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The presented solution is a decentralized control system with a minimal informational interaction between the objects in the
group. During control and path planning the obstacles are transformed into repellers by the synthesized controls.Themain feature
distinguishing the developed approach from the potential fields method is that the vehicle moves in the fields of forces depending
not only on the mutual positions of a robot and an obstacle but also on the additional variables allowing solving the problem of
robot’s path planning using a distributed control system (Pshikhopov and Ali, 2011). Unlike the work by Pshikhopov and Ali, 2011,
here an additional dynamic variable is used to introduce stable and unstable states depending on the state variables of the robot and
the neighboring objects.The local control system of each vehicle uses only the values of its own speeds and coordinates and those of
the neighboring objects. There is no centralized control algorithm. In the local control algorithms the obstacles are represented as
vehicles being a part of the groupwhich allows us to unify the control systems for heterogeneous groups. An analysis was performed
that proves existence and asymptotic stability of the steady state motion modes. The preformed simulation confirms the synthesis
and analysis results.

1. Introduction

In the vast majority of automatic control tasks asymptotic
stability of the desired functioning modes is to be achieved.
However, there are cases when unstable modes become
preferable. For example, an important quality of airplanes
is their maneuverability that is achieved by, for example,
the fighter parameters approaching the stability boundary or
even by crossing it. Another example of an unstable object is
a walking robot with its major elements being the unstable
pendulums controlled by methods described in numerous
publications [1, 2].

The idea of organization of unstable states in the phase
space of control systems came up in the works on non-
linear dynamics and synergetics [3, 4], where the notions
of attractors and repellers were widely used. A repeller is
a mathematical image of a certain object represented as
repelling set in the phase space of a controlled object or a
system. An attractor is a mathematical image of steady state

modes represented as an attractive set in the phase space of
an object or a system.

For the first time the idea of using repelling and attracting
sets in vehicles control was introduced in the works of
Platonov et al. in 1970 [5, 6], where the potentials method
was presented as a solution of the path finding problem. In
the world literature the main references about using repelling
and attracting sets in vehicles control aremade to theworks of
Brooks andKhatib [7–9] published in 1985 and 1986. Another
mobile robot control work using the force fields ideas was
performed by Hitachi company in 1984 [10]. Nowadays the
potential fields method is widely spread. An overview and
analysis ofmethods using potential fields can be found in [11].

Work [8] proposes to summarize the repelling and
attracting fields, as well as to represent moving objects
by rectangles. Article [12] addresses the problem of the
formation of the paths so that no stable equilibrium point
exists. Approaches outlined in [8, 12], in general, do not
resolve the problem of the mobile robot falling into a local
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minimum. In [13] an approach that allows bypassing local
minima in path formation in an environment with a known
map is presented. At the same time this does not consider
limitations on movement of robot. In [14] the potential field
method is proposed in a form that considers obstaclesmoving
with constant velocity and avoids falling into local minima.
In [15] the functions of the repulsive and attractive forces are
generated on the plane smashed into cells. These functions
are formed such that the stability of path of the mobile
robot decreases while its velocity increases. In [16], a function
forming a repulsive field and the procedure for calculating
its coefficients are proposed. Also work presents conditions
under which mobile robot misses the local minima. In [17]
the potential field is formed to take into account dynamic
constraints of mobile robot and environmental conditions.
The moveable object is represented in the phase space.
However, [17] did not eliminate the problem of falling into
localminima andhas a large number of empirically adjustable
coefficients. References [18, 19] are devoted to solving the
problem of falling into local minima. In [18] the problem is
solved on the basis of random changes in the direction of the
force and in [19] by the way of describing the obstacles.

Thus, the efforts of many researchers are focused on
accounting the dynamics properties of mobile robots and
obstacles and eliminating the problem of local minima in the
path search problem.

The problem of accounting of the dynamics properties of
mobile robots can be solved with the use of the approaches
proposed in [11, 20]. In [20] the problem of control of the
mobile robot on the planewith obstacles is considered. Repul-
sive forces are dynamic, they are formed by the introduction
of unstable areas in which obstacles are transformed. Unsta-
ble mode is set using the bifurcation parameter. The problem
of falling into local minima is solved with the use of fuzzy
rules or the techniques of target point rotation at an angle
proportional to the bifurcation parameter, which itself is a
function of the distance to an obstacle. An approach proposed
in [20] allows implementing motion along a predetermined
path and rapidly changing the trajectory to avoid obstacles
using kinematics equations and dynamics of a moving object
with the low complexity algorithm.

