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We have presented FRW cosmological model in the framework of Brans-Dicke theory. This paper deals with a new proposed form
of deceleration parameter and cosmological constant Λ. The effect of bulk viscosity is also studied in the presence of modified
Chaplygin gas equation of state (𝑝 = 𝐴𝜌 − 𝐵/𝜌𝑛). Furthermore, we have discussed the physical behaviours of the models.

1. Introduction

It has been well established that alternative theories of
gravitation played an important role in understanding the
models of the Universe. For the last few decades, researchers
have shownmore interest in alternative theories of gravitation
especially scalar-tensor theories of gravity. The Brans-Dicke
theory (BDT) of gravity is the one of the most successful
alternative theories among all alternative theories of grav-
itation. This theory is consisting of a massless scalar field𝜙 and a dimensionless constant 𝜔 describing the strength
of the coupling between 𝜙 and the matter [1]. In the BDT,
gravitational constant 𝐺 is treated as the reciprocal of a
massless scalar field 𝜙, where 𝜙 is expected to satisfy scalar
wave equations and its source is all matter in the Uni-
verse.

In a pioneering work, both research contributions by
Mathiazhagan & Johri [2] and later La & Steinhardt [3]
showed that the idea of inflationary expansion with a first-
order phase transition can be made to work more satisfac-
torily if one considers the BDT in place of general relativity.
The interesting consequence of BD scalar field is that the
modified field equations would express the scale factor 𝑅(𝑡)
as a power function of time and not as an exponential
function, so that one attains the so-called “graceful exit”
from the inflationary vacuum phase through a first-order

phase transition. Hyperextend inflation [4] generalizes the
results of extended inflation in BDT and solves the graceful
exit problem in a natural way, without recourse to any fine-
tuning as required in relativistic models. Romero & Barros
[5] discussed the limit of the Brans-Dicke theory of gravity
when 𝜔 → ∞ and showed by examples that, in this limit,
it is not always true that BDT reduces to general relativity.
From the literature, it is known that the result of BDT
is close to Einstein theory of general relativity for large
value of the coupling parameter (𝜔 ≥ 500) [6, 7]. A
more recent bound on the Brans-Dicke parameter 𝜔 is𝜔 > 3300 [7]. A number of researchers [8–15] have dis-
cussed various aspects of expanding cosmological models in
BDT.

Cosmological observations [16, 17] and various related
research clearly indicate that the constituent of the present
Universe is dominated by dark energy, which constitutes
about three-fourths of the whole matter of our Universe.
There are several candidates for dark energy like
quintessence, phantom, quintom, holographic dark energy,
K-essence, Chaplygin gas, and cosmological constant.
Among all the dark energy candidates, cosmological constant
is the more favoured. It provides enough negative pressure
to account for the acceleration and contributes an energy
density of same order of magnitude compared to the energy
density of the matter [18]. The discrepancy of observed value
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and theoretical value of cosmological constant is usually
referred as cosmological constant problem in literature. This
problem is the puzzling problem in standard cosmology. The
cosmological constant bears a dynamical decaying character
so that it might be large at early epoch and approaching to a
small value at the present epoch.

The effect of cosmological constant has been discussed
in the literature in the context of general relativity and its
alternative theories. T. Singh and T. Singh [19] presented
a cosmological model in BDT by considering cosmological
constant as a function of scalar field 𝜙. Exact cosmological
solutions in BDT with uniform cosmological “constant”
have been studied by Pimentel [20]. A class of flat FRW
cosmological models with cosmological “constant” in BDT
have also been obtained by Ahmadi-Azar & Riazi [21]. The
age of the Universe from a view point of the nucleosynthesis
with Λ term in BDT was investigated by Etoh et al. [22].
Azad & Islam [23] extended the idea of T. Singh and
T. Singh [19] to study cosmological constant in Bianchi
type I modified Brans-Dicke cosmology. Qiang et al. [24]
discussed cosmic acceleration in five-dimensional BDT using
interacting Higgs and Brans-Dicke fields. Smolyakov [25]
investigated a model which provides the necessary value
of effective cosmological “constant” at the classical level.
Recently, embedding general relativity with varying cosmo-
logical term in five-dimensional BDT of gravity in vacuum
has been discussed by Reyes & Aguilar [26]. Singh et al.
[27] have studied the dynamic cosmological constant in
BDT.

On the other side, it is known from the literature that for
early evolution of the Universe, bulk viscosity is supposed
to play a very important role. The presence of viscosity in
the fluid explores many dynamics of the homogeneous cos-
mological models. The bulk viscosity coefficient determines
the magnitude of the viscous stress relative to the expansion.
Recently Saadat & Pourhassan [28] investigated the FRW
bulk viscous cosmology with modified cosmic Chaplygin
gas. Many researchers also have shown interest in FRW bulk
viscous cosmological models in different contexts (see Saadat
& Pourhassan [28] and references therein).

Motivated by the above studies, here we have discussed
the variable cosmological constant Λ for FRW metric in the
context of BDT with a special form of deceleration para-
meter.

2. Field Equations

The field equation of Brans-Dicke theory in presence of
cosmological constant may be written as

𝐺𝑖𝑗 − Λ𝑔𝑖𝑗 + 𝜔𝜙2 [𝜙;𝑖𝜙;𝑗 − 12𝑔𝑖𝑗𝜙;𝑘𝜙;𝑘]

+ 1𝜙 [𝜙;𝑖;𝑗 − 𝑔𝑖𝑗◻𝜙] = 8𝜋𝜙 𝑇𝑖𝑗,

◻𝜙 = 𝜙;𝑖;𝑖 = 8𝜋2𝜔 + 3𝑇𝑖,𝑖,

(1)

where 𝜙 is the scalar field. The energy-momentum tensor 𝑇𝑖𝑗
of the cosmic fluid in the presence of bulk viscosity may be
be defined as

𝑇𝑖𝑗 = (𝜌 + 𝑝 + Π) 𝑢𝑖𝑢𝑗 − (𝑝 + Π) 𝑔𝑖𝑗. (2)

Let us consider a homogeneous and isotropic Universe
represented by FRW space-time metric as

𝑑𝑠2 = 𝑑𝑡2 − 𝑅2 (𝑡) [ 𝑑𝑟21 − 𝑘𝑟2 + 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜙2)] , (3)

where 𝑘(= 1, 0, −1) is the curvature parameter, which
represents closed, flat, and open model of the Universe and𝑅(𝑡) is the scale factor.

