villars (PV) sub-
traction [1] is of long standing in quantum field theory.
Although not suited to all possible problems (notably, non-
abelian gauge theories), it is still used in a variety of appli-
cations [2–6]. In the more common dimensional regular-
ization the properties of for instance the Dirac algebra are
dimension dependent (and in particular the treatment of
γ 5 is not unambiguous), and hence problems may arise
in the study of chiral phenomena. Therefore the availabil-
ity of alternative schemes is desirable, even if only as a
check on the calculation. But such an alternative regular-
ization method ought then, in principle, to be independent
of the dimension. We shall discuss this point in more detail
below.

Essentially, PV regularization consists in pairing particle
propagators with (possibly unphysical) propagators of fic-
titious heavy particles. In [7,8] these are introduced under
the appellation of unitary regulators. If m is the mass of the
physical (scalar) particle with momentum qμ, and M that of
a fictitious heavy particle, PV involves the modification of
the propagator as follows:

1

q2 − m2 + iε
→ 1

q2 − m2 + iε
− 1

q2 − M2 + iε
, (1)
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thereby reducing the large-q behavior from (q2)−1 to (q2)−2

and thus improving the integrability properties of diagrams.
At the end of the calculation the limit M → ∞ is implied.
With this method, the one-loop diagram from a scalar self-
interacting theory

(2)

becomes integrable in four dimensions. On the other hand,
the two diagrams

and
(3)

are not integrable in four and six dimensions, respectively. In
that case additional subtractions with a spectrum of fictitious
particles are necessary.

It is tempting to perform, for a given diagram, precisely so
many PV subtractions as are necessary to make the loop inte-
gral convergent: once for the diagram of Eq. (2), and twice
for those of Eq. (3). But this, of course, runs counter to the
idea of quantum field theory, in which Feynman diagrams
themselves have no independent status but only their combi-
nation into Green’s functions counts. If there is even only a
single diagram that calls for a double subtraction, say, then
all diagrams should undergo the same double subtraction,
even if they are already convergent after a single one. An
approach in which for each diagram precisely sufficient sub-
tractions are made to make that diagram convergent must be
considered incorrect.

Another unsatisfactory situation is the fact that the number
of necessary subtractions depends on the dimension (with
higher dimensions necessitating more subtractions) which
appears to be at odds with the dimension independence that
we should like to have.

This leads to the following question: how do we decide
to stop making additional PV subtractions? A priori there is
nothing that forbids one from making very many subtractions
even if that is, strictly speaking, unnecessary.
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In what follows, we show that the results of divergent
one-loop integrals depend on the number of PV subtractions
and are therefore ambiguous, while loop integrals that are
themselves convergent do not. We study this dependence,
and point to a possible resolution of these ambiguities.

As remarked above, depending on circumstances, a single
PV subtraction may not be sufficient to regularize loop inte-
grals, and multiple subtractions become necessary. In what
follows, we shall use the abbreviationsμ = m2 and� = M2.
The k-fold PV subtraction of a propagator is defined as fol-
lows:

1

s + μ
→

⌊
1

s + μ

⌋
PV (k)

= 1

s + μ
− α1

s +�1
− α2

s +�2
− · · · − αk

s +�k

= C

(s + μ)(s +�1)(s +�2) · · · (s +�k)
. (4)

The requirement is that C be independent of s. By first con-
sidering the limit s → −μ and then s → −�r (assuming
the � to be all different) we find immediately that

C =
k∏

j=1

(� j − μ),

αr =
⎛
⎝∏

j �=r

(� j − μ)

⎞
⎠

⎛
⎝∏

j �=r

(� j −�r )

⎞
⎠

−1

. (5)

By subtracting sufficiently many PV propagators we can
achieve any desired high-momentum behavior for the prop-
agator.

That the above subtraction involves k different mass scales
is of course lacking in elegance. We can therefore take� j →
�, and then we obtain

⌊
1

s + μ

⌋
PV (k)

= �k

(s + μ)(s +�)k
, (6)

with � = �− μ. This can also be written as

⌊
1

s + μ

⌋
PV (k)

= 1

s + μ
− 1

s +�
− �

(s +�)2

− · · · − �k−1

(s +�)k
. (7)

A similar observation was made, for instance, in [9]. To
understand the relation between Eqs. (4) and (7) it is illus-
trative to consider the case k = 2. Taking �1 = �, �2 =
�+ δ with small δ, we see that

⌊
1

s + μ

⌋
PV (2)

= 1

s + μ
− �2 − μ

�2 −�1

1

s +�1
− �1 − μ

�1 −�2

1

s +�2

= 1

s + μ
− �+ δ

δ

1

s +�
+ �

δ

1

s +�+ δ

= 1

s + μ
− 1

s +�
− �

(s +�)2
+ O (δ) . (8)

