
Research Article
Decision Diagram Based Symbolic Algorithm for Evaluating
the Reliability of a Multistate Flow Network

Rongsheng Dong, Yangyang Zhu, Zhoubo Xu, and Fengying Li

Guangxi Key Laboratory of Trusted Software, School of Computer Science and Engineering, Guilin University of Electronic Technology,
Guilin 541004, China

Correspondence should be addressed to Rongsheng Dong; ccrsdong@guet.edu.cn

Received 11 July 2016; Revised 6 November 2016; Accepted 16 November 2016

Academic Editor: J.-C. Cortés

Copyright © 2016 Rongsheng Dong et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Evaluating the reliability of Multistate Flow Network (MFN) is an NP-hard problem. Ordered binary decision diagram (OBDD) or
variants thereof, such as multivalued decision diagram (MDD), are compact and efficient data structures suitable for dealing with
large-scale problems. Two symbolic algorithms for evaluating the reliability of MFN, MFN OBDD and MFN MDD, are proposed
in this paper. In the algorithms, several operating functions are defined to prune the generated decision diagrams.Thereby the state
space of capacity combinations is further compressed and the operational complexity of the decision diagrams is further reduced.
Meanwhile, the related theoretical proofs and complexity analysis are carried out. Experimental results show the following: (1)
compared to the existing decomposition algorithm, the proposed algorithms take less memory space and fewer loops. (2) The
number of nodes and the number of variables of MDD generated in MFN MDD algorithm are much smaller than those of OBDD
built in the MFN OBDD algorithm. (3) In two cases with the same number of arcs, the proposed algorithms are more suitable for
calculating the reliability of sparse networks.

1. Introduction

With the development of science and technology, network
models have been applied to many systems in various
fields, such as computer networking, communication, trans-
portation, gas and oil production, power transmission, and
logistics [1–3]. In the real world, many systems/networks
have been abstracted as multistate systems (MSSs) [4–
6], multistate networks (MSNs) [7–9], or stochastic flow
networks (SFNs) [10–12]. The components (transmission
lines or nodes) of the MSN have several states (failure,
working perfectly, and demotion work), so each state of the
components is usually modeled to a certain capacity with a
probability. The MSNs that satisfy the conservation law are
denoted multistate flow networks (MFNs), which are more
adaptive to real-word network models [3, 13–16].

Network failures can be disastrous and losses great, so
network reliability evaluation has become a major prerequi-
site to ensure proper functioning of a network [3, 9]. Network
reliability is defined as the probability that a required amount
of flow (such as data, power, etc.) is transmitted successfully

from source node 𝑠 to sink node t [3]. The reliability evalua-
tion of a network is NP-hard problem [9]. A lot of algorithms
have been provided based on some assumptions, including
inclusion and exclusion method [10–12], and sum of disjoint
products method [13].These algorithms can provide an exact
value of reliability, but they are limited to the enumeration of
the variable combinations. Some approximation algorithms,
like the upper and lower bound method [2], Monte Carlo
simulation [17], and so forth possess relatively high efficiency
but cannot get an exact value. Decision diagrams (DDs)
have the advantages of high compactness and operability
and of being able to express variable combinations implicitly
and are thus one of the more feasible strategies to alleviate
the problem of combinatorial explosion. Moreover, DDs
can obtain an exact result with Shannon expansion or the
extended form. Therefore, the decision diagram has been
frequently used to evaluate network reliability because of
the aforementioned advantages [18–24]. These algorithms
are mainly for evaluating the reliability of the networks
with two-state component [18] or a single path transmission
[19–23].

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 6908120, 13 pages
http://dx.doi.org/10.1155/2016/6908120

2 Mathematical Problems in Engineering

For a multistate flow network, most existing reliability
evaluation algorithms are based on the set of minimal cuts/
paths [24, 25], and generating the set of minimal cuts/paths is
another NP-hard problem [1, 26]. Jane and Laih have studied
the reliability computation of two-terminal MFNs using a
decomposition algorithm, which is better than the exhaustive
enumeration method with a lower space complexity, with
the prior requirement that the state vectors (d flows) satisfy
the demand without minimal cuts/paths [1, 7]. For the
case of maximum flow and minimum cost, Terruggia and
Bobbio presented a multivalued decision diagram (MDD)
based method, which takes full advantage of the operation
technology of multivalued decision diagrams so that the
reliability evaluation of a MFN is simple and efficient, with
a set of minimal cuts [24].

Thus, for calculating the reliability of a MFN, we attempt
to propose an exact algorithm that simultaneously solves
the following problems: (1) avoid searching for all minimal
cuts/paths, and (2) alleviate enumerating the state space as
far as possible. In view of this, first, we extend the formal def-
inition of theMFNmodel to implement symbolic algorithms
in this paper, and next two decision diagram based exact
algorithms, MFN OBDD and MFN MDD, are proposed.
A state vector (flow(d)) that satisfies the flow requirement
is obtained by using the maximum flow algorithm in a
constructed virtual network in the proposed algorithms,
without locating all minimal cuts/paths. In MFN OBDD, the
ordered binary decision diagram (OBDD) structure and its
operation technology are introduced, a capacity/state of each
arc is represented by a Boolean variable, and four operating
functions are defined. The reliability of a MFN is then
described and solved accurately. The MDD structure with
multibranch and operation technology is introduced; each
arc is denoted by a multivalue variable, and three operating
functions are defined in MFN MDD. The correctness and
efficiency of the algorithm are verified by experiments. Com-
pared to the spatial decomposition algorithmof Jane and Laih
[1], the proposed algorithms, which lower the computational
complexity, do not require enumerating and decomposing
the state space of the components.

The remainder of this article is organized as follows. In
Section 2, an extended formal MFN model and a definition
of MFN reliability are provided. In Section 3, elementary
knowledge of OBDD andMDD is reviewed. In Section 4, the
OBDD-based algorithm, MFN OBDD, and the MDD-based
algorithm, MFN MDD, are proposed, and both their com-
putational and storage complexity are analyzed. In Section 5,
computational experiments are presented, and comparisons
between the proposed algorithms and the decomposition
algorithm of Jane and Laih are made. Conclusions are finally
drawn in Section 6.

2. Multistate Flow Network
Model and Reliability

In this section, a two-terminal (one source and one sink)
MFN is modeled. Let 𝐺 = (𝑠, 𝑡, 𝑉, 𝐴, 𝑆, 𝐶, 𝑃,𝐷, 𝑑) be a MFN
where 𝑠 is the source, t is the sink, 𝑉 = {V𝑖 | 1 ≤ 𝑖 ≤ 𝑛} with

𝑠, 𝑡 ∈ 𝑉 is the set of vertexes, 𝐴 = {𝑎𝑖 | 1 ≤ 𝑖 ≤ 𝑛} with
𝐴 ⊂ 𝑉 × 𝑉 is the set of arcs, 𝐶 = {C𝑖 | 1 ≤ 𝑖 ≤ 𝑛} with
C𝑖 = {𝑐𝑖,0, 𝑐𝑖,1, . . . , 𝑐𝑖,(𝑠𝑖−1)} is the set of 𝑎𝑖’s capacities, 𝑆 = {𝑠𝑖 |
1 ≤ 𝑖 ≤ 𝑛, 𝑠𝑖 = |C𝑖|} is the set of capacity numbers, 𝑃 = {P𝑖 |
1 ≤ 𝑖 ≤ 𝑛} with P𝑖 = {𝑝𝑖,0, 𝑝𝑖,1, . . . , 𝑝𝑖,(𝑠𝑖−1)} is the set of 𝑎𝑖’s
capacity probabilities, 𝑝(𝑐𝑖,𝑗) = 𝑝𝑖,𝑗,𝐷 = {𝑑0, 𝑑1, . . . , 𝑑𝑘} is the
set of the output flows from 𝑠 to 𝑡, obviously, max{𝑑𝑖} is the
maximum flow of the network, 𝑑 is the demand transmitted
from 𝑠 to 𝑡, and 𝑑 ∈ 𝐷, 0 ≤ 𝑑 ≤ max{𝑑𝑖}. In addition, the
following mapping relationship was established:

C1 × C2 × ⋅ ⋅ ⋅ × C𝑛 󳨀→ 𝐷. (1)

An important property of MFN is that each node satisfies
the flow conservation law. For a node, the total amount of
traffic input is equal to the total output flow. Thus, the flow
from the source into the network is equal to the output from
the sink.