The FRW metric (3) and energy-momentum tensor (2)
along with Brans-Dicke field equations yield the following
equations:

3(𝑅̇𝑅)2 + 3𝑅̇ ̇𝜙𝑅𝜙 − 𝜔2 ( ̇𝜙𝜙)2 + 3 𝑘𝑅2 = 8𝜋𝜙 𝜌 + Λ

2𝑅̈𝑅 + (𝑅̇𝑅)2 + ̈𝜙𝜙 + 𝜔2 ( ̇𝜙𝜙)2 + 2𝑅̇ ̇𝜙𝑅𝜙 + 𝑘𝑅2
= −8𝜋𝜙 (𝑝 + Π) + Λ

̈𝜙𝜙 + 3𝑅̇ ̇𝜙𝑅𝜙 = 8𝜋𝜙 𝜌 − 3𝑝 − 3Π3 + 2𝜔 + 2Λ3 + 2𝜔.

(4)

3. Solution of the Field Equations

In order to find exact solutions of basic field equations (4),
one must ensure that set of equations should be closed.Thus,
two more physically reasonable relations are required among
the variables.

First we consider a well accepted power law relation
between scale factor 𝑅(𝑡) and scalar field 𝜙 of the form [27]

𝜙 = 𝜙0𝑅𝛼1 (5)

and as it has been well established the expansion of present
Universe is accelerating. In order to study a cosmological
model with early deceleration and late time acceleration, we
have proposed deceleration parameter of the form

𝑞 = 𝛼2 + 𝛼3𝑡1 + 𝑡 (6)

as the second physically plausible relation, where 𝛼2, 𝛼3 ∈ R.
The considered form of deceleration parameter is motivated
by the bilinear form of deceleration parameter, Mishra &
Chand [29]. Deceleration parameter is useful to classify
the models of the Universe. From literature we know that
deceleration parameter is a constant quantity or it depends
on time. In the case when rate of expansion never changes
and 𝑅̇ is constant, the scaling factor is proportional to
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time, which leads to zero deceleration. In case when 𝐻
is constant, the deceleration parameter (𝑞) is also constant(−1). In de-Sitter and steady state Universe such cases arises.
Now we will classify the cosmological models on the basis
of time dependence on Hubble parameter and deceleration
parameter as follows, Bolotin et al. [30].

(i) 𝐻 > 0, 𝑞 > 0: expanding and decelerating;

(ii) 𝐻 > 0, 𝑞 < 0: expanding and accelerating;

(iii) 𝐻 < 0, 𝑞 > 0: contracting and decelerating;

(iv) 𝐻 < 0, 𝑞 < 0: contracting and accelerating;

(v) 𝐻 > 0, 𝑞 = 0: expanding, zero deceleration/constant
expansion;

(vi) 𝐻 < 0, 𝑞 = 0: contracting, zero deceleration;
(vii) 𝐻 = 0, 𝑞 = 0: static.

From the above classification, (i), (ii), and (v) are possible
cases as in the present scenario our Universe is expanding.
Again also we have found the following type of expansion
exhibit by our Universe.

(i) 𝑞 < −1: superexponential expansion;
(ii) −1 ≤ 𝑞 < 0: exponential expansion (for 𝑞 = −1 known

as de-Sitter expansion);

(iii) 𝑞 = 0: expansion with constant rate;

(iv) −1 < 𝑞 < 1: accelerating power expansion;
(v) 𝑞 > 0: decelerating expansion.
We consider third physically plausible relation as the

modified Chaplygin gas equation of state as follows [31, 32]:

𝑝 = 𝐴𝜌 − 𝐵𝜌𝑛 , (7)

where 𝐴 > 0, 𝐵 > 0 are constants and 0 ≤ 𝑛 ≤ 1.

The set of field equations (4) with the help of (5) may be
written as

(6 + 6𝛼1 − 𝜔𝛼212 )(𝑅̇𝑅)2 + 3𝑘𝑅2 = 8𝜋𝜙0𝑅𝛼1 𝜌 + Λ
(2 + 𝛼1) 𝑅̈𝑅 + (2 + 2𝛼1 + 2𝛼21 + 𝜔𝛼212 )(𝑅̇𝑅)2 + 𝑘𝑅2

= −8𝜋𝜙0𝑅𝛼1 (𝑝 + Π) + Λ
[𝛼1 𝑅̈𝑅 + 𝛼1 (𝛼1 + 2)(𝑅̇𝑅)2] (3 + 2𝜔)

= 8𝜋𝜙0𝑅𝛼1 (𝜌 − 3𝑝 − 3Π) + 2Λ.

(8)

Equations (8) leads us to

2 (3 − 𝜔𝛼1) 𝑅̈𝑅 + (6 − 4𝜔𝛼1 − 𝜔𝛼21)(𝑅̇𝑅)2 + 6𝑘𝑅2 = 2Λ. (9)

This equation is useful for obtaining the various cosmological
solutions.

Now our problem is to evaluate the 𝑅(𝑡), which is
obtained from the relation

− 𝐻̇𝐻2 = 1 + 𝑞. (10)

With the help of (6) and integrating (10), we obtained

𝐻 = 1(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) ln (1 + 𝑡) + 𝑐1 , (11)

where 𝑐1 is a constant of integration. The condition 𝐻 → ∞
when 𝑡 → 0 yields 𝑐1 = 0. Thus, (11) takes the form

𝐻 = 1(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) ln (1 + 𝑡) . (12)

Equation (12) is expressed as

𝐻 = 1(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) [𝑡 − 𝑡2/2 + 𝑡3/3 − 𝑡4/4 + 𝑡5/5 − 𝑡6/6 + 𝑡7/7 − ⋅ ⋅ ⋅ ]
= 1(1 + 𝛼2) 𝑡 + (𝛼2 − 𝛼3) [−𝑡2/2 + 𝑡3/3 − 𝑡4/4 + 𝑡5/5 − 𝑡6/6 + 𝑡7/7 − ⋅ ⋅ ⋅ ] = 1(1 + 𝛼2) 𝑡 {1

− (𝛼2 − 𝛼3)1 + 𝛼2 [ 𝑡2 − 𝑡23 + 𝑡34 − 𝑡45 + 𝑡56 − 𝑡67 + ⋅ ⋅ ⋅]}−1 = 1(1 + 𝛼2) 𝑡 [1

+ (𝛼2 − 𝛼31 + 𝛼2 )( 𝑡2 − 𝑡23 + 𝑡34 − 𝑡45 + 𝑡56 − 𝑡67 + ⋅ ⋅ ⋅) + (𝛼2 − 𝛼31 + 𝛼2 )
2 ( 𝑡2 − 𝑡23 + 𝑡34 − 𝑡45 + 𝑡56 − 𝑡67 + ⋅ ⋅ ⋅)2

+ (𝛼2 − 𝛼31 + 𝛼2 )
3 ( 𝑡2 − 𝑡23 + 𝑡34 − 𝑡45 + 𝑡56 − 𝑡67 + ⋅ ⋅ ⋅)3 + (𝛼2 − 𝛼31 + 𝛼2 )

4 ( 𝑡2 − 𝑡23 + 𝑡34 − 𝑡45 + 𝑡56 − 𝑡67 + ⋅ ⋅ ⋅)4 + ⋅ ⋅ ⋅] .

