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Accessibility to remote users in dynamic environment, high spectrum utilization, and no spectrum purchase make Cognitive
Radio (CR) a feasible solution of wireless communications in the Internet of Things (IoT). Reliable spectrum sensing becomes
the prerequisite for the establishment of communication between IoT-capable objects. Considering the application environment,
spectrum sensing not only has to cope with man-made impulsive noises but also needs to overcome noise fluctuations. In this
paper, we study the Fractional LowerOrderMoments (FLOM) based spectrum sensingmethod underMiddleton Class A noise and
incorporate a Noise Power Estimation (NPE) module into the sensing system to deal with the issue of noise uncertainty. Moreover,
the NPE process does not need noise-only samples.The analytical expressions of the probabilities of detection and the probability of
false alarm are derived. The impact on sensing performance of the parameters of the NPE module is also analyzed. The theoretical
analysis and simulation results show that our proposed sensing method achieves a satisfactory performance at low SNR.

1. Introduction

The Internet of Things (IoT) has to construct comprehensive
connections among variety of objects distributed over an
extensive area. So the resources allocation to this large
number of objects has to be resolved carefully to maintain
a satisfactory Quality-of-Service (QoS) [1]. Generally, the
frequency spectrum is one of the most important resources
in wireless communications, and the problem of spectrum
scarcity is getting worse as a result of the large number of
applications [2]. Therefore, the available spectrum has to
be carefully utilized by the IoT to ensure plenty of reliable
connections between different objects. Fortunately, Cognitive
Radio (CR) allows unlicensed users to utilize licensed bands
opportunistically and enable them to reuse the frequency
bands that are not heavily occupied by Primary Users (PU).
Being able to address the spectrum scarcity issue, CR as a
promising solution to exploit the available spectrum for the
IoT has been proposed [3–5].The ability of spectrum sensing
to measure or sense the presence and absence of PU signal
is essential because the operation of CR starts with detecting
spectrum holes [6]. Spectrum Sensing methods proposed for

identifying the presence of signal transmissions can be cate-
gorized as energy detector (ED) based sensing [7], matched
filtering based sensing [8], waveformbased sensing [9], cyclo-
stationarity based sensing [10], radio identification based
sensing [11], and so forth. Among these methods, ED based
approaches are the most commonly used because of their low
computational and implementation complexities [12].

Most of the previous studies on spectrum sensing only
focused on signals contaminated by AdditiveWhite Gaussian
Noise (AWGN). However, this assumption fails to model
the behavior of certain noise types in IoT applications.
Considering the applications of IoT such as Machine to
Machine (M2M) networks and smart grids, a key challenge
in establishing the IoT is wireless communication in the
vicinity of vehicles, machines, or electrical power equipment
which often radiates electromagnetic waves from switching
power electronics components. In particular, this kind of
waves in the form of impulse noise and high power transients
disrupt wireless communication [3, 13]. Middleton Class
A noise model is one of the widely investigated statistical
distributions that are used to model this kind of man-made
interference and the narrow band impulsive noise in different
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systems [14]. Being different from AWGN hypothesis, ED
based detector is no longer an optimal detector and it has
poor performance. Besides, Generalized Likelihood Ratio
Test (GLRT) based detector as the optimal detector has a
very complex structure, which will be explained later, when
it is used under Middleton Class A noise. Recently, a large
number of spectrum sensing approaches under different
non-Gaussian noises have been proposed [15–17]. However,
the implementation of these detectors in the IoT remains
challenging becausemultiple antennas were used or the noise
uncertainty was not considered.

Fractional LowerOrderMoments (FLOM) demonstrated
its capability in signal processing under non-Gaussian noise
in [18]. When FLOM is applied to spectrum sensing, the test
statistic has a similar expression as that of ED based sensing.
Nevertheless, determination of the threshold also depends on
the noise parameters in FLOM based sensing as in the case of
ED based sensing, and a small noise uncertainty will cause
significant performance loss [19, 20]. To this end, a robust
FLOM based sensing method should be studied as a promis-
ing solution of spectrum sensing under Middleton Class A
noise, especially at low SNR.As is shown in our previouswork
[21], uncertainty of noise power is really destructive, while
small estimation errors on other parameters of the noise do
not have a strong effect on spectrum sensing performance. So
in this paper, the focus is put on the spectrum sensingmethod
under Middleton Class A noise with Noise Power Estimation
(NPE), making the following contributions.