In this paper, network 𝐺 must satisfy the following
assumptions:

(1) Each vertex is perfectly reliable. For the unreliable
vertex case, vertexes and arcs can be treated as
components of the same type.

(2) The capacity of each arc is stochastic with a given
probability distribution.

(3) The capacities of different arcs are stochastically
independent.

The vector of capacities c = (𝑐1, 𝑐2, . . . , 𝑐𝑛) denotes the
state vector of the network where 𝑐𝑖 ≤ C𝑖 is the state of
𝑎𝑖. 𝐹(c) denotes the maximum flow from 𝑠 to 𝑡. Vector c is
satisfiable for a specified demand 𝑑 if 𝐹(c) ≥ 𝑑; otherwise
it is unsatisfiable. A satisfiable flow(d) can be obtained by
Lemma 1.

Lemma 1 (see [1]). Given a MFN, 𝐺 = (𝑠, 𝑡, 𝑉, 𝐴, 𝑆, 𝐶,
𝑃,𝐷, 𝑑), and a satisfiable state vector flow(d) can be ob-
tained at least when c is satisfiable, where flow(𝑑) =
(𝑓𝑑1 , 𝑓𝑑2 , . . . , 𝑓𝑑𝑛) with 𝐹(flow(𝑑)) = 𝑑 consists of flows 𝑓𝑑𝑖
through each arc 𝑎𝑖, and c = (𝑐max

1 , 𝑐max
2 , . . . , 𝑐max

𝑛) with
𝑐max
𝑖 = max{𝑐𝑖,0, 𝑐𝑖,1, . . . , 𝑐𝑖,(𝑠𝑖−1)} is the vector of the maximum
capacities of arcs.

Proof. Construct a new network 𝐺∗ based on the network 𝐺
with a fictitious vertex 𝑠∗ and a fictitious arc 𝑎0 that has a fixed
capacity 𝑑 from 𝑠∗ to 𝑠. Obviously, {𝑎0} is a minimal cut set of
network 𝐺∗. According to the maximum-flowminimum-cut
theorem, the maximum flow from 𝑠∗ to 𝑡 is 𝑑. Each arc of𝐺∗,
𝑎𝑖 ∈ 𝐴, (1 ≤ 𝑖 ≤ 𝑛), has a flow recorded as𝑓𝑑𝑖 when𝐺∗ obtains
the maximum flow. These flows constitute a state vector as
(𝑓𝑑1 , 𝑓𝑑2 , . . . , 𝑓𝑑𝑛); that is, there is a feasible flow recorded as
flow(𝑑) = (𝑓𝑑1 , 𝑓𝑑2 , . . . , 𝑓𝑑𝑛) to satisfy the demand𝑑.Therefore,
the lemma is proved.

For a MFN, we deduce the conclusion from the above.
If c is satisfiable for demand 𝑑 with c = flow(𝑑) =
(𝑓𝑑1 , 𝑓𝑑2 , . . . , 𝑓𝑑𝑛), 𝐹(c) = 𝑑, and 𝐹(c) ≥ 𝑑, then 𝐹(c) ≥ 𝑑
with c ∈ Ω and Ω = {(𝑐1, 𝑐2, . . . , 𝑐𝑛) | 𝑓𝑑𝑖 ≤ 𝑐𝑖 ≤ 𝑐max

𝑖 ,

Mathematical Problems in Engineering 3

0 0 0 1 1 0 1 1

x3

x2

x1 x1 x1 x1

x2

(a)

0 1

x3

x1 x1

x2 x2

➆

➀

➁ ➂

➃

➄

➅

(b)

0 1

x3

x1

x2 x2

(c)

0 1

x3

x1 x1

x2 x2

(d)

Figure 1: OBDD: (a) the complete binary tree of 𝑊 = 𝑥1 ⋅ 𝑥2 + 𝑥󸀠1 ⋅ 𝑥3; (b) the OBDD ofW; (c) the OBDD of 𝑈; (d) the OBDD of 𝑊 ⋅ 𝑈.

𝑐𝑖 ∈ C𝑖} = [c, c]. According to Corollary 1 of [1], a flow(d)
may be obtained in 𝑂(𝑚3) time.

In this paper, we study the reliability evolution of a MFN
with a demand 𝑑. Then the MFN’s reliability is defined as
follows.

Definition 2. For a MFN 𝐺 with demand 𝑑 from source 𝑠 to
sink 𝑡, the probability of the state space corresponding to the
satisfiable vectors of the networkwith 𝑑 is the reliability of the
MFN.That is, the reliability of 𝐺 is

Rel (𝑑) = 𝑃 {c | 𝐹 (c) ≥ 𝑑}
= 𝑃 {(𝑐1, 𝑐2, . . . , 𝑐𝑛) | 𝐹 (c) ≥ 𝑑, 𝑐𝑖 ∈ C𝑖}

= ⋃{𝑃 (𝑐1, 𝑐2, . . . , 𝑐𝑛) | 𝐹 (c) ≥ 𝑑, 𝑐𝑖 ∈ C𝑖} .

(2)

3. Ordered Binary Decision Diagram and
Multivalued Decision Diagram

In this section, we review the concept of ordered binary deci-
sion diagrams (OBDD) and Multivalued Decision Diagram
(MDD). An OBDD is a directed acyclic tree for Shannon
decomposition and provides a compact, canonical, and effi-
ciently manipulative representation for Boolean functions. A
MDD is an extension of an OBDD.

3.1. Ordered BinaryDecisionDiagram. If𝐹 denotes a Boolean
expression on 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} with 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛) being
a Boolean variable of 𝑋, the ite (If-Then-Else) format of a
binary decision diagram (BDD) is defined as

𝐹 = ite (𝑥, 𝐹1, 𝐹2) = 𝑥 ⋅ 𝐹1 + 𝑥󸀠 ⋅ 𝐹2, (3)

where 𝑥 ∈ 𝑋, 𝑥󸀠 is the complement of 𝑥 (if 𝑥 = 0, 𝑥󸀠 = 1;
else if 𝑥 = 1, 𝑥󸀠 = 0), 𝐹1 = 𝐹𝑥=1, and 𝐹2 = 𝐹𝑥=0. A BDD
has two terminal nodes that correspond to Boolean constants,
0 and 1, respectively. Each nonterminal node denotes a
Boolean variable 𝑥 with two branches corresponding to the
Boolean expressions 𝐹1 of 𝑥 = 1 and 𝐹2 of 𝑥 = 0 for
Shannon decomposition. Then each nonterminal node in
BDD represents an ite(x, 𝐹1, and 𝐹2) and it is different from
the others.

An ordered binary decision diagram (OBDD) is a BDD
with a constant order for Boolean variables. The order of
the Boolean variables from root to terminal is descending
or increasing. Some operations can be defined between two
OBDDs with the same variable order, and a new compact
OBDD with the same variable order is obtained by an
operation.

For example, Figure 1 shows the complete binary tree
(Figure 1(a)) and the OBDD (Figure 1(b)) for the Boolean
expression𝑊 = 𝑥1 ⋅𝑥2+𝑥󸀠1 ⋅𝑥3 with the variable orderΠ : 𝑥3 ≻
𝑥2 ≻ 𝑥1. Obviously, the OBDD stores the same information
with fewer nodes. If we trace the path A → C → E → G
and reach terminal node 1, the value of 𝑊 = 𝑥1 ⋅ 𝑥2 + 𝑥󸀠1 ⋅ 𝑥3
with variable assignment (𝑥1, 𝑥2, 𝑥3) = (0, 0, 1) is 1. Figure 1(c)
shows the OBDD for expression𝑈 = 𝑥1 ⋅ 𝑥2 +𝑥󸀠2 ⋅ 𝑥3 with the
same variable order, and Figure 1(d) shows the new OBDD
obtained by an operation “⋅” (conjunctive, And) between the
two OBDDs.