(13)
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Simplifying the above expression we obtained

𝐻 = 1(1 + 𝛼2) 𝑡 + 𝑘0 + 𝑘1𝑡 + 𝑘2𝑡2 + 𝑘3𝑡3 + 𝑘4𝑡4
+ 𝑂 (𝑡5) ,

(14)

where

𝑘0 = 𝛼2 − 𝛼32 (1 + 𝛼2)2
𝑘1 = 11 + 𝛼2 [

(𝛼2 − 𝛼3)2
4 (1 + 𝛼2)2 −

(𝛼2 − 𝛼3)3 (1 + 𝛼2)]

𝑘2 = 11 + 𝛼2 [
𝛼2 − 𝛼34 (1 + 𝛼2) − (𝛼2 − 𝛼3)2

3 (1 + 𝛼2)2
+ (𝛼2 − 𝛼3)3

8 (1 + 𝛼2)3]

𝑘3 = 11 + 𝛼2 [−
𝛼2 − 𝛼35 (1 + 𝛼2) + 13 (𝛼2 − 𝛼3)2

36 (1 + 𝛼2)2

− (𝛼2 − 𝛼3)3
4 (1 + 𝛼2)3 +

(𝛼2 − 𝛼3)4
16 (1 + 𝛼2)4]

𝑘4 = 11 + 𝛼2 [
𝛼2 − 𝛼36 (1 + 𝛼2) − 11 (𝛼2 − 𝛼3)2

30 (1 + 𝛼2)2
+ 17 (𝛼2 − 𝛼3)3

48 (1 + 𝛼2)3 − (𝛼2 − 𝛼3)4
6 (1 + 𝛼2)4] .

(15)

Integration of (14) leads us to

𝑅 = 𝑐2𝑡1/(1+𝛼2)𝑒𝑇1(𝑡), (16)

where 𝑇1(𝑡) = 𝑘0𝑡 + 𝑘1(𝑡2/2) + 𝑘2(𝑡3/3) + 𝑘3(𝑡4/4) + 𝑘4(𝑡5/5) +𝑂(𝑡6).The solutions of the field equation (8) are expressed as
follows: the energy density 𝜌 is obtained as

𝜌 = 𝑘5𝑡𝛼1/(1+𝛼2)𝑒𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)
(1 + 𝑡) [(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) ln (1 + 𝑡)]2 , (17)

where 𝑘5 = 𝜙0𝑐𝛼12 /8𝜋, 𝜌1 = (3 + 2𝑤 − 𝑤𝛼2)𝛼1 + 3𝛼2, 𝜌2 =(3 + 2𝑤 − 𝑤𝛼3)𝛼1 + 3𝛼3.
The pressure 𝑝 is given as

𝑝 = 𝐴𝑘𝑛+15 𝑡(𝑛+1)𝛼1/(1+𝛼2)𝑒(𝑛+1)𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)𝑛+1 − 𝐵 (1 + 𝑡)𝑛+1 [(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) ln (1 + 𝑡)]2𝑛+2
𝑘𝑛5𝑡𝑛𝛼1/(1+𝛼2)𝑒𝑛𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)𝑛 (1 + 𝑡) [(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) ln (1 + 𝑡)]2 . (18)

The bulk viscous stress Π is expressed as

𝑘𝑛+15 𝑡(𝑛+1)𝛼1/(1+𝛼2)𝑒(𝑛+1)𝛼1𝑇1(𝑡) [ 𝜌1 + 𝜌2𝑡(1 + 𝑡) [(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) ln (1 + 𝑡)]2]
𝑛

× Π = [(Π1 + Π2𝑡) / (1 + 𝑡) [(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) ln (1 + 𝑡)]2 + 2𝑘/𝑐22 𝑡2/(1+𝛼2)𝑒2𝑇1(𝑡)] + 𝐵
𝑘𝑛5𝑡𝑛𝛼1/(1+𝛼2)𝑒𝑛𝛼1𝑇1(𝑡) [(𝜌1 + 𝜌2𝑡) / (1 + 𝑡) [(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) ln (1 + 𝑡)]2]𝑛 ,

(19)

where Π1 = −(1 + 𝑤)𝛼21 − (1 + 3𝐴)𝛼2 + [(𝛼2 − 2)(1 + 𝐴)𝑤 −1− 3𝐴+𝛼2]𝛼1 + 2 andΠ2 = −(1 +𝑤)𝛼21 − (1 + 3𝐴)𝛼3 + [(𝛼2 −2)(1 + 𝐴)𝑤 − 1 − 3𝐴 + 𝛼3]𝛼1 + 2.
The cosmological constant Λ is expressed as

Λ = Λ 1 + Λ 2𝑡(1 + 𝑡) [(1 + 𝛼3) 𝑡 + (𝛼2 − 𝛼3) ln (1 + 𝑡)]2
+ 3𝑘𝑐22 𝑡2/(1+𝛼2)𝑒2𝑇1(𝑡) ,

(20)

where Λ 1 = −0.5𝑤𝛼21 + 𝑤(𝛼2 − 2)𝛼1 − 3(𝛼2 − 1) and Λ 2 =−0.5𝑤𝛼21 + 𝑤(𝛼3 − 2)𝛼1 − 3(𝛼3 − 1).