In [11] approach presented in [20] for the implementation
of the path planning and motion control system of mobile
robot with sectorial obstacles sensors in the two-dimensional
unknown environment was investigated. The results of the
simulations are presented.

In [11, 20] unstable modes are used in solution of a prob-
lem of motion in obstructed environment where obstacles
can form various configurations. The task is to move from
an arbitrary point (𝑦

01
, 𝑦
02
) to the final goal point (𝑦

𝑓1
, 𝑦
𝑓2
)

satisfying the following condition:

𝑟
𝑐
≥ 𝑟, (1)

where 𝑟
𝑐
is distance to the closest obstacle and 𝑟 is a constant

that sets an allowed distance from the vehicle’s characteristic
point to any of the obstacles ^

𝑗
.

Based on the results obtained in [18, 19] we introduce a
bifurcation parameter of the following form:

𝛽 = ∑

𝑗

󵄨󵄨󵄨󵄨𝑟𝑐 − 𝑟
󵄨󵄨󵄨󵄨 + ∑

𝑗

(𝑟
𝑐
− 𝑟) . (2)

The parameters of the reference equation of the closed-
loop system are formed so that nonzero values of parameter
(2) make its roots become positive. Such an algorithm can
cause looping motions in environments with complicated
obstacles.

In [11, 18] the mentioned drawback is eliminated by
direction and angle change in proportion to changes of
bifurcation parameter (2):

𝛾 = 𝑘
𝛾
𝛽. (3)

Here we consider the control method using repellers and
extend it for the task of vehicle group control.

The main differences of approach proposed at this article
are the following:

(a) Themethod of formation of dynamic repulsive forces,
based on the introduction of additional differential
equations.

(b) A decentralized control algorithm for a group of
robots developed.

(c) Proved existence of asymptotically stable trajectories
for robots under dynamic repulsive forces.

2. Problem Statement

As it was mentioned in [18], control method incorporating
unstable modes ensures the best effectiveness in the sense of
safety (distance to obstacles) during obstacle avoidance and
requires the least amount of information for control system’s
functioning.

The problem of group functioning of autonomous vehi-
cles is one of the major control problems. Here unstable
modes can ensure motion with a minimal information
exchange and guarantee a maximal safe distance to the
obstacles.

Since the path-planning problem is being solved, the
following kinematics equations are considered:

𝑦̇
1𝑖
= 𝑉
𝑖
cos𝜑
𝑖
,

𝑦̇
2𝑖
= 𝑉
𝑖
sin𝜑
𝑖
,

(4)

where 𝑦
1𝑖
, 𝑦
2𝑖
are vehicle coordinates, 𝑉

𝑖
is speed, and 𝜑

𝑖
is

heading, 𝑖 = 1, 𝑛.
Vehicle’s position (Figure 1) is described by coordinates

𝑦
1𝑖
, 𝑦
2𝑖

in the external coordinates system 𝑂𝑦
1
𝑦
2
. Speed

𝑉
𝑖
and heading 𝜑

𝑖
are the control variables. Each object

receives information about the position of the neighboring
vehicles and coordinates 𝑦

𝐿
, 𝑦
𝑅
of the area 𝐿 where the

group is functioning. The number 𝑛 of vehicles in the group
is unknown. The group task is to move along the 𝑂𝑦

2
-axis

evenly distributing along the 𝑂𝑦
1
-axis.
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Figure 1: State variables and coordinates system.
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Figure 2: Formation of repellers with linear repelling functions.

3. Group Control Algorithms

Assume 𝑦
2𝑖

= 0 and 𝑦
1𝑖

̸= 𝑦
1𝑗
, ∀𝑖 ̸= 𝑖, 𝑖, 𝑗 = 1, 𝑛.

Let us enumerate the vehicles so that their index 𝑖 = 1, 𝑛

increases with increasing coordinate 𝑦
1𝑖
. In this case the

control algorithm for an 𝑖th vehicle can be synthesized in the
following way.

Assume that each vehicle is a repeller (repellingmanifold)
for every neighboring object. In this case interaction of the
neighboring vehicles can be described by functions presented
in Figure 2. Coordinates 𝑦

1𝑖
are along the abscissa, and

the ordinate presents the linear functions for calculation of
repellers’ attracting forces.