3.2. Multivalued Decision Diagram. A multivalued discrete
function𝐹denotes the operationwith 𝑛multivalued variables
{𝑥1, 𝑥2, . . . , 𝑥𝑛} mapping to the range R.

F : L1 × L2 × ⋅ ⋅ ⋅ × L𝑛 󳨀→ R, (4)

where L𝑖 = {0, 1, . . . , 𝑙𝑖 − 1} is the domain of variable 𝑥𝑖 and
R = {𝑟0, 𝑟1, . . . , 𝑟𝑘−1} is the range.

A MDD is a variant of a BDD. If 𝐹 denotes an expression
on 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, the case format of a MDD is defined
as

𝐹 = case (𝑥, 𝐹𝑥=0, 𝐹𝑥=1, . . . , 𝐹𝑥=𝑙−1)
= (𝑥 = 0) ⋅ 𝐹𝑥=0 + (𝑥 = 1) ⋅ 𝐹𝑥=1 + ⋅ ⋅ ⋅ + (𝑥 = 𝑙 − 1)

⋅ 𝐹𝑥=𝑙−1 =
𝑙−1

∑
𝑖=0

(𝑥 = 𝑖) ⋅ 𝐹𝑥=𝑖,
(5)

where 𝑥 ∈ 𝑋. A MDD has 𝑘 = |R| terminal nodes that
correspond to the constants, {𝑟0, 𝑟1, . . . , 𝑟𝑘−1}, respectively,
and each nonterminal node denotes a variable 𝑥 with |D𝑖|
branches corresponding to the expressions 𝐹𝑥=𝑖. Then each
nonterminal node in a MDD represents a case format.

Similar to an OBDD, a new compact MDD is obtained
by an operation between two different MDDs with the same

4 Mathematical Problems in Engineering

0 1 2 3

0
1

2

0 1

0 1

0
1

1

0 1

0 1

0 0 1 1 21 2 2

01 1 0 0
1

x3

x2

x1
x1x1x1x1

x1

x2x2

(a)

0 1 2 3

0
1

2

0 1

0 1

0
1

0
1

0

1

0 1

x3

x1 x1 x1

x2 x2 x2

(b)

0 1 2

0
1

2

0 1

0

1

0 1

0
1

x3

x2 x2

x1 x1

(c)

0 2 6

0

1
2

0
1

0

1

0 1

0
1

x3

x2 x2

x1 x1

(d)

Figure 2: MDD: (a) the complete tree of 𝑊 = 𝑥1 ⋅ 𝑥2 + 𝑥3; (b) the MDD ofW; (c) the MDD of U; (d) the MDD of 𝑊 ∗ 𝑈.

variable order, and Property 1 is applicable for an OBDD
or MDD. For example, Figure 2 shows the complete tree
(Figure 2(a)) and the MDD (Figure 2(b)) for the numerical
function𝑊 = 𝑥1 ⋅ 𝑥2 + 𝑥3 with the variable orderΠ : 𝑥3 ≻
𝑥2 ≻ 𝑥1, L1 = {0, 1}, L2 = {0, 1}, and L3 = {0, 1, 2}. Obviously,
theMDD stores the same informationwith quite a few nodes.
If we trace the path (𝑥3 = 1) → (𝑥2 = 1) → (𝑥1 = 1) → 2
and reach terminal node 1, the value of 𝑊 = 𝑥1 ⋅ 𝑥2 + 𝑥3
with variable assignment (𝑥1, 𝑥2, 𝑥3) = (1, 1, 1) is 2. Figure 2(c)
shows the MDD for the expression 𝑈 = 𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 with the
same variable order, and Figure 2(d) shows the new MDD
obtained by an operation “∗” (multiplication) between the
two MDDs (if 𝑊 = 1 and 𝑈 = 2, then 𝑊 ∗ 𝑈 = 2).
In fact, the MDD can be further simplified. For 𝑊 ∗ 𝑈, if
𝑊 ∗ 𝑈 > 0 satisfies the requirement, terminal nodes 2 and
6 can be combined in one node 1 (True). This process will be
used in our algorithm.

Property 1. Applying the operation for a nonnull OBDD (or
MDD)W and 𝑈 will unite the intersecting spaces.

4. Symbolic Algorithms for MFN
Reliability Evaluation

Because of the efficient data structures of decision diagrams,
we take advantage of a decision diagram to evaluate the
reliability of a MFN defined in Section 2. We present the
MFN OBDD algorithm based on OBDD in Section 4.1 and

the MFN MDD algorithm based onMDD in Section 4.2. An
example of the proposed algorithms is given in Section 4.3
and the complexity analysis of the algorithms is provided in
Section 4.4. It is worth declaring that we are not discussing
the decision diagram variables order, because it is an inde-
pendent NP-hard problem. In this paper, the variables order
is determined by the indexes of the edges and the edge states.

4.1. OBDD-Based AlgorithmMFN OBDD for Reliability Eval-
uation. TheOBDD is used to study two-state system because
of the two branches of the nodes in an OBDD. In this section,
we propose an OBDD-based algorithm, MFN OBDD, for
the reliability evaluation of a MFN. The method for variable
encoding refers to Zang et al.’s algorithm [19]; that is, each
state of an arc is represented by a Boolean variable.

The algorithm MFN OBDD is comprised of two major
parts: (1) generation of the OBDD that implicitly expresses
all of the state vectors that satisfy the demand d, without
listing the vectors; and (2) calculation of the reliability of the
MFNbyusing the defined specific function and traversing the
obtained OBDD.The steps of MFN OBDD are performed as
follows.

Step 1. Let each state of an arc be a Boolean variable. 𝐴 =
{𝑎1, 𝑎2, . . . , 𝑎𝑛}, and 𝐶𝑖 = {𝑐𝑖,0, 𝑐𝑖,1, . . . , 𝑐𝑖,(𝑠𝑖−1)}, for arc 𝑎𝑖, {𝑎𝑖,𝑗 |
0 ≤ 𝑗 ≤ 𝑠𝑖 − 1} denotes the set of state variables, and 𝑐(𝑎𝑖,𝑗) =
𝑐𝑖,𝑗. According to the index of arcs, 𝑎𝑛 ≻ ⋅ ⋅ ⋅ ≻ 𝑎1 ≻ 𝑎2, and
the index of states of 𝑎𝑖, 𝑎𝑖,(𝑠𝑖−1) ⋅ ⋅ ⋅ ≻ 𝑎𝑖,𝑗 ⋅ ⋅ ⋅ ≻ 𝑎𝑖,1 ≻ 𝑎𝑖,0, we

Mathematical Problems in Engineering 5

specify the variable order of the OBDDs to be Π : 𝑎𝑛,(𝑠𝑛−1) ≻⋅ ⋅ ⋅ 𝑎𝑛,1 ≻ 𝑎𝑛,0 ⋅ ⋅ ⋅ ≻ 𝑎1,(𝑠1−1) ≻ ⋅ ⋅ ⋅ ≻ 𝑎1,0.

Step 2. According to Corollary 1 in [1], we can obtain a flow
flow(𝑑)1 = 𝑓𝑑1 (𝑎1, 𝑎2, . . . , 𝑎2) = (𝑓𝑑1,1, 𝑓𝑑1,2, . . . , 𝑓𝑑1,𝑛); let c =
flow(𝑑)1.Themaximumcapacities of arcs consist of the upper
bound vector c = (𝑐max

1 , 𝑐max
2 , . . . , 𝑐max

𝑛). Thus, all state vectors
in the vector space Ω = {(𝑐1, 𝑐2, . . . , 𝑐𝑛) | 𝑓 𝑑1,𝑖 ≤ 𝑐𝑖 ≤ 𝑐max

𝑖 , 𝑐𝑖 ∈
C𝑖} = [c, c] satisfy demand 𝑑. Then we generate the OBDD of
Ω.