Now, let us start with our proposed form of deceleration
parameter 𝑞. The different form of deceleration parameter is
evolved as a result of considered value of 𝛼2 and 𝛼3, which
is expressed in Table 1. We know that in present scenario our
Universe is accelerating.Thus serial numbers (2), (5), (8), and
(9) of Table 1 exhibit accelerating model. Now we will discuss
the deceleration parameter in serial numbers (2), (5), (8), and
(9) of Table 1. For the choice of 𝛼2 = 𝛼 = 𝛼4, the deceleration
parameter 𝑞 in serial number (2) and (5) of Table 1 reduces to𝑞 = −𝛼𝑡/(1+𝑡) and 𝑞 = −𝛼(1+𝑡)/(1+𝑡), respectively, which is
discussed by Mishra and Chand [29]. They called this decel-
eration parameter as bilinear variable deceleration parameter.
We will discuss the case where 𝛼2 ̸= 𝛼 ̸= 𝛼4 of serial number
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Table 1: Different forms of deceleration parameter depending on the parameters 𝛼2 and 𝛼3 and behaviour of cosmological models according
to the deceleration parameter 𝑞.
S. number Possible value of 𝛼2 and 𝛼3 Form of deceleration parameter 𝑞 Behaviour of cosmological model

(1) 𝛼2 = 0 𝑞 = 𝛼3𝑡1 + 𝑡 Decelerating𝛼3 > 0
(2) 𝛼2 = 0 𝑞 = − 𝛼4𝑡1 + 𝑡 Accelerating𝛼3 < 0 (𝛼3 = −𝛼4, 𝛼4 > 0)
(3) 𝛼2 = 0 𝑞 = 0 Expansion with constant rate𝛼3 = 0
(4) 𝛼2 > 0 𝑞 = 𝛼2 + 𝛼3𝑡1 + 𝑡 Decelerating𝛼3 > 0
(5) 𝛼2 > 0 𝑞 = 𝛼2 − 𝛼4𝑡1 + 𝑡 Phase transition from decelerating to accelerating𝛼3 < 0
(6) 𝛼2 > 0 𝑞 = 𝛼21 + 𝑡 Decelerating𝛼3 = 0
(7) 𝛼2 < 0 (𝛼2 = −𝛼5, 𝛼5 > 0) 𝑞 = −𝛼5 + 𝛼3𝑡1 + 𝑡 Phase transition from accelerating to decelerating𝛼3 > 0
(8) 𝛼2 < 0 𝑞 = −𝛼5 − 𝛼4𝑡1 + 𝑡 Accelerating𝛼3 < 0
(9) 𝛼2 < 0 𝑞 = − 𝛼51 + 𝑡 Accelerating𝛼3 = 0

(5) of Table 1 and also serial numbers (8) and (9) of Table 1.
According to the serial numbers (5), (8), and (9) of Table 1 we
have three different models, which are discussed below.

3.1. Model I. The deceleration parameter 𝑞 in (6) for 𝛼2 > 0
and 𝛼3 < 0 takes the form

𝑞 = 𝛼2 − 𝛼4𝑡1 + 𝑡 , 𝛼3 = −𝛼4, 𝛼4 > 0. (21)

Here we noticed that 𝑞 > 0 for 0 < 𝑡 < 𝛼2/𝛼4 and 𝑞 < 0
for 𝑡 > 𝛼2/𝛼4, which means that our Universe is decelerating
and accelerating in the provided ranges, respectively. Thus
our Universe undergoes a phase transition from decelerating
to accelerating phase.

For model I, the physical parameters are obtained as
follows.

The Hubble parameter in (12) takes the form

𝐻 = 1(1 − 𝛼4) 𝑡 + (𝛼2 + 𝛼4) ln (1 + 𝑡) . (22)

The scale factor 𝑅(𝑡) in (16) is expressed as

𝑅 = 𝑐2𝑡1/(1+𝛼2)𝑒𝑇1(𝑡), (23)

where 𝑇1(𝑡) = 𝑘0𝑡 + 𝑘1(𝑡2/2) + 𝑘2(𝑡3/3) + 𝑘3(𝑡4/4) + 𝑘4(𝑡5/5) +𝑂(𝑡6). And
𝑘0 = 𝛼2 + 𝛼42 (1 + 𝛼2)2

𝑘1 = 11 + 𝛼2 [
(𝛼2 + 𝛼4)2
4 (1 + 𝛼2)2 −

(𝛼2 + 𝛼4)3 (1 + 𝛼2)]

𝑘2 = 11 + 𝛼2 [
𝛼2 + 𝛼44 (1 + 𝛼2) − (𝛼2 + 𝛼4)2

3 (1 + 𝛼2)2
+ (𝛼2 + 𝛼4)3

8 (1 + 𝛼2)3]

𝑘3 = 11 + 𝛼2 [−
𝛼2 + 𝛼45 (1 + 𝛼2) + 13 (𝛼2 + 𝛼4)2

36 (1 + 𝛼2)2
− (𝛼2 + 𝛼4)3

4 (1 + 𝛼2)3 +
(𝛼2 + 𝛼4)4
16 (1 + 𝛼2)4]

𝑘4 = 11 + 𝛼2 [
𝛼2 + 𝛼46 (1 + 𝛼2) − 11 (𝛼2 + 𝛼4)2

30 (1 + 𝛼2)2
+ 17 (𝛼2 + 𝛼4)3

48 (1 + 𝛼2)3 − (𝛼2 + 𝛼4)4
6 (1 + 𝛼2)4] .

(24)

The FRW space-time metric in (3) takes the form

𝑑𝑠2 = 𝑑𝑡2 − 𝑐22 𝑡2/(1+𝛼2)𝑒2𝑇1(𝑡) [ 𝑑𝑟21 − 𝑘𝑟2
+ 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜙2)]

(25)
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with the above mentation 𝑘𝑖, (𝑖 = 0, 1, 2, 3, 4). The energy
density (𝜌), pressure (𝑝), bulk viscous stress (Π), and
cosmological constant (Λ) in (17), (18), (19), and (20) are
expressed as

𝜌 = 𝑘5𝑡𝛼1/(1+𝛼2)𝑒𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)
(1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼2 + 𝛼4) ln (1 + 𝑡)]2 , (26)

where 𝑘5 = 𝜙0𝑐𝛼12 /8𝜋, 𝜌1 = (3 + 2𝑤 − 𝑤𝛼2)𝛼1 + 3𝛼2, 𝜌2 =(3 + 2𝑤 + 𝑤𝛼4)𝛼1 − 3𝛼4.