For higher k analogous expansions result. Moreover, the
result is quite independent from the precise way in which
the limit � j → � ( j = 1, . . . , n) is reached. Note the fol-
lowing fact: if we keep subtracting without limit, we formally
have

lim
k→∞

⌊
1

s + μ

⌋
PV (k)

= 1

s + μ
− 1

s +�

∞∑
j=0

(
�

s +�

) j

= 1

s + μ
− 1

s +�−�
= 0. (9)

While, indeed, simply replacing every loop integral by zero
makes all loop corrections trivial, this is clearly not what
we want. Obviously, we must investigate the dependence of
loop-integral results on the number of subtractions.

We shall restrict ourselves to one-loop computations in
the context of an effective potential. Therefore no external
momenta are involved, and all propagators have the form
1/(s + μ), where s = q2, q being the loop momentum.
The (even) number of dimensions of spacetime dimensions
is denoted by 2ω. After performing the Wick rotation and
the angular integral of the loop momentum, the loop integral
with n propagators is given by

Jω,n =
∞∫

0

ds sω−1 1

(s + μ)n
, n > 0, (10)

where we have dropped any overall factors. This integral is
finite if n > ω. If this is not the case, we must subtract,
although strictly speaking we ought to be allowed to PV-
subtract convergent integrals as well. We therefore should
replace Eq. (10) by

J (k)ω,n =
∞∫

0

ds sω−1
⌊

1

s + μ

⌋n

PV (k)
. (11)

The integral will be convergent for finite � if

k >
ω

n
− 1 ω, n, k integers. (12)

We shall be slightly more general and define the generating
function
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Hω,n(x) =
∞∫

0

ds hω,n(x, s),

hω,n(x, s) = sω−1

(s + μ)n

∑
k≥1+ω−n

�k

(s +�)k
xk

= sω−1(x�)1+ω−n

(s + μ)n(s +�)ω−n(s +�− x�)
. (13)

From the fact that all the functions h decrease as 1/s2 for
large s we see that we have subtracted sufficiently often to
make the integrals convergent for finite � (and hence PV-
regularized). For higher values of k, we simply have addi-
tional subtractions. The integrals H have series expansions
in x : the regularized integral J (k)ω,n is then given as the coeffi-
cient of xnk in Hω,n(x).

For given ω and n it is a simple matter to integrate
hω,n(x, s) over s, where by construction the upper endpoint
s = ∞ never contributes. The most important point is to note
that

log(�− x�) = log(�)+ log(1 − x)+ μ

�

x

1 − x

−1

2

(
μ

�

x

1 − x

)2

+ · · · (14)

It is already clear that at least some of the log(�) terms will
be accompanied by log(1 − x). Below, we give the results
for Hω,n(x) for the most relevant cases for 2,4, and 6 dimen-
sions. By L we denote log(�/μ). We have taken μ/� to
zero wherever possible, although this has of course to be
done more carefully in the case of two-loop computations.

H1,1(x) = x

1 − x
L + x log(1 − x)

1 − x
,

H1,2(x) = 1

1 − x

1

μ
,

H2,1(x) = −x log(1 − x)�− x2

1 − x
μL − x2

1 − x
(log(1 − x)+ 1)μ,

H2,2(x) = x

1 − x
L + x

1 − x
( log(1 − x)− 1),

H2,3(x) = 1

1 − x

1

2μ
,

H3,1(x) = (x(1 − x) log(1 − x)+ x2)�2 + 2x2 log(1 − x) μ�

+ x3

1 − x
μ2 L + x3

1 − x

(
log(1 − x)+ 3

2

)
μ2,

H3,2(x) = −x log(1 − x)�− 2x2

1 − x
μL − x(1 + x) log(1 − x)

1 − x
μ,

H3,3(x) = x

1 − x
L + x

1 − x

(
log(1 − x)− 3

2

)
,

H3,4(x) = 1

1 − x

1

3μ
. (15)

From these we can find the k-fold PV-regularized integrals
J (k)ω,n . These contain the digamma function ψ(z), defined as