Line I, presented in Figure 2 passing through points
(𝑦
1𝑖+1

−𝐿, 0), (𝑦
1𝑖+1
, 𝑘), is described by the following equation:

𝑦
1𝑖
− 𝑦
1𝑖+1

+ 𝐿

𝑦
1𝑖+1

− 𝑦
1𝑖+1

+ 𝐿
=
𝑓
𝐼
− 0

𝑘 − 0
󳨐⇒ 𝑓
𝐼
=
𝑘

𝐿
(𝑦
1𝑖
− 𝑦
1𝑖+1

+ 𝐿) . (5)

Likewise, line II passing through points (𝑦
1𝑖−1
, 𝑘), (𝑦

1𝑖−1
+

𝐿, 0) is described by

𝑦
1𝑖
− 𝑦
1𝑖−1

𝑦
1𝑖−1

+ 𝐿 − 𝑦
1𝑖−1

=
𝑓
𝐼𝐼
− 𝑘

0 − 𝑘
󳨐⇒ 𝑓
𝐼𝐼
=
𝑘

𝐿
(−𝑦
1𝑖
+ 𝑦
1𝑖−1

+ 𝐿) . (6)

Summing the right-hand sides of expressions (5) and (6) we
get the equations of additional dynamic variables forming the
repellers in the state space of the vehicles group:

𝑧̇
𝑖
=
𝑘

𝐿
(2𝑦
𝑖
− 𝑦
𝑖−1
− 𝑦
𝑖+1
) . (7)

Let us consider the task of stabilization of additional
variables 𝑧

𝑖
and motion of vehicles along the 𝑂𝑦

2
-axis with

constant speeds. For solution of this task we introduce
quadratic functions of the following form:

𝑉
𝑖
= 0.5𝑧

2

𝑖
. (8)

The derivative of expression (8) accounting for (7) is

𝑉̇
𝑖
= 𝑧
𝑖
𝑧̇
𝑖
=
𝑘

𝐿
𝑧
𝑖
(2𝑦
1𝑖
− 𝑦
1𝑖−1

− 𝑦
1𝑖+1
) . (9)

If expression (9) is negatively definite, system (7) is asymp-
totically stable with respect to the zero state. In order to
ensure that function (9) is negatively definite and guarantees
constant motion speed the following functional relations are
to be satisfied:

𝑒
𝑖
=
[
[

[

𝑦
1𝑖
−
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

− 𝑧
𝑖

2

𝑦̇
2𝑖
− 𝑉
𝑘

]
]

]

= 0. (10)

The time derivative of the first element of vector (10)
accounting for (4), (7) is equal to

̇𝑒
𝑖 [1] = 𝑉𝑖 cos𝜑𝑖

−
𝑦̇
1𝑖−1

+ 𝑦̇
1𝑖+1

− (𝑘/𝐿) (2𝑦
1𝑖
− 𝑦
1𝑖−1

− 𝑦
1𝑖+1
)

2
.

(11)

We require the closed-loop system to satisfy the following
reference equations:

̇𝑒
𝑖 [1] + 𝑇0𝑖𝑒𝑖 [1] = 0,

𝑒
𝑖 [2] = 0,

(12)

where 𝑇
0𝑖
is constant positive numbers.

Then substituting expressions (10), (11) into (12) yields

[
𝑢
𝑖𝑥

𝑢
𝑖𝑦

] = [

[

𝑦̇
1𝑖−1

+ 𝑦̇
1𝑖+1

− (𝑘/𝐿) (2𝑦
1𝑖
− 𝑦
1𝑖−1

− 𝑦
1𝑖+1
)

2
− 𝑇
0𝑖
(𝑦
1𝑖
−
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

− 𝑧
𝑖

2
)

𝑉
𝑘

]

]

, (13)
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[
𝑉
𝑖

𝜑
𝑖

] =
[
[

[

√𝑢
2

𝑖𝑥
+ 𝑢2
𝑖𝑦

arctan(
𝑢
𝑖𝑦

𝑢
𝑖𝑥

)

]
]

]

. (14)

The control algorithm for 𝑖th vehicle (13), (14) contains
data about its own position 𝑦

𝑖
and speed 𝑉

𝑖
, sensory system

data about the coordinates 𝑦
𝑖−1

, 𝑦
𝑖+1

, and speeds 𝑦̇
𝑖−1

, 𝑦̇
𝑖+1

of
the neighboring robots. The speeds 𝑦̇

𝑖−1
, 𝑦̇
𝑖+1

and positions

𝑦
𝑖−1

, 𝑦
𝑖+1

of the neighboring vehicles are measured or esti-
mated using the algorithms presented in [21, 22].