𝑝 = 𝐴𝑘𝑛+15 𝑡(𝑛+1)𝛼1/(1+𝛼2)𝑒(𝑛+1)𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)𝑛+1 − 𝐵 (1 + 𝑡)𝑛+1 [(1 − 𝛼4) 𝑡 + (𝛼2 + 𝛼4) ln (1 + 𝑡)]2𝑛+2
𝑘𝑛5𝑡𝑛𝛼1/(1+𝛼2)𝑒𝑛𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)𝑛 (1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼2 + 𝛼4) ln (1 + 𝑡)]2 ,

𝑘𝑛+15 𝑡(𝑛+1)𝛼1/(1+𝛼2)𝑒(𝑛+1)𝛼1𝑇1(𝑡) [ 𝜌1 + 𝜌2𝑡(1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼2 + 𝛼4) ln (1 + 𝑡)]2]
𝑛

× Π = [(Π1 + Π2𝑡) / (1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼2 + 𝛼4) ln (1 + 𝑡)]2 + 2𝑘/𝑐22 𝑡2/(1+𝛼2)𝑒2𝑇1(𝑡)] + 𝐵
𝑘𝑛5𝑡𝑛𝛼1/(1+𝛼2)𝑒𝑛𝛼1𝑇1(𝑡) [(𝜌1 + 𝜌2𝑡) / (1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼2 + 𝛼4) ln (1 + 𝑡)]2]𝑛 ,

(27)

where Π1 = −(1 + 𝑤)𝛼21 − (1 + 3𝐴)𝛼2 + [(𝛼2 − 2)(1 + 𝐴)𝑤 −1− 3𝐴+𝛼2]𝛼1 + 2 andΠ2 = −(1 +𝑤)𝛼21 + (1 + 3𝐴)𝛼4 + [(𝛼2 −2)(1 + 𝐴)𝑤 − 1 − 3𝐴 − 𝛼4]𝛼1 + 2.
Λ = Λ 1 + Λ 2𝑡(1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼2 + 𝛼4) ln (1 + 𝑡)]2

+ 3𝑘𝑐22 𝑡2/(1+𝛼2)𝑒2𝑇1(𝑡) ,
(28)

where Λ 1 = −0.5𝑤𝛼21 + 𝑤(𝛼2 − 2)𝛼1 − 3(𝛼2 − 1) and Λ 2 =−0.5𝑤𝛼21 − 𝑤(𝛼4 + 2)𝛼1 + 3(𝛼4 + 1).
Figures 1 and 2 represent the variation of deceleration

parameter against time with different values of parameters
as presented in the figures for model I. From these figures,
we have noticed that when 𝛼2 is fixed and 𝛼4 is different and
vice versa, deceleration parameter 𝑞 is a decreasing function
of time and it takes values from positive to negative, which
shows that our Universe undergoes a phase transition from
deceleration phase to acceleration phase. Here we observed
that −1 < 𝑞 < 1 for 0 < 𝛼2 ≤ 1 and 0 < 𝛼4 ≤ 1, which
means that within the provided range of 𝛼𝑖 (𝑖 = 2, 4) our
Universe undergoes an accelerating power expansion. It can
be observed from Figures 1 and 2.

The variation of Hubble parameter 𝐻 and scale factor 𝑅
against time is plotted in Figures 3 and 4, respectively for
model I. As a representative case here we have presented
the variation of 𝐻 and 𝑅 for fixed 𝛼2 = 0.5 and different𝛼4 as in figures. It is found that Hubble parameter 𝐻 is a
decreasing function of time and approaching towards zero
with the evolution of time. For 0 < 𝛼4 ≤ 0.8 and 𝛼5 = 0.5,
the scale factor 𝑅 is an increasing function of time and the
higher the value of 𝛼4, the lower the value of scale factor 𝑅.
For 𝛼4 ≥ 0.9 and 𝛼2 = 0.5, the scale factor takes a bounce and
increases with the evolution of time (see Figure 4).

Figures 5 and 6 represent the variation of energy density𝜌 and pressure 𝑝 against time, respectively for model I. From
the Figure 5 we pointed out that, in the interval 0 < 𝛼4 ≤0.8&𝛼2 = 0.5 with the time, energy density decreases for
small interval of time and increases to a higher value with the

evolution of time.This shows that our Universe is dominated
by radiation. For 𝛼4 ≥ 0.9 and 𝛼2 = 0.5 the energy density is a
decreasing function of time and approaches to zero with the
evolution of time. In present scenario such type of qualitative
behaviour of energy density is observed from observational
data. Frompressure profile (Figure 6) we observed that, in the
intervals 0 < 𝛼4 ≤ 0.8 and 𝛼2 = 0.5, the pressure is negative
for small interval of time and increases with the evolution
of time. In the intervals 0.9 ≤ 𝛼4 ≤ 1.2 and 𝛼2 = 0.5,
pressure is negative, which follows the observational data but,
for 𝛼4 > 1.2, it is complex valued; thus we neglect it.

The variation of bulk viscous stress Π and cosmological
constant Λ against time is plotted in Figures 7 and 8,
respectively for model I. Figures indicate the qualitative and
quantitative behaviour of both the parameters for open (𝑘 =−1), flat (𝑘 = 0), and closed (𝑘 = 1)Universe.Wehave noticed
the following points.

Bulk Viscous Stress Π (see Figure 7)

(i) Bulk viscous stress Π takes values from positive to
negative and approaches to minus infinity (−∞) with
time in case of flat and closed Universe whereas it is
negative-positive-negative valued for open Universe
in the intervals 0 < 𝛼4 ≤ 0.7 and 𝛼2 = 0.5.

(ii) Bulk viscous stress Π is positive valued and tends to
infinity with the evolution of time for flat and closed
Universe whereas it is negative-positive valued for
open Universe in 0.7 < 𝛼4 ≤ 0.8 and 𝛼2 = 0.5.

(iii) For 𝛼4 > 0.8 and 𝛼2 = 0.5, bulk viscous stressΠ is positive valued and tends to infinity with the
evolution of time for flat and closed Universe whereas
it is negative valued for open Universe.

Cosmological Constant Λ (see Figure 8)

(i) Cosmological constant Λ is positive and negative
for flat and open Universe and closed Universe,
respectively. Cosmological constant Λ → 0 when𝑡 → ∞.
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Figure 1: Variation of deceleration parameter against time for fixed𝛼2 and different 𝛼4.

(ii) In case of flat and open Universe cosmological con-
stant Λ is positive valued for 𝛼4 > 0.8 and 𝛼2 = 0.5
whereas it is negative valued for open Universe.

(iii) In case of flat Universe cosmological constant Λ → 0
when 𝑡 → ∞ but for close and open Universe Λ →∞ when 𝑡 → ∞ and Λ → −∞ when 𝑡 → ∞,
respectively.

3.2. Model II. The deceleration parameter 𝑞 in (6) for 𝛼2 < 0
and 𝛼3 < 0 takes the form

𝑞 = −(𝛼5 + 𝛼4𝑡)1 + 𝑡 , 𝛼3 = −𝛼4, 𝛼2 = −𝛼5, 𝛼4, 𝛼5 > 0. (29)

Here we noticed that 𝑞 < 0 for 𝛼4, 𝛼5 > 0, which means that
our Universe is accelerating with the evolution of time.