ψ(z) ≡ d

dz
log
(z), ψ(q) = −γE +

q−1∑
�=1

1

�
,

γE ≈ 0.577 . . . (16)

for integer argument q. The various integrals J now read

J (k≥1)
1,1 = L − ψ(k)− γE,

J (k≥0)
1,2 = 1

μ
,

J (k≥2)
2,1 = �

k − 1
− μL + μ(ψ(k − 1)+ γE − 1),

J (k≥1)
2,2 = L − ψ(2k)− γE − 1,

J (k≥0)
2,3 = 1

2μ
,

J (k≥3)
3,1 = �2

(k − 1)(k − 2)
− 2μ�

k − 2

+μ2 L − μ2
(
ψ(k − 2)+ γE − 3

2

)
,

J (k≥2)
3,2 = �

k − 1
− 2μL + μ(ψ(2k)+ ψ(2k − 2)+ 2γE),

J (k≥1)
3,3 = L − ψ(3k)− γE − 3

2
,

J (k≥0)
3,4 = 1

3μ
. (17)

We can draw the following conclusions. The convergent inte-
grals do not depend on the number of PV subtractions, as was
to be expected. In the regularized divergent integrals the only
term that does not depend on the number of subtractions, and
that can be considered unambiguous, is the logarithmic diver-
gence L . Quadratic (�) and higher (�2, . . .) divergences do
depend on k and are therefore ambiguous. Their coefficients
approach zero with increasing number of subtractions. The
finite terms are also ambiguous (as was already remarked in
[10]), and increase harmonically in absolute value with k.
This is evidenced by the ubiquitous log(1 − x)/(1 − x) in
Eq. (15). Strictly speaking, therefore, the limit k → ∞ is not
clearly defined. We have checked that these features persist
for larger values of ω.

The reason why, in the previous section, we restricted our-
selves to ω ≤ 3 is that the scalar ϕ4 theory is renormalizable
for ω = 2 and superrenormalizable for ω = 1, and the ϕ3

theory is renormalizable for ω = 3 and superrenormaliz-
able for ω = 1, 2. We therefore consider the renormalization
properties of the integrals J . Obviously, we must apply a
sufficient number of PV subtractions to properly regularize
these; but there is no obvious recipe for determining when
to stop subtracting. The only reasonable approach therefore
seems to consider the case of an asymptotically large number
of subtractions, i.e. to take k → ∞ in a sensible way. This
has the added advantage of being applicable to theories in any
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positive dimension. We can use the fact that, asymptotically,

ψ(z) ≈ log(z)+ O (1/z) . (18)

so that L − ψ(k) ≈ log(�/μk). In this limit we can write
the regularized divergent integrals as

J1,1 = log

(
�

μk

)
− γE,

J2,1 = −μ log

(
�

μk

)
+ μ(γE − 1),

J2,2 = log

(
�

μk

)
− γE − log(2)− 1,

J3,1 = μ2 log

(
�

μk

)
− μ2

(
γE − 3

2

)
,

J3,2 = −2μ log

(
�

μk

)
+ 2μ(γE + log(2)),

J3,3 = log

(
�

μk

)
− γE − log(3)− 3

2
. (19)

Under renormalization, the logarithmic term is of course
absorbed (and, in the spirit of MS versus MS, perhaps the
γE as well), and the results will be well defined and unam-
biguous.

A possible objection against the above procedure might
be that the logarithmic divergence still contains k, albeit in
a more-or-less hidden manner. We might therefore choose
to let � depend on the degree of PV subtraction as well, by
writing

� = �0k. (20)

This choice contains a certain justice in that when we apply
more PV subtractions the subtraction propagators individ-
ually become smaller. In that case the higher divergences
survive, but the results are still unambiguous:

J1,1 = log

(
�0

μ

)
− γE,

J2,1 = �0 − μ log

(
�0

μ

)
+ μ(γE − 1),

J2,2 = log

(
�0

μ

)
− γE − log(2)− 1,

J3,1 = �0
2 − 2μ�0 + μ2 log

(
�0

μ

)
− μ2

(
γE − 3

2

)
,

J3,2 = �0 − 2μ log

(
�0

μ

)
+ 2μ(γE + log(2)),

J3,3 = log

(
�0

μ

)
− γE − log(3)− 3

2
. (21)

This approach works because the coefficients of �n go as
k−n for large k. We have checked that this persists for larger
values of ω.

As an example, we can apply the above strategy to e.g.
the calculation of the electron one-loop self-energy and the
one-loop vertex correction in QED. In comparison with the
standard treatment as given in [11,12] we find that our sub-
traction scheme results in the following modification (in our
notation):

log(�) → log(�0)− γE (22)

in both computations. This shows that the relation between
the vertex- and the wavefunction renormalization remains
undisturbed; in particular the Ward–Takahashi identity
remains valid for the regularized Green functions.

In conclusion, we have extended the original Pauli–Villars
regularization scheme in such a way that it is unambiguous
and consistent in any number of dimensions. An application
to the one-loop corrections in QED shows that the scheme
respects the QED gauge invariance, as it should.

The authors are indebted to Prof. W. Beenakker for
enlightening discussions.
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