(i) We study the problem of spectrum sensing under
Middleton Class A noise adopting FLOM based
detector and derive the analytical expressions of the
probability of false alarm 𝑃fa and the probability
of detection 𝑃𝑑. Then, we analyze the relationship
between the sensing performance enhancement and
the noise parameters.

(ii) We propose such an NPE based structure to deal with
the issue of noise uncertainty that noise-only samples
are not necessary in the estimation process. The
performance of the proposed structure is analyzed,
which relates the accuracy of the estimator to the
estimation duration and the order of the estimator.

The following parts of this paper are organized as follows.
The signal and noise models are defined in Section 2. In
Section 3, FLOM are introduced to spectrum sensing as a
suboptimal detector. The NPE based sensing structure is
proposed in Section 4 and the derivation and analysis are pre-
sented in the same section. Section 5 includes the simulation
and the results, and the conclusion is drawn in Section 6.

2. Signal and Noise Models

In spectrum sensing, the PU signal to be sensed is considered
as a random process (called Bayesian model) in some works;
and it is also considered as an unknown deterministic
signal (called classical model) in others [22]. Lacking in the
knowledge of the PU signals, we choose Bayesian model and

consider a source 𝑥 with a zero-mean Gaussian probability
density function (pdf)

𝑓𝑋 (𝑥) = 𝐺 (𝑥; 𝜎2𝑋) = 1√2𝜋𝜎𝑋 𝑒−𝑥2/2𝜎2𝑋 (1)

and 𝑥 is transmitted over a channel impaired by a Middleton
Class A noise 𝑧, whose pdf is

𝑓𝑍 (𝑧) = ∞∑
𝑚=0

𝛽𝑚𝐺(𝑧; 𝜎2𝑚) = ∞∑
𝑚=0

𝛽𝑚√2𝜋𝜎𝑚 𝑒−𝑧2/2𝜎2𝑚 , (2)

where 𝛽𝑚 = 𝑒−𝐴𝐴𝑚/𝑚! indicates that 𝑚 noise sources
contribute to the impulsive event simultaneously and 𝐴 =
E{𝑚} = ∑∞𝑚=0𝑚𝛽𝑚 is the corresponding overlap index denot-
ing the average number of impulse noise sources active at any
given time. Larger values of 𝐴 make the characteristic of the
noise closer to Gaussian noise. Moreover, 𝜎2𝑍 = E{𝑧2} = 𝜎2𝐺 +𝜎2𝐼 is the noise power, in which 𝜎2𝐺 is the Gaussian power and𝜎2𝐼 is the impulsive power. 𝑇 = 𝜎2𝐺/𝜎2𝐼 is the power ratio of the
Gaussian component to the impulsive component, and 𝜎2𝑚 =((𝑚/𝐴+𝑇)/(1+𝑇))𝜎2𝑍 = 𝜎2𝐺+𝜎2𝐼 (𝑚/𝐴). Thus, the Middleton
Class A noise is totally characterized by the parameters 𝐴, 𝑇,
and 𝜎2𝑍. In addition, the PU signal and the noise are assumed
to be mutually independent and SNR is defined by 𝜎2𝑋/𝜎2𝑍.
3. Spectrum Sensing under
Middleton Class A Noise

Depending on the idle state and busy state of the PU, with
the presence of the noise, detecting the presence of PU is
usually considered as the following binary hypothesis testing
problem [23]:𝐻0: 𝑦 (𝑛) = 𝑧 (𝑛) PU is absent,𝐻1: 𝑦 (𝑛) = 𝑥 (𝑛) + 𝑧 (𝑛) PU is present

(3)

in which 𝑛 = 1, 2, 3, . . . , 𝑁, 𝑁 is the number of observed
samples; 𝑦(𝑛) is the signal observed by sensing receiver
with 𝑥(𝑛) and 𝑧(𝑛) denoting the PU signal and the additive
impulsive noise respectively. 𝐻0 means that the PU signal is
absent and𝐻1 means that the PU signal is present.

According to the Neyman-Pearson (NP) theorem, GLRT
can maximize detection probability when the probability of
false alarm is fixed. So we attempted to use GLRT as an opti-
mal method first.With the signal and noisemodels described
in Section 2, the globally optimal detector can be expressed as

ΛGO = log
𝑓𝑌|𝐻1 (y | 𝐻1)𝑓𝑌|𝐻0 (y | 𝐻0) =

𝑁∑
𝑛=1

log
𝑓𝑌|𝐻1 (𝑦 (𝑛) | 𝐻1)𝑓𝑌|𝐻0 (𝑦 (𝑛) | 𝐻0) , (4)

where y is the vector of the received samples. If ΛGO ≥ 0, it
means that the PU signal is present. Otherwise, it means that
the PU signal is absent.