For model II, the physical parameters are obtained as
follows:

The Hubble parameter in (12) takes the form

𝐻 = 1(1 − 𝛼4) 𝑡 + (𝛼4 − 𝛼5) ln (1 + 𝑡) . (30)

The scale factor 𝑅(𝑡) in (16) is expressed as

𝑅 = 𝑐2𝑡1/(1−𝛼5)𝑒𝑇1(𝑡), (31)

where 𝑇1(𝑡) = 𝑘0𝑡 + 𝑘1(𝑡2/2) + 𝑘2(𝑡3/3) + 𝑘3(𝑡4/4) + 𝑘4(𝑡5/5) +𝑂(𝑡6). And
𝑘0 = 𝛼4 − 𝛼52 (1 − 𝛼5)2
𝑘1 = 11 − 𝛼5 [

(𝛼4 − 𝛼5)2
4 (1 − 𝛼5)2 −

(𝛼4 − 𝛼5)3 (1 − 𝛼5)]

𝑘2 = 11 − 𝛼5 [
𝛼4 − 𝛼54 (1 − 𝛼5) − (𝛼4 − 𝛼5)2

3 (1 − 𝛼5)2
+ (𝛼4 − 𝛼5)3

8 (1 − 𝛼5)3]

𝑘3 = 11 − 𝛼5 [−
𝛼4 − 𝛼55 (1 − 𝛼5) + 13 (𝛼4 − 𝛼5)2

36 (1 − 𝛼5)2
− (𝛼4 − 𝛼5)3

4 (1 − 𝛼5)3 +
(𝛼4 − 𝛼5)4
16 (1 − 𝛼5)4]

𝑘4 = 11 − 𝛼5 [
𝛼4 − 𝛼56 (1 − 𝛼5) − 11 (𝛼4 − 𝛼5)2

30 (1 − 𝛼5)2
+ 17 (𝛼4 − 𝛼5)3

48 (1 − 𝛼5)3 − (𝛼4 − 𝛼5)4
6 (1 − 𝛼5)4] .

(32)

The FRW space-time metric in (3) takes the form

𝑑𝑠2 = 𝑑𝑡2 − 𝑐22 𝑡2/(1−𝛼5)𝑒2𝑇1(𝑡) [ 𝑑𝑟21 − 𝑘𝑟2
+ 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜙2)]

(33)

with the above mentation 𝑘𝑖, (𝑖 = 0, 1, 2, 3, 4). The energy
density (𝜌), pressure (𝑝), bulk viscous stress (Π), and cosmo-
logical constant (Λ) in (17), (18), (19), and (20) takes the form

𝜌 = 𝑘5𝑡𝛼1/(1−𝛼5)𝑒𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)
(1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼4 − 𝛼5) ln (1 + 𝑡)]2 , (34)

where 𝑘5 = 𝜙0𝑐𝛼12 /8𝜋, 𝜌1 = (3 + 2𝑤 + 𝑤𝛼5)𝛼1 − 3𝛼5, 𝜌2 =(3 + 2𝑤 + 𝑤𝛼4)𝛼1 − 3𝛼4.

𝑝 = 𝐴𝑘𝑛+15 𝑡(𝑛+1)𝛼1/(1−𝛼5)𝑒(𝑛+1)𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)𝑛+1 − 𝐵 (1 + 𝑡)𝑛+1 [(1 − 𝛼4) 𝑡 + (𝛼4 − 𝛼5) ln (1 + 𝑡)]2𝑛+2
𝑘𝑛5𝑡𝑛𝛼1/(1−𝛼5)𝑒𝑛𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)𝑛 (1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼4 − 𝛼5) ln (1 + 𝑡)]2

𝑘𝑛+15 𝑡(𝑛+1)𝛼1/(1−𝛼5)𝑒(𝑛+1)𝛼1𝑇1(𝑡) [ 𝜌1 + 𝜌2𝑡(1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼4 − 𝛼5) ln (1 + 𝑡)]2]
𝑛

× Π = [(Π1 + Π2𝑡) / (1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼4 − 𝛼5) ln (1 + 𝑡)]2 + 2𝑘/𝑐22 𝑡2/(1−𝛼5)𝑒2𝑇1(𝑡)] + 𝐵
𝑘𝑛5𝑡𝑛𝛼1/(1−𝛼5)𝑒𝑛𝛼1𝑇1(𝑡) [(𝜌1 + 𝜌2𝑡) / (1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼4 − 𝛼5) ln (1 + 𝑡)]2]𝑛 ,

(35)
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where Π1 = −(1 + 𝑤)𝛼21 + (1 + 3𝐴)𝛼5 − [(𝛼5 + 2)(1 + 𝐴)𝑤 +1+ 3𝐴+𝛼5]𝛼1 + 2 andΠ2 = −(1 +𝑤)𝛼21 + (1 + 3𝐴)𝛼4 − [(𝛼5 +2)(1 + 𝐴)𝑤 + 1 + 3𝐴 + 𝛼4]𝛼1 + 2.
Λ = Λ 1 + Λ 2𝑡(1 + 𝑡) [(1 − 𝛼4) 𝑡 + (𝛼4 − 𝛼5) ln (1 + 𝑡)]2

+ 3𝑘𝑐22 𝑡2/(1−𝛼5)𝑒2𝑇1(𝑡) ,
(36)

where Λ 1 = −0.5𝑤𝛼21 − 𝑤(𝛼5 + 2)𝛼1 + 3(𝛼5 + 1) and Λ 2 =−0.5𝑤𝛼21 − 𝑤(𝛼4 + 2)𝛼1 + 3(𝛼4 + 1).
Nowwe will discuss the physical parameters of the model

II. Figures 9 and 10 represent the variation of deceleration

parameter against time for fixed 𝛼5 and different 𝛼4 and
fixed 𝛼4 and different 𝛼5, respectively. Here we observed that
deceleration parameter is negative and our model is accele-
rating.

Figures 11, 12, and 13 depict the variation of Hubble
parameter𝐻 and scale factor 𝑅 against time, respectively, for
model II. The observations are as follows:

(i) Hubble parameter𝐻 is a decreasing function of time
and tending to zero with the evolution of time. As a
representative case, we have considered 𝛼5 = 0.5 and
different 𝛼4 (0 < 𝛼4 ≤ 1.2) as in Figure 11.