Substitution of the expressions (13), (14) into (4), (7) yields
the equations of the closed-loop control system:

[
[

[

𝑦̇
1𝑖

𝑦̇
2𝑖

𝑧̇
𝑖

]
]

]

=

[
[
[
[
[
[

[

𝑦̇
1𝑖−1

+ 𝑦̇
1𝑖+1

− (𝑘/𝐿) (2𝑦
𝑖
− 𝑦
𝑖−1
− 𝑦
𝑖+1
)

2
− 𝑇
0𝑖
(𝑦
1𝑖
−
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

− 𝑧
𝑖

2
)

𝑉
𝑘

𝑘

𝐿
(2𝑦
1𝑖
− 𝑦
1𝑖−1

− 𝑦
1𝑖+1
)

]
]
]
]
]
]

]

. (15)

From the last expression it follows that the closed-
loop system decomposes into two independent subsystems
consisting of the first and the third equations and the
second equation, respectively. Let us analyze the subsystem
consisting of the first and the third equations (15).

In stability analysis it is assumed that variables 𝑦
1𝑖−1
, 𝑦
1𝑖+1

are external measured signals for the control system of 𝑖th
vehicle. So in stability analysis of 𝑖th vehiclewe assume𝑦

1𝑖−1
=

𝑦
1𝑖+1

= 𝑦̇
1𝑖−1

= 𝑦̇
1𝑖+1

= 0. Then the first and the third
equations of system (15) take the following form:

𝑦̇
1𝑖
= −(

𝑘

𝐿
+ 𝑇
𝑖
)𝑦
1𝑖
−
𝑇
𝑖

2
𝑧
𝑖
,

𝑧̇
𝑖
=
2𝑘

𝐿
𝑦
𝑖
.

(16)

System (16) is a linear stationary system so we can write its
characteristic equation. It has the following form:

𝑠
2
+ (

𝑘

𝐿
+ 𝑇
𝑖
) 𝑠 + 𝑇

𝑖

𝑘

𝐿
= 0. (17)

So the stability conditions of closed-loop system (15) are

𝑇
𝑖
> 0,

𝑘 > 0.

(18)

Let us modify the control algorithm (13), (14) introducing
an additional component into expression (10):

𝑒
𝑖

=
[
[
[

[

𝑦
1𝑖
−
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

− 𝑧
𝑖
− (𝑘
2
/𝐿) (2𝑦

1𝑖
− 𝑦
1𝑖−1

− 𝑦
1𝑖+1
)

2

𝑦̇
2𝑖
− 𝑉
𝑘

]
]
]

]

= 0.

(19)

Then expression (13) transforms into

[
[

[

(1 +
𝑘
2

𝐿
)𝑢
𝑖𝑥

𝑢
𝑖𝑦

]
]

]

= [

[

(1 + 𝑘
2
/𝐿) (𝑦̇

1𝑖−1
+ 𝑦̇
1𝑖+1
) − (𝑘/𝐿) (2𝑦

1𝑖
− 𝑦
1𝑖−1

− 𝑦
1𝑖+1
)

2
− 𝑇
𝑖
((1 +

𝑘
2

𝐿
)𝑦
1𝑖
−
(1 + 𝑘

2
/𝐿) (𝑦

1𝑖−1
+ 𝑦
1𝑖+1
) − 𝑧
𝑖

2
)

𝑉
𝑘

]

]

.

(20)
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And characteristic equation (17) takes the following form:

𝑠
2
+ (

𝑘/𝐿

1 + 𝑘
2
/𝐿
+ 𝑇
𝑖
) 𝑠 + 𝑇

𝑖

𝑘/𝐿

1 + 𝑘
2
/𝐿
= 0. (21)

Algorithm (20) differs from algorithm (13) in the fact
that it allows changing both roots of characteristic equation
(21) independently of the width of the preset area 𝐿 and of
the value of coefficient 𝑘. Stability conditions (18) take the
following form:

𝑇
𝑖
> 0,

𝑘 > 0,

𝑘
2
> −

1

𝐿
.