Substituting (3) into (4), we have

ΛGO = 𝑁∑
𝑛=1

log
E𝑋 {𝑓𝑍 (𝑦 (𝑛) − 𝑥 (𝑛))}𝑓𝑍 (𝑦 (𝑛)) , (5)

in which E{⋅} denotes statistical expectation.
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Obviously,ΛGO is with respect to the pdf of the PU signal
whichmay not be obtained by unlicensed users. However, CR
always operates in low SNR (i.e., 𝜎2𝑋/𝜎2𝑍 → 0) circumstance,
especially in IoT. Bymaking the low SNR assumption, we can
obtain a locally optimal detector from the globally optimal
detector.

Equation (5) can be simplified by using Taylor series [24],

𝑓𝑍 (𝑦 − 𝑥) ≈ 𝑓𝑍 (𝑦) − 𝑥𝑓󸀠𝑍 (𝑦) + 12𝑥2𝑓󸀠󸀠𝑍 (𝑦) , (6)

where we drop the time dependence 𝑛 for clarity.
The second term of the right side in (6) equals 0 when

taking the expectation. Hence,

E𝑋 {𝑓𝑍 (𝑦 (𝑛) − 𝑥 (𝑛))} = 𝑓𝑍 (𝑦 (𝑛)) + 𝜎2𝑋2 𝑓󸀠󸀠𝑍 (𝑦 (𝑛)) , (7)

where we assume E{𝑥2} = 𝜎2𝑋.
Then the locally optimal detector under low SNR can be

expressed as

Λ LO = 𝑁∑
𝑛=1

log(1 + 𝜎2𝑋2 𝑓󸀠󸀠𝑍 (𝑦 (𝑛))𝑓𝑍 (𝑦 (𝑛)) )
≈ 𝜎2𝑋2 𝑁∑𝑛=1𝑓

󸀠󸀠
𝑍 (𝑦 (𝑛))𝑓𝑍 (𝑦 (𝑛)) .

(8)

Here we use log(1 + 𝑥) ≈ 𝑥 for 𝑥 → 0. Obviously, this locally
optimal detector only requires the pdf of the noise.

For the case of AWGN, the differential part of (8) can be
simplified into

𝑔 (𝑦 (𝑛)) = 𝑓󸀠󸀠𝑍 (𝑦 (𝑛))𝑓𝑍 (𝑦 (𝑛)) =
󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨2𝜎4𝑍 − 1𝜎2𝑍 ∝ 󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨2 . (9)

The locally optimal detector equals the traditional ED. Unfor-
tunately,𝑔(𝑦(𝑛)) cannot be easily simplified underMiddleton
Class A noise hypothesis. From (8), it can be seen that the
locally optimal GLRT detector is with respect to the pdf of
the noise which contains infinite summation. Moreover, the
structure of the detector has to change with the change of
the noise parameters which makes the implementation of
GLRT detector impossible. Consequently, 𝑔(𝑦(𝑛)) should be
converted into a simpler nonlinear operator so that it can be
implemented practically.

Under impulsive noise hypothesis, the presence of
impulses increases the false alarm during sensing process. To
improve the sensing performance, the impact of randomly
appearing large amplitudes in the noise should be reduced.
Inspired by the capability of FLOM in signal processing under
non-Gaussian noise and the expression of energy detector, we
use FLOM as a suboptimal detector and the corresponding
test statistic is given in

Λ SO (𝑦) = 1𝑁 𝑁∑𝑛=1 󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨𝑝 , (10)

where 0 < 𝑝 < 2.

Noise
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Threshold

Decision1

N
∑|·|p

Figure 1: Structure of FLOM based detector.

Through fractional power operation, a nonlinear opera-
tion, the large impulse amplitude in the noise can be reduced,
while the small values almost remain unchanged. As a result,
a good sensing performance can be obtained. In addition,
with the similar expression of ED, FLOM based detector
can be implemented practically when the parameter 𝑝 is
determined.