(ii) Scale factor increases with the evolution of time. Here
we pointed out that the qualitative behaviour of scale
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factor 𝑅 is different for different interval of 𝛼4 and 𝛼5.
As a representative case, we choose 𝛼5 = 0.3, 0.5 and
different 𝛼4 and all other parameters as in Figures 12
and 13. In the interval 0 < 𝛼4 ≤ 0.2&𝛼4 > 0.9 and𝛼5 = 0.3, scale factor𝑅 increases after taking a bounce
where as in 0.3 ≤ 𝛼4 ≤ 0.9 and 𝛼5 = 0.3, it increases
gradually with the evolution of time (see Figure 12).
Similar qualitative behaviour is noticed for 𝛼5 = 0.5
and different 𝛼4 (see Figure 13).

The variation of energy density and pressure against time
is presented for model II in Figures 14 and 15, respectively.
As a representative case we choose 𝛼5 = 0.3 and different𝛼4 and all other parameters are as in Figures 14 and 15. The
observations are as follows:

(i) Energy density gradually decreases and approaches
towards zero with the evolution of time for 0 < 𝛼4 ≤0.3 and 𝛼5 = 0.3.

(ii) Energy density is gradually decreased for small inter-
val of time and tends towards infinity with the
evolution of time for 0.4 ≤ 𝛼4 ≤ 0.9 and 𝛼5 = 0.3.

(iii) For 𝛼4 ≥ 1 and 𝛼5 = 0.3, energy density tends towards
zero with time. Here we pointed out that, with the
increment of 𝛼4, the bounce of the energy density
increases and gradually tends to zero (see Figure 14).

(iv) Pressure is negative in 0 < 𝛼4 ≤ 0.3 and 1 ≤ 𝛼4 ≤ 1.5
with 𝛼5 = 0.3.

(v) Pressure is negative for a small interval of time and
gradually increases with time and it takes values from
positive to negative in the intervals 0.4 ≤ 𝛼4 ≤ 0.9 and𝛼4 ≥ 1.6 with 𝛼5 = 0.3, respectively (see Figure 15).

The variation of bulk viscous stress Π and cosmological
constant Λ against time for model II is presented in Figures
16 and 17, respectively. The observations are as follows.

Bulk Viscous Stress Π (see Figure 16)

(i) It is positive valued for flat and closed Universe
whereas it is negative valued for open Universe in0 < 𝛼4 ≤ 0.2 and 1 ≤ 𝛼4 ≤ 2 and 𝛼5 = 0.3.
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Figure 12: Variation of scale factor against time for fixed 𝛼5 = 0.3 and different 𝛼4.

(ii) It is positive-negative valued for flat and closed Uni-
verse whereas it is negative-positive-negative valued
for open Universe in 0.3 ≤ 𝛼4 ≤ 0.8 and 𝛼5 = 0.3.

(iii) It is positive valued for flat and closed Universe
whereas it is negative-positive valued for open Uni-
verse in 0.8 < 𝛼4 ≤ 1 and 𝛼5 = 0.3. Also it approaches
towards infinity with the evolution of time in the
specified interval of 𝛼4.

(iv) Π is positive valued for flat and closed Universe
whereas it is negative-positive-negative valued for
open Universe in 𝛼4 > 2 and 𝛼5 = 0.3.

Cosmological Constant Λ (see Figure 17)
(i) For 0 < 𝛼4 < 0.3 and 𝛼5 = 0.3,Λ is positive valued for

flat and closed Universe whereas it is negative value
for open Universe. In case of flat Universe Λ → 0
when 𝑡 → ∞ but for open and closed Universe Λ →∞ and Λ → −∞ with time respectively.

(ii) For 0.3 < 𝛼4 ≤ 0.9 and 𝛼5 = 0.3, Λ → 0 when𝑡 → ∞ for open, flat, and closed Universe. In case
of flat and closed Universe, cosmological constant
is positive valued whereas in open Universe it is
negative-positive valued.

(iii) It is positive valued for flat and closed Universe but
it is negative-positive-negative valued for open Uni-
verse in 𝛼4 > 0.9 and 𝛼5 = 0.3.

3.3. Model III. Thedeceleration parameter 𝑞 in (6) for 𝛼2 < 0
and 𝛼3 = 0 takes the form

𝑞 = − 𝛼51 + 𝑡 , 𝛼2 = −𝛼5, 𝛼5 > 0. (37)

Here we noticed that 𝑞 < 0 for 𝛼5 > 0, which means that our
Universe is accelerating with the evolution of time.

For model III, the physical parameters are obtained as
follows:

The Hubble parameter in (12) takes the form

𝐻 = 1𝑡 − 𝛼5 ln (1 + 𝑡) . (38)

The scale factor 𝑅(𝑡) in (16) is expressed as

𝑅 = 𝑐2𝑡1/(1−𝛼5)𝑒𝑇1(𝑡), (39)
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Figure 13: Variation of scale factor against time for fixed 𝛼5 = 0.5 and different 𝛼4.

where 𝑇1(𝑡) = 𝑘0𝑡 + 𝑘1(𝑡2/2) + 𝑘2(𝑡3/3) + 𝑘3(𝑡4/4) + 𝑘4(𝑡5/5) +𝑂(𝑡6). And
𝑘0 = − 𝛼52 (1 − 𝛼5)2

𝑘1 = 11 − 𝛼5 [
𝛼254 (1 − 𝛼5)2 +

𝛼53 (1 − 𝛼5)]

𝑘2 = − 11 − 𝛼5 [
𝛼54 (1 − 𝛼5) + 𝛼253 (1 − 𝛼5)2

+ 𝛼358 (1 − 𝛼5)3]

𝑘3 = 11 − 𝛼5 [
𝛼55 (1 − 𝛼5) + 13𝛼2536 (1 − 𝛼5)2

+ 𝛼354 (1 − 𝛼5)3 +
𝛼4516 (1 − 𝛼5)4]

𝑘4 = − 11 − 𝛼5 [
𝛼56 (1 − 𝛼5) + 11𝛼2530 (1 − 𝛼5)2

+ 17𝛼3548 (1 − 𝛼5)3 +
𝛼456 (1 − 𝛼5)4] .