Step 2.1. Generate the BDD of 𝑎𝑖,𝑗 with 𝑐(𝑎𝑖,𝑗) ≥ 𝑓𝑑1,𝑖 with a
defined operating function, named 𝑎𝑖,𝑗 BDD.The generation
process is based on the following rules in the function:

𝑎𝑖,𝑗BDD = StateBDD (𝑎𝑖,𝑗, 𝑐𝑖,𝑗, 𝑓𝑑1,𝑖)

= {
{
{

1, 𝑎𝑖,𝑗 = 1, 𝑐𝑖,𝑗 ≥ 𝑓𝑑1,𝑖,
0, otherwise,

𝑐𝑖,𝑗 ∈ C𝑖, 𝑗 ∈ (0, 1, . . . , 𝑠𝑖 − 1) , 𝑖 ∈ (1, 2, . . . , 𝑛) .

(6)

Step 2.2. Construct the OBDD of arc 𝑎𝑖 with 𝑐(𝑎𝑖) ≥ 𝑓𝑑1,𝑖,
named 𝑎𝑖 OBDD, with a function as defined in the following
formula:

𝑎𝑖 OBDD = ArcOBDD (𝑎𝑖,

{𝑎𝑖,1 BDD, 𝑎𝑖,2 BDD, . . . , 𝑎𝑖,(𝑠𝑖−1) BDD}) = 𝑎𝑖,1 BDD

+ 𝑎𝑖,2 BDD + ⋅ ⋅ ⋅ + 𝑎𝑖,(𝑠𝑖−1) BDD

= {
{
{

1, ∃𝑗, 𝑎𝑖,𝑗 BDD.high = 1,
0, otherwise,

𝑗 ∈ (0, 1, . . . , 𝑠𝑖 − 1) , 𝑖 ∈ (1, 2, . . . , 𝑛) ,

(7)

where “+” between 𝑎𝑖,1 BDD and 𝑎𝑖,2 BDD denotes a basic
operation of BDD, that is called Or, usually equivalent to
disjunctive. And “𝑎𝑖,𝑗 BDD.high” represents the high branch.

Step 2.3. Use 𝑓𝑑1 OBDD with a null initialization to save the
OBDD of the state space Ω, and generate 𝑓𝑑1 OBDD by a
function as created in the following formula:

𝑓𝑑1 OBDD = FlowOBDD (𝑎1, 𝑎2, . . . , 𝑎𝑛)
= 𝑎1 OBDD ⋅ 𝑎2 OBDD ⋅ . . . ⋅ 𝑎𝑛 OBDD

= {
{
{

1, ∀𝑖, 𝑎𝑖 OBDD = 1,
0, otherwise,

𝑖 ∈ (1, 2, . . . , 𝑛) ,

(8)

where “⋅” between 𝑎1 OBDD and 𝑎2 OBDD denotes a basic
operation of BDD, that is called And, usually equivalent to
conjunctive.

Step 3. The final OBDD is stored in d OBDD, and the
initialization is null. d OBDD is generated with a function as
the following:

𝑑 OBDD = DemandOBDD (𝑑 OBDD, 𝑓𝑑1 OBDD)

= 𝑑 OBDD + 𝑓𝑑1 OBDD

= {
{
{

1, (𝑑 OBDD = 1) ∨ (𝑓𝑑1 OBDD = 1) ,
0, otherwise.

(9)

Step 4. Loop to execute Steps 2 and 3 until all flow(d)k is
searched. A new flow satisfying the demand d, flow(𝑑)𝑘 =
𝑓𝑑𝑘 (𝑎1, 𝑎2, . . . , 𝑎𝑛) = (𝑓𝑑𝑘,1, 𝑓𝑑𝑘,2, . . . , 𝑓𝑑𝑘,𝑛), is obtained, and
𝑓𝑑𝑘 OBDD is generated under Π; then execute Deman-
dOBDD() with replacing 𝑓𝑑𝑘 OBDD to𝑓𝑑1 OBDD in formula
(9).

Step 5. Obtain the OBDD that implicitly expresses all the
state vectors satisfying the demand 𝑑. Then construct a
specific function, which is implemented with Lemma 3 and
the Proof, with the state probability to traverse d OBDD, and
the reliability of 𝐺 is obtained.

In algorithm MFN OBDD above, Steps 1–4 generate the
OBDD that implicitly expresses all the state vectors satisfying
the demand d, and Step 5 calculates the MFN reliability.

Lemma 3. If the ite operation of d OBDD is defined as

𝐹 = ite (𝑎𝑖,𝑗, 𝑈,𝑊) = 𝑎𝑖,𝑗 ⋅ 𝑈 + 𝑎󸀠𝑖,𝑗 ⋅ 𝑊, (10)

then the reliability can be calculated by a formula as

𝑃 (𝐹 = 1) = 𝑝𝑖,𝑗 ⋅ 𝑃 (𝑈 = 1) + 𝑃 (𝑊 = 1) , (11)

where 𝑝𝑖,𝑗 is the probability of 𝑐𝑖,𝑗.

Proof. In algorithm MFN OBDD, we note that 𝑎𝑖,𝑗 is a
Boolean variable that has two branches, but the probability
of 𝑐𝑖,𝑗 is fixed and unique. So we write a function

ℎ (𝑎𝑖,𝑗) = {
{
{

1, 𝑎𝑖,𝑗 = 0,
𝑝𝑖,𝑗, 𝑎𝑖,𝑗 = 1,

(12)

which can be explained as a virtual probability distribution of
𝑎𝑖,𝑗. Thus, the following deduction is produced:

𝑃 (𝐹 = 1) = 𝐸 (𝑎𝑖,𝑗 ⋅ 𝑈 + 𝑎󸀠𝑖,𝑗 ⋅ 𝑊)

= 𝐸 (𝑎𝑖,𝑗) ⋅ 𝐸 (𝑈 = 1) + 𝐸 (𝑎󸀠𝑖,𝑗) ⋅ 𝐸 (𝑊 = 1)

= ℎ (𝑎𝑖,𝑗 = 1) ⋅ 𝑃 (𝑈 = 1) + ℎ (𝑎𝑖,𝑗 = 0)

⋅ 𝑃 (𝑊 = 1)
= 𝑝𝑖,𝑗 ⋅ 𝑃 (𝑈 = 1) + 𝑃 (𝑊 = 1) .

(13)

That is, we can calculate the reliability of MFN OBDD
with this deduction when d OBDD is traversed; Rel(𝑑) =
𝑃(𝐹 = 1). Therefore, the lemma is proved.

6 Mathematical Problems in Engineering

4.2. MDD-Based Algorithm MFN MDD for Reliability Evalu-
ation. A MDD with multibranches has often been used for
reliability evaluation of multistate networks. Here, a MDD-
based algorithm, MFN MDD, is proposed for evaluating
the MFN reliability. In algorithm MFN MDD, each arc is
represented by a multivalued variable.

The algorithm MFN MDD consists mainly of two parts:
(1) construction of the MDD that implicitly expresses all of
the state vectors satisfying the demand 𝑑, without listing the
vectors, and (2) obtaining the MFN reliability by traversing
the MDD. The steps in executing algorithm MFN MDD are
as follows.

Step 1. Let each arc 𝑎𝑖 be a MDD variable. The variable order
is specified by Π󸀠 : 𝑎𝑛 ≻ ⋅ ⋅ ⋅ ≻ 𝑎2 ≻ 𝑎1.

Step 2. It is the same as Step 2 in algorithmMFN OBDD, and
we obtain the flow(d)1 and the space Ω. The MDD of Ω is
generated following Steps 2.1 and 2.2.

Step 2.1. In order to simplify the format ofMDD, generate the
MDD with only two terminal nodes (0, 1) of arc 𝑎𝑖, named
𝑎𝑖 MDD, with a defined operation. The MDD is generated
according to the following rules:

𝑎𝑖 MDD = ArcMDD (𝑎𝑖, 𝑐𝑖,𝑗, 𝑓𝑑1,𝑖) = {
{
{

1, 𝑐𝑖,𝑗 ≥ 𝑓𝑑1,𝑖,
0, 𝑐𝑖,𝑗 < 𝑓𝑑1,𝑖,

𝑐𝑖,𝑗 ∈ C𝑖, 𝑖 ∈ (1, 2, . . . , 𝑛) , 𝑗 ∈ (0, 1, . . . , 𝑠𝑖 − 1) .