4. FLOM Based Spectrum Sensing with
Noise Power Estimation

4.1. FLOM Based Spectrum Sensing. As for the FLOM based
detector, the structure is shown in Figure 1. According to
the central limit theorem [25], when 𝑁 is large enough, the
metric Λ SO(𝑦) in (10) can be approximated as a Gaussian
random variable,

Λ SO (𝑦)󵄨󵄨󵄨󵄨𝐻0 ∼N(𝜇0,𝑝, 𝜎20,𝑝𝑁 ) ,
Λ SO (𝑦)󵄨󵄨󵄨󵄨𝐻1 ∼N(𝜇1,𝑝, 𝜎21,𝑝𝑁 ) (11)

in which

𝜇0,𝑝 = E {󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨𝑝 | 𝐻0} ,𝜇1,𝑝 = E {󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨𝑝 | 𝐻1} ,
𝜎20,𝑝 = E {(󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨𝑝 − 𝜇0,𝑝)2 | 𝐻0}

= E {󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨2𝑝 | 𝐻0} − 𝜇20,𝑝,
𝜎21,𝑝 = E {(󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨𝑝 − 𝜇1,𝑝)2 | 𝐻1}

= E {󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨2𝑝 | 𝐻1} − 𝜇21,𝑝.

(12)

The 𝑝th order central absolute moments of a Gaussian
random variable 𝑆 ∼N(0, 𝜎2) can be expressed as

E [|𝑆|𝑝] = 2𝑝/2√𝜋 Γ(𝑝 + 12 ) 𝜎𝑝, (13)

where Γ(⋅) is the usual gamma function defined by Γ(𝑥) =∫∞
0
𝑡𝑥−1𝑒−𝑡𝑑𝑡.
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Assuming that the noise 𝑧(𝑛) and the PU signal 𝑥(𝑛) are
independent of each other, we can obtain that

𝑓𝑌 (𝑦 (𝑛))󵄨󵄨󵄨󵄨𝐻0 = 𝑓𝑍 (𝑦 (𝑛)) = ∞∑
𝑚=0

𝛽𝑚√2𝜋𝜎𝑚 𝑒−𝑦(𝑛)2/2𝜎2𝑚 ,𝑓𝑌 (𝑦 (𝑛))󵄨󵄨󵄨󵄨𝐻1 = 𝑓𝑋 (𝑦 (𝑛)) ∗ 𝑓𝑍 (𝑦 (𝑛))
= ∞∑
𝑚=0

𝛽𝑚√2𝜋 (𝜎2𝑚 + 𝜎2𝑋) 𝑒−𝑦(𝑛)
2/2(𝜎2
𝑚
+𝜎2
𝑋
).

(14)

Then it can be easily concluded that

𝜇0,𝑝 = 2𝑝/2√𝜋 Γ(𝑝 + 12 ) ∞∑
𝑚=0

𝛽𝑚𝜎𝑝𝑚,
𝜇1,𝑝 = 2𝑝/2√𝜋 Γ(𝑝 + 12 ) ∞∑

𝑚=0

𝛽𝑚√𝜎2𝑚 + 𝜎2𝑋𝑝,
𝜎20,𝑝 = 2𝑝√𝜋Γ(2𝑝 + 12 ) ∞∑

𝑚=0

𝛽𝑚𝜎2𝑝𝑚 − 𝜇20,𝑝,
𝜎21,𝑝 = 2𝑝√𝜋Γ(2𝑝 + 12 ) ∞∑

𝑚=0

𝛽𝑚 (𝜎2𝑚 + 𝜎2𝑋)𝑝 − 𝜇21,𝑝.

(15)

Figure 2 demonstrates the distribution of Λ(𝑦)|𝐻0 andΛ(𝑦)|𝐻1 in ED based sensing and FLOM based sensing at
SNR = −5 dB, respectively. Here we choose 𝐴 = 𝑇 = 0.1,𝑝 = 0.4, and 𝑁 = 100 as an example. The two distribution
curves in FLOM are more clearly separated than those of
ED. It intuitively explained why the performance of FLOM
based sensing is much better than ED based sensing under
Middleton Class A noise.

The optimal value of 𝑝 can be determined by the deflec-
tion coefficient which is usually defined as (16) tomeasure the
performance for binary hypothesis testing problems [26].

𝑑 (𝑝) = 𝜇1,𝑝 − 𝜇0,𝑝𝜎0,𝑝 . (16)

The probability of false alarm 𝑃fa and probability of
detection 𝑃𝑑 can be given in terms of the 𝑄 function by

𝑃fa = 𝑃𝑟 (Λ SO (𝑦) > 𝛾 | 𝐻0) = 𝑄( 𝛾 − 𝜇0,𝑝√𝜎20,𝑝/𝑁) ,
𝑃𝑑 = 𝑃𝑟 (Λ SO (𝑦) > 𝛾 | 𝐻1) = 𝑄( 𝛾 − 𝜇1,𝑝√𝜎21,𝑝/𝑁) ,

(17)

where 𝑄(⋅) is defined by 𝑄(𝑥) = (1/√2𝜋) ∫∞
𝑥

exp(−𝑡2/2)𝑑𝑡
and 𝛾 is the threshold chosen for judging the presence or
absence of the PU signal.