(40)

The FRW space-time metric in (3) takes the form

𝑑𝑠2 = 𝑑𝑡2 − 𝑐22 𝑡2/(1−𝛼5)𝑒2𝑇1(𝑡) [ 𝑑𝑟21 − 𝑘𝑟2
+ 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜙2)]

(41)

with the above mentation 𝑘𝑖, (𝑖 = 0, 1, 2, 3, 4). The energy
density (𝜌), pressure (𝑝), bulk viscous stress (Π), and cosmo-
logical constant (Λ) in (17), (18), (19), and (20) takes the form

𝜌 = 𝑘5𝑡𝛼1/(1−𝛼5)𝑒𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)
(1 + 𝑡) [𝑡 − 𝛼5 ln (1 + 𝑡)]2 , (42)

where 𝑘5 = 𝜙0𝑐𝛼12 /8𝜋, 𝜌1 = (3 + 2𝑤 + 𝑤𝛼5)𝛼1 − 3𝛼5, 𝜌2 =(3 + 2𝑤)𝛼1.
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Figure 14: Variation of energy density 𝜌 against time for 𝛼1 = 0.5, 𝛼5 = 0.3, 𝜔 = 1, 𝜙0 = 1, 𝑐2 = 0.1, and different 𝛼4. (b) shows the zooming
of (a).

𝑝 = 𝐴𝑘𝑛+15 𝑡(𝑛+1)𝛼1/(1−𝛼5)𝑒(𝑛+1)𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)𝑛+1 − 𝐵 (1 + 𝑡)𝑛+1 [𝑡 − 𝛼5 ln (1 + 𝑡)]2𝑛+2
𝑘𝑛5𝑡𝑛𝛼1/(1−𝛼5)𝑒𝑛𝛼1𝑇1(𝑡) (𝜌1 + 𝜌2𝑡)𝑛 (1 + 𝑡) [𝑡 − 𝛼5 ln (1 + 𝑡)]2

𝑘𝑛+15 𝑡(𝑛+1)𝛼1/(1−𝛼5)𝑒(𝑛+1)𝛼1𝑇1(𝑡) [ 𝜌1 + 𝜌2𝑡(1 + 𝑡) [𝑡 − 𝛼5 ln (1 + 𝑡)]2]
𝑛

× Π = [(Π1 + Π2𝑡) / (1 + 𝑡) [𝑡 − 𝛼5 ln (1 + 𝑡)]2 + 2𝑘/𝑐22 𝑡2/(1−𝛼5)𝑒2𝑇1(𝑡)] + 𝐵
𝑘𝑛5𝑡𝑛𝛼1/(1−𝛼5)𝑒𝑛𝛼1𝑇1(𝑡) [(𝜌1 + 𝜌2𝑡) / (1 + 𝑡) [𝑡 − 𝛼5 ln (1 + 𝑡)]2]𝑛 ,

(43)

whereΠ1 = −(1+𝑤)𝛼21+(1+3𝐴)𝛼5−[(𝛼5+2)(1+𝐴)𝑤+1+3𝐴+𝛼5]𝛼1+2 andΠ2 = −(1+𝑤)𝛼21−[(𝛼5+2)(1+𝐴)𝑤+1+3𝐴]𝛼1+2. Λ = Λ 1 + Λ 2𝑡(1 + 𝑡) [𝑡 − 𝛼5 ln (1 + 𝑡)]2 +
3𝑘𝑐22 𝑡2/(1−𝛼5)𝑒2𝑇1(𝑡) , (44)
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Figure 15: Variation of pressure 𝑝 against time for 𝛼1 = 0.5, 𝛼5 = 0.3, 𝐴 = 𝐵 = 1, 𝑛 = 0.1, 𝜔 = 1, 𝜙0 = 1, 𝑐2 = 0.1, and different 𝛼4. (b) shows
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Figure 16: Variation of bulk viscous stress Π against time for 𝛼1 = 0.5, 𝛼5 = 0.3, 𝐴 = 𝐵 = 1, 𝑛 = 0.1, 𝜔 = 1, 𝜙0 = 1, 𝑐2 = 0.1, and different 𝛼4.
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Figure 17: Variation of cosmological constant Λ against time for 𝛼1 = 0.5, 𝛼5 = 0.3, 𝜔 = 1, 𝑐2 = 0.1, and different 𝛼4. (b) shows the zooming
of (a). Blue line, Green line, and Red line represent 𝑘 = −1, 𝑘 = 0, and 𝑘 = 1, respectively.
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where Λ 1 = −[0.5𝑤𝛼21 + 𝑤(𝛼5 + 2)𝛼1 − 3(𝛼5 + 1)] and Λ 2 =−0.5𝑤𝛼21 − 2𝑤𝛼1 + 3.
The profile of deceleration parameter, Hubble parameter,

and scale factor against time is plotted in the Figures 18, 19,
and 20, respectively, for model III. The observations are as
follows:

(i) Deceleration parameter 𝑞 is a negative valued func-
tion of time and approaches towards zero with the
evolution of time. In other words we can say, at
early time, our Universe is accelerating and follows
an expansion with constant rate at late time (see
Figure 18).

(ii) Hubble parameter𝐻 is a decreasing function of time
and 𝐻 → 0 when 𝑡 → ∞. Also in this case, the
higher the value of 𝛼5, the higher the value of Hubble
parameter (see Figure 19).

(iii) Scale factor 𝑅 is an increasing function of time and𝑅 → ∞ when 𝑡 → ∞. Equation (39) indicates that 𝑅

is not defined for 𝛼5 = 1. As a representative case, we
considered 0 < 𝛼5 < 1 (see Figure 20).

Figures 21 and 22 depict the energy density and pressure
profile against time. respectively. For 𝛼5 ≥ 1, energy density
possesses physical unrealistic behaviour, so 𝛼5 is restricted to0 < 𝛼5 < 1. It is noticed that energy density is a decreasing
function of time and𝜌 → 0when 𝑡 → ∞ (see Figure 21). Also
pressure is a negative quantity with the evolution of time (see
Figure 22).

The profile of bulk viscous stress and cosmological con-
stant against time is depicted in Figures 23 and 24, respec-
tively, for model III. Bulk viscous stress is positive valued
for flat and closed Universe whereas it is negative valued for
openUniverse. Similar quantitative behaviour is observed for
cosmological constant. In case of flat Universe, cosmological
constant is a decreasing function of time and tends to zero
with the evolution of time.
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4. Final Statements

In this article, we have studied the FRW cosmological model
with modified Chaplygin gas in the framework of Brans-
Dicke theory.The approximated exact solution is obtained for
modified Einstein’s field equation with the help of proposed
form of deceleration parameter as in (6). We have presented
three different cosmological models based on the choice of𝛼2 and 𝛼3. The physical parameters involved in these three

models are physically acceptable for some interval of 𝛼2 and𝛼3, which follow the observational data. Here we would like
conclude that, for physically acceptable cosmological models,
the choice of 𝛼2 and 𝛼3 is crucial.
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