(14)

Step 2.2. According to the variable order Π󸀠, the MDD,
named 𝑓𝑑1 MDD, is constructed relying on the operation
defined with following formula:

𝑓𝑑1 MDD

= FlowMDD (𝑎1 MDD, 𝑎2 MDD, . . . , 𝑎𝑛 MDD)
= 𝑎1 MDD ⋅ 𝑎2 MDD ⋅ . . . ⋅ 𝑎𝑛 MDD

= {
{
{

1, ∀𝑎𝑖 MDD.state [𝑗] = 1,
0, otherwise,

𝑖 ∈ (1, 2, . . . , 𝑛) , 𝑗 ∈ (0, 1, . . . , 𝑠𝑖 − 1) ,

(15)

where “⋅” between 𝑎1 MDD and 𝑎2 MDD denotes a basic
operation ofMDD, similar to BDD, that is calledAnd, usually
equivalent to conjunctive.

Step 3. Generate the result MDD, named d MDD with a
null initialization, with the operation function defined in the
following formula:

𝑑 MDD = DemandMDD (𝑑 MDD, 𝑓𝑑1 MDD)

= 𝑑 MDD + 𝑓𝑑1 MDD

= {
{
{

1, (𝑑 MDD = 1) ∨ (𝑓𝑑1 MDD = 1) ,
0, otherwise,

(16)

where “+” between d MDD and 𝑓𝑑1 MDD denotes another
basic operation of MDD, that is calledOr, usually equivalent
to disjunctive.

Step 4. Loop to execute Steps 2 and 3 until all flow(d)i is
searched the same as in Step 4 in algorithmMFN OBDD, and
a flow flow(𝑑)𝑘 = 𝑓𝑑𝑘 (𝑎1, 𝑎2, . . . , 𝑎𝑛) = (𝑓𝑑𝑘,1, 𝑓𝑑𝑘,2, . . . , 𝑓𝑑𝑘,𝑛) is
obtained.Then 𝑓𝑑𝑘 MDD is generated underΠ󸀠, and d MDD
is constructed by DemandOBDD() with replacing 𝑓𝑑𝑘 MDD
with 𝑓𝑑1 MDD in formula (16).

Step 5. At this point, d MDD obtained can implicitly express
all of the state vectors satisfying the demand 𝑑. Then, a
specific function is constructed with Lemma 4 and the
Proof with the state probability to traverse d MDD, and the
reliability of 𝐺 is obtained.

Lemma 4. If case of the d MDD algorithm MFN MDD is
defined as

𝐹 = case (𝑎𝑖, 𝐹𝑠(𝑎𝑖)=0, 𝐹𝑠(𝑎𝑖)=1, . . . , 𝐹𝑠(𝑎𝑖)=𝑠𝑖−1) , (17)

where 𝑠(𝑎𝑖) = 𝑗 denotes that 𝑎𝑖 is in the state of 𝑗 with capacity
𝑐𝑖,𝑗, then the reliability can be calculated by a formula as

𝑃 (𝐹 = 1) =
𝑠𝑖−1

∑
𝑗=0

𝑝𝑖,𝑗 ⋅ 𝑃 (𝐹𝑠(𝑎𝑖)=𝑗 = 1) , (18)

where 𝑝𝑖,𝑗 is the probability of 𝑐𝑖,𝑗.

Proof. In algorithm MFN MDD, executing Step 1 obtains
flow(𝑑)𝑘 = (𝑓𝑑𝑘,1, 𝑓𝑑𝑘,2, . . . , 𝑓𝑑𝑘,𝑛) satisfying demand 𝑑, and
each state vector in [flow(𝑑)𝑖, c] is satisfiable. After executing
Steps 2 and 3, d MDD is obtained. All of the paths in d MDD
from root to terminal node 1 represent the disjoint state space
for demand d, named Ωflow(𝑑) = {c | c ∈ ⋃𝑘[flow(𝑑)𝑘, c]} =
{c | 𝐹(c) ≥ 𝑑}. Thus, according to Definition 2, we can
calculate the reliability, Rel(𝑑) = 𝑃{c | 𝐹(c) ≥ 𝑑}, with the
state probability 𝑝𝑖,𝑗 to traverse d MDD.Then,

𝑃 = {c | 𝐹 (c) ≥ 𝑑} = 𝑃 (𝐹 = 1)

=
𝑠𝑛−1

∑
𝑗=0

𝑝 (𝑠 (𝑎𝑛) = 𝑗) ⋅ 𝑃 (𝐹𝑠(𝑎𝑛)=𝑗 = 1)

=
𝑠𝑛−1

∑
𝑗=0

𝑝𝑛,𝑗 ⋅ 𝑃 (𝐹𝑠(𝑎𝑛)=𝑗 = 1) ,

(19)

and because the root is 𝑎𝑛, we traverse d MDD starting with
𝑎𝑛 above. Thus, the exact reliability is obtained, and thus the
lemma is proved.

4.3. Illustrated Example. A multistate computer network de-
scribed in [1, 7] is depicted in Figure 3 and is used to illustrate
the proposed algorithms MFN OBDD and MFN MDD. The
data of the arcs are shown in Table 1. Vertex 1 is the source,
and vertex 4 is the sink. The demand from 𝑠 to 𝑡 reached 3;
that is, 𝑑 = 3.

Mathematical Problems in Engineering 7

1

2

3

4s t

a1

a2

a3 a4

a5

a6

Figure 3: A multistate computer network.

Table 1: Data of arcs of Figure 3.

Arc States/capacities Probabilities
0 1 2 3 0 1 2 3

𝑎1 0 1 2 3 0.05 0.10 0.25 0.60
𝑎2 0 1 — — 0.10 0.90 — —
𝑎3 0 1 — — 0.10 0.90 — —
𝑎4 0 1 — — 0.10 0.90 — —
𝑎5 0 1 2 — 0.10 0.30 0.60 —
𝑎6 0 1 2 — 0.05 0.25 0.70 —

4.3.1. Algorithm MFN OBDD Process. For the example
depicted in Figure 3, the steps of executing algorithm
MFN OBDD are as follows: (1) each state of an arc corre-
sponds to a Boolean variable. For arc 𝑎1 with four states,
four variables, 𝑎1,0, 𝑎1,1, 𝑎1,2, and 𝑎1,3, are set up. The Boolean
variables for Figure 3 are listed in Table 2, and the variable
order is specified with Π : 𝑎6,2 ≻ 𝑎6,1 ≻ 𝑎6,0 ≻ 𝑎5,2 ≻ ⋅ ⋅ ⋅ ≻
𝑎1,3 ≻ 𝑎1,2 ≻ 𝑎1,1 ≻ 𝑎1,0. (2) A flow, flow(3)1 = (2, 1, 0, 0, 2, 1),
is obtained, and c = (3, 1, 1, 1, 2, 2). (3) For each variable,
𝑎𝑖,𝑗 BDD is constructed. The BDDs of the variables 𝑎1,0–𝑎1,3
are shown in Figures 4(b)–4(e), respectively. (4) According to
the variable order, 𝑎𝑖 OBDDof all arcs are generated applying
the operation Or. Figures 4(f)–4(k) show the OBDDs of
𝑎1–𝑎6. (5) 𝑓𝑑1 OBDD shown in Figure 4(a) is obtained using
the operationAnd; then d OBDD = d OBDDOr 𝑓𝑑1 OBDD,
and the OBDD is the same as Figure 5(a). (6) A new flow
flow(3)2 = (2, 1, 1, 0, 1, 2) is obtained, and Steps 2–5 are
repeated. Thus, 𝑓𝑑2 OBDD is shown as Figure 5(b); the new
d OBDD is as depicted in Figure 6(a). (7) To obtain a new
flowflow(3)3 = (3, 0, 1, 0, 2, 1) again,𝑓𝑑3 OBDD is as depicted
in Figure 5(c), and the new d OBDD is as depicted in
Figure 6(b). (8) No more new flows are obtained. Thus, the
OBDD in Figure 6(b) is the result d OBDD, and we traverse
d OBDD with probabilities based on Lemma 3 to calculate
the reliability with 𝑑 = 3; Rel(3) = 0.611415.