(22)

In expression (20) the controller parameters are 𝑇
𝑖
, 𝑘
2
.

4. Analysis of Group Control Algorithms in
Obstructed Environments

Assume that there is one or several stationary obstacles in
the environment represented by circles with centers at points
(𝑦
𝑝𝑗

1
, 𝑦
𝑝𝑗

2
). The obstacle size is defined by the radius 𝑟𝑗𝑝, 𝑗 =

1, 𝑛
𝑝
, 𝑛
𝑝
being number of obstacles.

Let us consider closed-loop system (15). Taking into
account that, with conditions (18) satisfied, system (15) is
asymptotically stable, we write the equilibrium equations
assuming that the derivatives are equal to zero:

0 = −
𝑘

2𝐿
(2𝑦
1𝑖
− 𝑦
1𝑖−1

− 𝑦
1𝑖+1
)

− 𝑇
𝑖
(𝑦
1𝑖
−
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

− 𝑧
𝑖

2
) ,

0 =
𝑘

𝐿
(2𝑦
1𝑖
− 𝑦
1𝑖−1

− 𝑦
1𝑖+1
) .

(23)

From system (23) we find

𝑧
𝑖
= 0,

𝑦
1𝑖
=
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

2
,

𝑖 = 1, 𝑛.

(24)

Accounting that 𝑦
0
= 𝑦
𝐿
, 𝑦
𝑛+1

= 𝑦
𝑅
, solution (24) can be

written as

𝑦
𝑛
=
𝑦
𝐿
+ 𝑛𝑦
𝑅

𝑛 + 1
,

𝑦
𝑖
=

𝑦
𝐿

𝑖 + 1
+
𝑖𝑦
1𝑖+1

𝑖 + 1
, 𝑖 = 𝑛 − 1, 1.

(25)

Expression (25) gives the distance to the neighboring vehicles
in steady state mode:

𝑦
1𝑖
− 𝑦
1𝑖−1

=
1

𝑛 + 1
𝑦
𝑅
=

𝐿

𝑛 + 1
. (26)

The idea of applying the approach presented in the previ-
ous section to the environments with stationary obstacles is
that they are being formally treated as vehicles. In this case
the distributed control system for a group of robots (15) will
successfully function if the following condition is satisfied:

𝑟
𝑗

𝑝
<

𝐿

𝑛 + 𝑛
𝑝
+ 1

, (27)

where 𝑟𝑗𝑝 is obstacle radius.
In the presence of obstacles the lengths of vehicle’s paths

can essentially differ. So there is a task of keeping the motion
line by all the vehicles. In order to solve this task the following
strategy is introduced. The leftmost vehicle is selected to be a
leader and performs motion with a constant speed 𝑉

𝑘
. The

rest of the vehicles keep the same strategy of distribution
along the 𝑂𝑦

1
-axis but receive the coordinate 𝑦

2
of the next

left vehicle as a setting value.
In the obstructed environment we must control both

coordinates. So let us introduce the following error vector:

𝑒
1
=
[
[

[

𝑦
11
−
𝑦
𝐿
+ 𝑦
12
− 𝑧
1

2

𝑦̇
21
− 𝑉
𝑘

]
]

]

,

𝑒
𝑖
=
[
[

[

𝑦
1𝑖
−
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

− 𝑧
𝑖

2

𝑦
2𝑖
− 𝑦
2𝑖−1

]
]

]

, 𝑖 = 2, 𝑛.

(28)

Then the local control algorithms take the following form:

[
𝑢
1𝑥

𝑢
1𝑦

]

=
[
[

[

𝑦̇
1𝐿
+ 𝑦̇
12
− 𝑧̇
1

2
− 𝑇
11
(𝑦
11
−
𝑦
1𝐿
+ 𝑦
12
− 𝑧
1

2
)

𝑉
𝑘

]
]

]

,

(29)

[
𝑢
𝑖𝑥

𝑢
𝑖𝑦

]

=
[
[

[

𝑦̇
1𝑖−1

+ 𝑦̇
1𝑖+1

− 𝑧̇
𝑖

2
− 𝑇
1𝑖
(𝑦
1𝑖
−
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

− 𝑧
𝑖

2
)

𝑦̇
2𝑖−1

− 𝑇
2𝑖
(𝑦
2𝑖
− 𝑦
2𝑖−1
) .