4.3.2. AlgorithmMFN MDDProcess. For the example depict-
ed in Figure 3, steps in executing algorithmMFN MDDare as
follows: (1) each arc is a multistate variable, and the variable
order is specified with Π󸀠 : 𝑎6 ≻ 𝑎5 ≻ ⋅ ⋅ ⋅ ≻ 𝑎2 ≻ 𝑎1. (2)
A flow, flow(3)1 = (2, 1, 0, 0, 2, 1), is obtained. (3) For each
variable, 𝑎𝑖 MDD is constructed. In Figure 7, MDDs of 𝑎1–𝑎6
are shown. (4) According to the variable order, 𝑓𝑑1 MDD
shown in Figure 8(a) is generated using operationAnd; then,

Table 2: Boolean variables of arcs of Figure 3.

Variable Capacity Probability
𝑎1,0 0 0.05
𝑎1,1 1 0.10
𝑎1,2 2 0.25
𝑎1,3 3 0.60
𝑎2,0 0 0.10
𝑎2,1 1 0.90
𝑎3,0 0 0.10
𝑎3,1 1 0.90
𝑎4,0 0 0.10
𝑎4,1 1 0.90
𝑎5,0 0 0.10
𝑎5,1 1 0.30
𝑎5,2 2 0.60
𝑎6,0 0 0.05
𝑎6,1 1 0.25
𝑎6,2 2 0.70

d MDD = d MDD Or 𝑓𝑑1 MDD, and the OBDD is the same
as that depicted in Figure 8(a). (5) flow(3)2 = (2, 1, 1, 0, 1, 2)
is obtained, and Steps 2–4 are repeated. Thus, 𝑓𝑑2 MDD is
shown as Figure 8(b), and the new d MDD is shown as
Figure 9(a). (6) flow(3)3 = (3, 0, 1, 0, 2, 1), and 𝑓𝑑3 MDD is
shown as Figure 8(c) and the new d MDD as Figure 9(b).
(7) The OBDD depicted in Figure 9(b) is the result d MDD,
and the reliability with 𝑑 = 3 is calculated by traversing
the d OBDD with probabilities based on Lemma 4; Rel(3) =
0.611415.

4.4. Complexity Analysis of the Algorithms. For the algorithm
MFN OBDD, Step 1 takes 𝑛 CPU time, and a flow(d) is
obtained in Step 2 in𝑂(𝑚3)CPU time according toCorollary
1 in [1]; the operation And or Or of OBDD takes 𝑂(𝑛1𝑛2)
time, where 𝑛1 and 𝑛2 denote the numbers of the two operated
OBDDs, respectively. If |𝐶| = max{|C𝑖|} represents the
maximum number of states for the arcs, then generating
OBDD(𝑎𝑖) takes𝑂(|𝐶|(|𝐶|−1)/2) time; and thus Steps 2.1–2.3
take 𝑂(𝑛 ⋅ (|𝐶| ⋅ (|𝐶| − 1)/2) + 2|𝐶| ⋅ (2𝑛⋅|𝐶| − 1)/(2|𝐶| − 1))
time and looping Steps 2–4 take 𝑂((𝑚3 + 𝑛 ⋅ |𝐶|2) ⋅ #𝑇) time,
where #T denotes the number of flow(d) that is unspecified,
and the maximum flow is NP-hard, and #T in theory grows
exponentially. According to Theorem 1 in [17], traversing
d OBDD to obtain the reliability takes 𝑂(|𝐶| ⋅ (2𝑛 − 1)) time
in theworst case.Therefore, the algorithmMFN OBDD takes
𝑂(|𝐶| ⋅ 2𝑛 + (𝑚3 + 𝑛 ⋅ |𝐶|2) ⋅ #𝑇) time.

For the proposed MFN MDD algorithm, Steps 2.1-2.2
take 𝑂(𝑛 ⋅ |𝐶| + 𝑛 ⋅ (𝑛 − 1)/2) time; and looping of Steps 2–4
take𝑂((𝑚3+𝑛⋅|𝐶|+𝑛(𝑛−1)/2+|𝐶|𝑛)⋅#𝑇) time.Theorem 1 in
[17] states that it takes𝑂(|𝐶|𝑛/𝑛) to traverse the d MDD in the
worst case, so the computational complexity of MFN MDD
is 𝑂((𝑚3 + 𝑛 ⋅ |𝐶| + 𝑛2 + |𝐶|𝑛) ⋅ #𝑇).

For the decomposition algorithm of [1], the while . . . do
loop repeats unspecified times #𝑇1, and it takes another #𝑇2

8 Mathematical Problems in Engineering

0 0 0 1 0 1 10

0 1 1 1 100 10 0

0 1

a1,0

a2,1

a3,1

a3,0 a4,0
a5,2

a6,2

a6,1

a4,1

a1,0 a1,1 a1,2 a1,3

a1,3

a1,2

stateBDD(a1, c1,0, 2) = 0

c1,0 = 0 < 2

(f) c1 ≥ 2

(g) c2 ≥ 1 (h) c3 ≥ 0 (i) c4 ≥ 0 (j) c5 ≥ 2 (k) c6 ≥ 1

(a) (b) (c) (d) (e)

Figure 4: 𝑎𝑖,𝑗 BDD and 𝑎𝑖 OBDD in MFN OBDD: (a) the original BDD of 𝑎1,0; (b)–(e) 𝑎1,0 BDD–𝑎1,3 BDD; (f)–(k) 𝑎1 OBDD–𝑎6 OBDD
with 𝑐𝑖 ≥ 𝑓𝑑1,𝑖.

10

a6,2

a6,1

a5,2

a4,1

a4,0

a3,1

a3,0

a2,1

a1,3

a1,2

(a) 𝑓𝑑1 OBDD

0 1

a6,2

a5,2

a5,1

a4,1

a4,0

a3,1

a2,1

a1,3

a1,2

(b) 𝑓𝑑2 OBDD

0 1

a6,2

a5,2

a4,1

a4,0

a3,1

a2,1

a2,0

a1,3

a6,1

(c) 𝑓𝑑3 OBDD

Figure 5: 𝑓𝑑𝑘 OBDD in MFN OBDD: (a)–(c) 𝑓𝑑1 OBDD()–𝑓𝑑3 OBDD.

time because the number of flow(d) is unspecified. Thus, the
algorithm takes 𝑂(𝑚3 ⋅ #𝑇1 ⋅ #𝑇2) at least. Obviously, the
proposed algorithms have certain advantages.

The state vectors are stored in the decision diagrams
(OBDDs or MDDs), which are tree date structures for the
algorithm proposed in this paper. In the worst case, the
OBDD takes 𝑂(2𝑛⋅|𝐶|) storage space in MFN OBDD, and
the MDD takes 𝑂(|𝐶|𝑛) storage space in MFN MDD. And
the decomposition algorithm of [1] requires 𝑂(𝑛 ⋅ ∏𝑛𝑖=1𝑛𝑖)
memory space in the worst case. However, because of the
implicit expression in a decision diagram, the number of
nodes is far less than the number in the worst case.

5. Experimental Results

In this paper, the algorithm MFN OBDD is implemented
based on the software package CUDD developed at the
University of Colorado [27], while the algorithmMFN MDD
is programmedusing theMDDpackageMEDDLYdeveloped
at Iowa State University. Both of the proposed algorithms
are executed on a workstation running in Ubuntu 14.04 with
3.3 GHz, with 4GB of RAM.

Figure 10 depicts a multistate network with 12 vertexes
and 21 arcs from [1]. Vertex 1 is the source and vertex 12 is the
sink. Each arc has three states with probabilities as specified

Mathematical Problems in Engineering 9

0 1

a6,2

a6,1

a5,2 a5,2

a5,1

a4,1

a4,0

a3,1

a3,0

a2,1

a1,3

a1,2

(a)

0 1

a6,2

a6,1

a5,2 a5,2

a5,1

a4,1 a4,1

a4,0 a4,0

a3,1 a3,1

a3,0

a2,1

a2,0

a2,1

a1,3 a1,3

a1,2

(b)

Figure 6: d OBDDs: (a) d OBDD after first loop; (b) result d OBDD.