]
]

]

.

(30)

As before, in expressions (29), (30) it is assumed that the
speeds of the neighboring objects are measured or estimated.
The laws of changing speeds and orientation angles are
determined by expression (14).
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Then the equations of the closed-loop system take the
following form:

[
[

[

𝑦̇
11

𝑦̇
21

𝑧̇
1

]
]

]

=

[
[
[
[
[

[

𝑦̇
1𝐿
+ 𝑦̇
12
− 𝑧̇
1

2
− 𝑇
11
(𝑦
11
−
𝑦
1𝐿
+ 𝑦
12
− 𝑧
1

2
)

𝑉
𝑘

𝑘

𝐿
(2𝑦
11
− 𝑦
1𝐿
− 𝑦
12
)

]
]
]
]
]

]

,

(31)

[
[

[

𝑦̇
1𝑖

𝑦̇
2𝑖

𝑧̇
𝑖

]
]

]

=

[
[
[
[
[
[
[
[

[

𝑦̇
1𝑖−1

+ 𝑦̇
1𝑖+1

− 𝑧̇
𝑖

2
− 𝑇
1𝑖
(𝑦
1𝑖
−
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

− 𝑧
𝑖

2
)

𝑦̇
2𝑖−1

− 𝑇
2𝑖
(𝑦
2𝑖
− 𝑦
2𝑖−1
)

𝑘

𝐿
(2𝑦
1𝑖
− 𝑦
1𝑖−1

− 𝑦
1𝑖+1
) .

]
]
]
]
]
]
]
]

]

.

(32)

From system (31), (32) it follows that steady state for the
variables 𝑧

𝑖
and 𝑦

1𝑖
is described by the expressions (24) and

the stability conditions have the form of (18).
For the steady state analysis of the variables 𝑦

2𝑖
we write

the second equations of (31), (32):

𝑦̇
21
= 𝑉
𝑘
,

𝑦̇
22
= 𝑦̇
21
− 𝑇
2
(𝑦
22
− 𝑦
21
) = 𝑉
𝑘
− 𝑇
2
(𝑦
22
− 𝑦
21
) ,

𝑦̇
23
= 𝑦̇
22
− 𝑇
2
(𝑦
23
− 𝑦
22
) = 𝑉
𝑘
− 𝑇
2
(𝑦
22
− 𝑦
21
)

− 𝑇
2
(𝑦
23
− 𝑦
22
) = 𝑉
𝑘
− 𝑇
2
(𝑦
23
− 𝑦
21
) ,

.

.

.

𝑦̇
2𝑖
= 𝑉
𝑘
− 𝑇
2
(𝑦
2𝑖
− 𝑦
21
) ,

.

.

.

(33)

Integrating the first equation in (33)

𝑦
21
= 𝑦
0

21
+ 𝑉
𝑘
𝑡. (34)

Then accounting for (34) the last equation in (33) takes
the following form:

𝑦̇
2𝑖
+ 𝑇
2
𝑦
2𝑖
= 𝑉
𝑘
+ 𝑇
2
(𝑦
0

21
+ 𝑉
𝑘
𝑡) . (35)

Solving (35) yields

𝑦
2𝑖
(𝑡) = (𝑦

0

2𝑖
− 𝑦
0

21
) 𝑒
−𝑇
2
𝑡
+ 𝑦
0

21
+ 𝑉
𝑘
𝑡, (36)

where 𝑦0
21
, 𝑦
0

2𝑖
are initial positions of the vehicles.
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Figure 3: Modeling results for control systems (4), (7), (14), (29),
and (30) with a stationary obstacle.

From expression (36) it follows that

lim
𝑡→∞

𝑦
2𝑖
(𝑡) = lim
𝑡→∞

((𝑦
0

2𝑖
− 𝑦
0

21
) 𝑒
−𝑇
2
𝑡
+ 𝑦
0

21
+ 𝑉
𝑘
𝑡)

= 𝑦
0

21
+ 𝑉
𝑘
𝑡.