0 1 0 12 3

0

1

0, 1
2, 30

1 2 3

0 1

1

0 1

2

0 1

1, 2, 3

0

0, 1 0

(a) (b) (c)

(d) (e)

ArcMDD

1 1

(f) (g)

(a1, c1,j , 2)

c1,j < 2

c1,j ≥ 2
a1 a1 a2

a3 a4
a5 a6

Figure 7: 𝑎𝑖 MDD in MFN MDD: (a) the original MDD of 𝑎1; (b)–(g) 𝑎1 MDD–𝑎6 MDD, respectively.

in Table 3. Table 4 shows the experimental results for both the
proposed algorithms and the decomposition algorithm of [1]
with demand 𝑑 ranging from 1 to 5. Studying Table 4 leads us
to conclude the following:

(1) For the same demand, the number of decision dia-
gram nodes generated in the MFN MDD algorithm

is less than the collections of [1] and MFN OBDD’s
nodes is and nomore than 65.When demand is small,
for example, 𝑑 = 1, 2, 3, the collections generated in
the algorithm in [1] are less thanMFN OBDD’s nodes,
but more than MFN OBDD’s nodes when demand is
large (𝑑 = 4, 5). In addition, the number of nodes in
MFN MDD is far less than the collections number

10 Mathematical Problems in Engineering

Table 3: States and probabilities of arcs for Figure 10.

Arcs States Probabilities
0 1 2 0 1 2

1 0 3 5 0.1163 0.0616 0.8221
2 0 3 5 0.1624 0.1224 0.7152
3 0 3 5 0.2014 0.900 0.7086
4 0 3 5 0.0689 0.1155 0.8156
5 0 3 5 0.1863 0.1366 0.6771
6 0 3 5 0.2244 0.0214 0.7542
7 0 3 5 0.1260 0.0495 0.8245
8 0 3 5 0.2220 0.1334 0.6445
9 0 3 5 0.1265 0.0762 0.7973
10 0 3 5 0.2993 0.0343 0.6664
11 0 3 5 0.3016 0.0813 0.6171
12 0 3 5 0.2385 0.0785 0.6830
13 0 3 5 0.3460 0.0269 0.6272
14 0 3 5 0.3512 0.0441 0.6048
15 0 3 5 0.0373 0.0830 0.8797
16 0 3 5 0.0326 0.0182 0.9492
17 0 3 5 0.0231 0.1268 0.8501
18 0 3 5 0.3935 0.0625 0.5440
19 0 3 5 0.0651 0.0457 0.8893
20 0 3 5 0.0052 0.0411 0.9537
21 0 3 5 0.0222 0.0192 0.9586

Table 4: Experimental results for different algorithms.

Demand
Reference [1]

Proposed algorithms
MFN OBDD MFN MDD Loop

Collection1 Storage
(bytes)

CPU time
(s) Loop Node Storage

(bytes)
CPU time

(s) Node Storage
(bytes)

CPU time
(s)

1 294 51,744 0.016 636 611 7,332 0.024046 42 1,848 0.001928 17
2 294 51,744 0.016 636 611 7,332 0.216549 43 1,892 0.010049 153
3 294 51,744 0.016 636 611 7,332 1.3385 43 1,892 0.032208 969
4 9486 1,669,536 0.268 20,002 3,514 42,144 6.64096 51 2,244 0.475073 4,845
5 9486 1,669,536 0.268 20,002 3,514 42,144 27.7825 62 2,728 1.28560 20,349
1: collection is the main data structure of the algorithm in [1]. It contains the lower bound of edge state vector, the upper bound of edge state vector, the edge
state flow vector, the vector of nonzero state edges, and two constants.

in [1]. However, according to the size of defined
collection or node in different algorithms, the storage
space is ordered as [1] > MFN OBDD > MFN MDD.

(2) The CPU time for executing the proposed algorithms
increases with increasing d, and the CPU time for
executing the MFN MDD algorithm is less than
that for the MFN OBDD algorithm. The execution
efficiency of MFN MDD algorithm is higher than the
algorithm in [1] with a small demand (𝑑 = 1, 2). And
in other cases, the execution efficiency of proposed
algorithm is slightly lower than the algorithm in [1].

(3) The loops number of proposed algorithms depend on
the demand 𝑑. In most cases, it is much smaller than

the loops number of the decomposition algorithm
in [1].

In order to analyze the proposed algorithms, we select
four more networks generated randomly; three of them,
depicted in Figures 11(a)–11(c), are from [14], and that
depicted in Figure 11(d) is from [1]. In this experiment, we
specify that each arc of the five networks (including Figure 10)
has three capacities, 0, 1, and 3, and the probabilities of states
0, 1, and 3 for each arc are 0.05, 0.25, and 0.70, respectively.
Moreover, the demand is 𝑑 = 3. Table 5 lists the experimental
results for the proposed algorithms. Two conclusions can be
drawn from studying Table 5:

(1) For the same network, the number of nodes and
the number of variables of the DD generated in

Mathematical Problems in Engineering 11

Table 5: Experimental results for proposed algorithms.

Network Reliability MFN OBDD MFN MDD
Figure Vertex Arc Variable Node CPU Time (s) Variable Node CPU time (s)
Figure 11(a) 7 22 0.967046 43 1534 0.826896 16 50 0.046191
Figure 11(b) 10 21 0.970909 64 33933 9.37805 21 64 2.46028
Figure 11(c) 11 21 0.947015 64 8223 1.63739 21 64 0.304223
Figure 10 12 21 0.949288 64 6374 1.30824 21 42 0.01145
Figure 11(d) 15 30 0.974668 91 254307 340.043 30 91 253.156

0 1

0

1, 2

0, 1
2

0

0, 1

1

2, 3

a6

a5

a2

a1

(a)

0 1

2

0, 1
1, 2

0

0
1

10

0, 1
2, 3

a6

a5

a3

a2

a1

(b)

0 1

0

1, 2

0, 1
2

0

0, 1, 2

1

3

a6

a5

a3

a1

(c)

Figure 8: 𝑓𝑑𝑘 MDD in MFN MDD: (a) 𝑓𝑑1 MDD; (b) 𝑓𝑑2 MDD; (c) 𝑓𝑑3 MDD.

the MFN MDD algorithm are both less than that
of MFN OBDD. The MFN OBDD algorithm takes
more CPU time to run. Because a state is a Boolean
variable in the MFN OBDD algorithm and the
MFN MDD algorithm makes an arc into a multi-
value variable, the DD generated in the MFN OBDD
algorithm has a larger scale, thus leading to the
conclusions described directly above.

(2) If the number of arcs is fixed and the number of ver-
texes is increased, such as in the networks depicted in
Figures 11(b), 11(c), and 7, the experiments show that
the number of nodes generated in eitherMFN OBDD
or MFN MDD algorithm decreases. The CPU time
also decreases. Therefore, in the case of the same arc
number, both of the proposed algorithms have more
advantages for sparse networks.

6. Conclusions

In this paper, we have extended the definition of a MFN
model and have proposed the MFN OBDD algorithm based
on BDD and the MFN MDD algorithm based on MDD
to solve the problems in evaluating MFN reliability. The

algorithms were applied to a simple MFN, and the attendant
processes verified the feasibility of the algorithms. Experi-
ments were carried out on five different networks, and the
results show that (1) for the same network, the MFN OBDD
algorithm is more effective than the algorithm presented in
[1] in terms of storage; in addition, due to the multibranch
nature of a MDD, the storage efficiency of the MFN MDD
algorithm is better than that of the MFN OBDD algorithm;
(2) the runtime and the variables number of generated
decision diagram in MFN MDD algorithm are both less
than those of the MFN OBDD algorithm; (3) the storage
space and CPU time of the proposed algorithms depend on
the demand; and (4) the proposed algorithms have more
advantages for sparse networks with the same number of
arcs. The correctness, accuracy, and validity of the proposed
algorithms were verified by the experiments. Furthermore, it
would be worthwhile to improve the efficiency of algorithms’
implementation.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

12 Mathematical Problems in Engineering

0 1

0

1

0, 1 2

0
0, 1

1

2, 3

2

0

0
1

1 2

a6

a5 a5

a3

a2

a1

(a)

0 1

0
1

0, 1
2

0

0, 1

1

2, 3

2

0

0
1

12

0
1

01

0, 1, 2

3

a6

a5 a5

a3

a2 a2

a1 a1

a3

(b)

Figure 9: d MDDs: (a) d MDD after first loop; (b) result d MDD.