(37)

Comparing (34) and (37) we see that after a time positions of
all the vehicles along the Oy

2
-axis approach the position of

the leftmost vehicle. So the group keeps the line.
Control algorithms (29), (30) are added with the follow-

ing logical conditions.
If 𝑖th vehicle in the group detects an obstacle to its left, its

number increases by one and the control algorithm (30) takes
the following form:

[
𝑢
𝑖𝑥

𝑢
𝑖𝑦

]

=
[
[

[

𝑦̇
1𝑖−1

+ 𝑦̇
1𝑖+1

− 𝑧̇
𝑖

2
− 𝑇
1𝑖
(𝑦
1𝑖
−
𝑦
1𝑖−1

+ 𝑦
1𝑖+1

− 𝑧
𝑖

2
)

𝑦̇
2𝑖−2

− 𝑇
2𝑖
(𝑦
2𝑖
− 𝑦
2𝑖−2
) .

]
]

]

,

(38)

If 𝑖th vehicle in the group detects an obstacle to its right,
control algorithm (30) remains unchanged.

For the leftmost and rightmost vehicles the control
algorithms remain unchanged in case of obstacle detection.

5. Modeling Results

The vehicle’s model is described by (4) and control law by
expressions (7), (14), (29), and (30).
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Figure 4: Autonomous mobile robot “Skif 3.”
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Figure 5: Experimental results.

The control system’s parameters: working area 𝐿 = 200m,
𝑦
𝐿
= 0m, 𝑦

𝑅
= 200m; number of vehicles 𝑛 = 5; setpoints

for speed 𝑉
0𝑖
= 1m/s; time constants 𝑇

0𝑖
= 1 s−1; initial

conditions 𝑦
2𝑖
= 0, 𝑦

11
= 10, 𝑦

12
= 20, 𝑦

13
= 30, 𝑦

14
=

40, 𝑦
15
= 50m; center coordinates and obstacle are radius (80,

60) and 20m.
For the safety reasons the vehicle maneuvers start at the

distance of 10 meters to an obstacle. The maneuver is started
by a vehicle closest to the detected obstacle.

Figure 3 presents the modeling results for the control
algorithms described by expressions (29), (30).

Figure 3 shows that a group of vehicles distributes itself
evenly across the area. As the second and third vehicles
approach the obstacle at the distance less than 10m, they start
to treat the detected obstacle as another vehicle. As a result,
the group splits itself into two subgroups. The first subgroup
passes the obstacle to its left, while the second one passes it
to its right. After the obstacle is passed, the vehicles regroup
into the initial configuration and continue their motion.

From Figure 3 we see that the distributed control system
not only performs an even distribution of the vehicles along
the Oy

1
-axis but also ensures keeping of the line.

6. Experiment Results

The experiment was held using autonomous wheeled robot
“Skif-3,” developed in Department of Electrical Engineering
and Mechatronics of Taganrog Institute of Technology of
Southern Federal University. Robot is shown in Figure 4.

Algorithm (10) was implemented using Advantech
onboard computer. Distance to obstacles is measured by
stereo vision using two cameras. Current coordinates of robot
are determined by integrating kinematic equations (18). It
should be noted that in real control systems more simple
sensors could be used for obstacles distance measurement.

Experiments results are shown in Figure 5.
Experimental results shown in unknown environment

demonstrate efficiency of approach proposed in this paper.

7. Conclusion

Thearticle presents and analyzes the algorithms of distributed
control for a group of vehicles using a control principle
based on interpretation of all the neighboring objects as
repellers. The proposed methods of repellers’ introduction
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are outstanding in the sense of dynamic way of generation of
repelling forces utilizing unstablemodes.Note that the graphs
presented in Figure 2 are not the images of repelling forces
formed as a result of integration of the mentioned lines.

The performed analysis and modeling results demon-
strate effectiveness of the proposed methods for the
obstructed environments. The proposed approach can also
be applied for nonstationary environments because the
obstacles are formally treated as vehicles.

The proposed algorithms can be used in the path-
planning systems of various vehicles. The planned path
ensures motion stability at the level of object’s kinematics.
Implementation of the planned paths requires an additional
controller accounting for the equations of dynamics and its
actuators [23].

Using the vehicle’s equations of kinematics and dynamics
of the proposed approach allows us to join the levels of
planning and motion control. It is possible to form repellers
as functions of positions, speeds, and accelerations of the
vehicles.
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