1

4

3
2

3

10

5

2

1

4

7

6

8

9

11 12

5

7
15

20

21

8

11

16

14

19

6

9 10

12 13

17
18

s
t

Figure 10: A multistate network.

1

2

3

4

5

6
7

s t

(a)

1

2

3

4

5

6

7

8

9

10
s t

(b)

1

2

3

4

5

6

8

7

9

10

11
s t

(c)

1

2

3

4

6

5

7
8

9

10

11

12

13

14

15
s t

(d)

Figure 11: Four multistate networks.

Mathematical Problems in Engineering 13

Acknowledgments

Thiswork is supported by theNational Natural Science Foun-
dation of China (no. 61363070), the Natural Science Founda-
tion of Guangxi Province (Grant no. 2014GXNSFAA118354
and no. 2016GXNSFAA380054), the High Level Innovation
Team of Guangxi Colleges and Universities and Outstanding
Scholars Fund, and the Program for Innovative Research
Team of Guilin University of Electronic Technology.

References

[1] C.-C. Jane and Y.-W. Laih, “A practical algorithm for comput-
ing multi-state two-terminal reliability,” IEEE Transactions on
Reliability, vol. 57, no. 2, pp. 295–302, 2008.

[2] S. Satitsatian andK. C. Kapur, “An algorithm for lower reliability
bounds of multistate two-terminal networks,” IEEE Transac-
tions on Reliability, vol. 55, no. 2, pp. 199–206, 2006.

[3] W. C. Yeh, “A fast algorithm for quickest path reliability eval-
uations in multi-state flow networks,” IEEE Transactions on
Reliability, vol. 64, no. 4, pp. 1175–1184, 2015.

[4] R. Peng, H. Xiao, and H. Liu, Reliability of Multi-State Systems
with a Performance Sharing Group of Limited Size, Reliability
Engineering & System Safety, 2016.

[5] H. Yu, J. Yang, R. Peng, and Y. Zhao, “Reliability evaluation of
linear multi-state consecutively-connected systems constrained
by m consecutive and n total gaps,” Reliability Engineering &
System Safety, vol. 150, pp. 35–43, 2016.

[6] A. Lisnianski, “Application of extended universal generating
function technique to dynamic reliability analysis of a multi-
state system,” in Proceedings of the 2nd IEEE International
Symposium on Stochastic Models in Reliability Engineering, Life
Science and Operations Management (SMRLO ’16), pp. 1–10,
Beer Sheva, Israel, February 2016.

[7] C.-C. Jane and Y.-W. Laih, “Computing multi-state two-termi-
nal reliability through critical arc states that interrupt demand,”
IEEETransactions onReliability, vol. 59, no. 2, pp. 338–345, 2010.

[8] E. Zio, “Reliability engineering: old problems and new chal-
lenges,” Reliability Engineering & System Safety, vol. 94, no. 2,
pp. 125–141, 2009.

[9] C.-C. Jane, J.-S. Lin, and J. Yuan, “Reliability evaluation of a
limited-flow network in terms of minimal cutsets,” IEEE Trans-
actions on Reliability, vol. 42, no. 3, pp. 354–361, 1993.

[10] Y.-K. Lin, “On a multicommodity stochastic-flow network with
unreliable nodes subject to budget constraint,”European Journal
of Operational Research, vol. 176, no. 1, pp. 347–360, 2007.

[11] Y.-K. Lin, “Calculation of minimal capacity vectors through k
minimal paths under budget and time constraints,” European
Journal of Operational Research, vol. 200, no. 1, pp. 160–169,
2010.

[12] Y.-K. Lin, “Time version of the shortest path problem in a
stochastic-flow network,” Journal of Computational and Applied
Mathematics, vol. 228, no. 1, pp. 150–157, 2009.

[13] W. C. Yeh, “An improved sum-of-disjoint-products technique
for symbolic multi-state flow network reliability,” IEEE Trans-
actions on Reliability, vol. 64, no. 4, pp. 1185–1193, 2015.

[14] W.-C. Yeh, C. Bae, and C.-L. Huang, “A new cut-based algo-
rithm for the multi-state flow network reliability problem,”
Reliability Engineering & System Safety, vol. 136, pp. 1–7, 2015.

[15] W.-C. Yeh, “Evaluating the reliability of a novel deterioration-
effect multi-state flow network,” Information Sciences, vol. 243,
no. 18, pp. 75–85, 2013.

[16] Y.-K. Lin, C.-T. Yeh, and P.-S. Huang, “A hybrid ant-tabu
algorithm for solving a multistate flow network reliability
maximization problem,” Applied Soft Computing, vol. 13, no. 8,
pp. 3529–3543, 2013.

[17] J. E. Ramirez-Marquez and D. W. Coit, “A monte-carlo sim-
ulation approach for approximating multi-state two-terminal
reliability,” Reliability Engineering & System Safety, vol. 87, no.
2, pp. 253–264, 2005.

[18] Z. Yan, C. Nie, R. Dong, X. Gao, and J. Liu, “A novel OBDD-
based reliability evaluation algorithm for wireless sensor net-
works on the multicast model,” Mathematical Problems in
Engineering, vol. 2015, Article ID 269781, 14 pages, 2015.

[19] X. Zang, D. Wang, H. Sun, and K. S. Trivedi, “A BDD-based
algorithm for analysis of multistate systems with multistate
components,” IEEE Transactions on Computers, vol. 52, no. 12,
pp. 1608–1618, 2003.

[20] A. Shrestha, L. Xing, andY.Dai, “Decision diagrambasedmeth-
ods and complexity analysis for multi-state systems,” IEEE
Transactions on Reliability, vol. 59, no. 1, pp. 145–161, 2010.

[21] Y.Mo, L. Xing, S. V. Amari, and J. BechtaDugan, “Efficient anal-
ysis of multi-state k-out-of-n systems,” Reliability Engineering &
System Safety, vol. 133, pp. 95–105, 2015.

[22] A. Shrestha andD.W.Coit, “Multi-state component importance
analysis using multi-state multi-valued decision diagrams,”
in Proceedings of the International Conference on Reliability,
Maintainability and Safety (ICRMS ’09), pp. 99–103, Chengdu,
China, July 2009.

[23] M. Kvassay, E. Zaitseva, J. Kostolny et al., “Reliability analysis of
multi-state systems based on tools of multiple-valued logic,” in
Proceedings of the IEEE International Conference on Computer
as a Tool (EUROCON ’15), Salamanca, Spain, 2015.

[24] R. Terruggia and A. Bobbio, “QoS analysis of weighted multi-
state probabilistic networks via decision diagrams,” in Pro-
ceedings of the International Conference on Computer Safety,
Reliability, and Security (SAFECOMP 2010), 54, pp. 2010–41,
Vienna, Austria, September 2010.

[25] W. C. Yeh, “New method in searching for all minimal paths
for the directed acyclic network reliability problem,” IEEE
Transactions on Reliability, vol. 65, no. 3, pp. 1263–1270, 2016.

[26] I. Tien and A. Der Kiureghian, “Algorithms for Bayesian net-
work modeling and reliability assessment of infrastructure
systems,” Reliability Engineering & System Safety, vol. 156, pp.
134–147, 2016.

[27] F. S. Cudd, “Cu decision diagram package release 2.3.1,” http://
vlsi.colorado.edu/.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