The threshold is normally chosen to satisfy a target𝑃fa_DES
according to the Neyman-Pearson criterion in practice [27],
which requires the noise parameters to be known, as shown in

𝛾 = √𝜎20,𝑝𝑁 𝑄−1 (𝑃fa_DES) + 𝜇0,𝑝. (18)
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Figure 2: Distribution comparison of the test statistics of FLOM
detector and energy detector with 𝐴 = 𝑇 = 0.1, 𝑝 = 0.4, and𝑁 = 100, at SNR = −5 dB.

Substituting (18) into the second equation of (17), we can
obtain the final probability of detection.

𝑃𝑑 = 𝑄(√𝜎20,𝑝/𝑁𝑄−1 (𝑃fa_DES) + 𝜇0,𝑝 − 𝜇1,𝑝√𝜎21,𝑝/𝑁 ) . (19)

As shown in (19), increasing the number of the samples𝑁 can improve the sensing ability but will take longer time.
So in practice, compromise should be made between sensing
performance and processing time.

4.2. FLOM Detector with Noise Power Estimation. As men-
tioned above, FLOM based sensing outperforms ED based
methods. However, the noise power fluctuation is generally
encountered in practice. So the noise power uncertainty
should be considered to ensure the implementation of the
sensingmethod. If the estimated noise power is assumed to be
in an interval 𝜎̂2𝑍 ∈ [(1/𝜌)𝜎2𝑍, 𝜌𝜎2𝑍], 𝜌 > 1 is a parameter that
quantifies the amount of the uncertainty. To achieve a target𝑃fa and 𝑃𝑑 robustly, the following equations need to hold:

𝑃fa = max
𝜎2
𝑍
∈[(1/𝜌)𝜎2

𝑍
,𝜌𝜎2
𝑍
]
𝑄( 𝛾 − 𝜇0,𝑝√𝜎20,𝑝/𝑁) ,

𝑃𝑑 = min
𝜎2
𝑍
∈[(1/𝜌)𝜎2

𝑍
,𝜌𝜎2
𝑍
]
𝑄( 𝛾 − 𝜇1,𝑝√𝜎21,𝑝/𝑁) .

(20)
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Figure 3: SNR walls with different 𝜌.
Due to the 𝑄 function being a monotonically decreasing

function, we obtain

𝑃fa = 𝑄( 𝛾 − 𝜇0,𝑝√𝜎20,𝑝/𝑁)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎2
𝑍
=𝜌𝜎2
𝑍

,

𝑃𝑑 = 𝑄( 𝛾 − 𝜇1,𝑝√𝜎21,𝑝/𝑁)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎2
𝑍
=(1/𝜌)𝜎2

𝑍

.
(21)

From (21), we have

𝑁 = [𝑄−1 (𝑃fa) 𝜎0,𝑝 − 𝑄−1 (𝑃𝑑) 𝜎1,𝑝𝜇1,𝑝 − 𝜇0,𝑝 ]2 . (22)

Figure 3 displays howmany samples are needed to achieve
target 𝑃fa = 0.1 and 𝑃𝑑 = 0.9 under different SNR with𝐴 = 𝑇 = 0.1 (note that the vertical axis is a logarithmic
scale). It is obvious that the number of samples which needed𝑁 will tend to ∞ when SNR approaches a specific value
with any 𝜌 > 1, which is called SNR Wall phenomenon.
And the SNR wall will become higher with the uncertainty 𝜌
becoming higher. It means that the detector cannot robustly
detect the signal if the signal-noise power ratio is lower than
the specific value. So the performance of an FLOM detector
with a fixed threshold also degrades like ED when the noise
power uncertainty occurs [19].

To keep a satisfactory sensing performance, the real
time value of noise power should be used to determine the
threshold in every sensing period. Fortunately, we found that
the higher order moment of the samples can be a maximum
likelihood (ML) noise power estimator, although it is not able
to act as a good sensing statistic. In this paper, an adaptive
threshold sensing structure is adopted with a higher order

Noise

Signal BPF A/D
Decision

1

N
∑

1

M
∑

Calculate threshold

|·|p

|·|P

Figure 4: Structure of FLOM detector with noise power estimation
module.

moment detector as a real time noise power estimator and
updating thresholds during each sensing process. From the
structure of the NPE based detector shown in Figure 4, it can
be seen that the estimator uses the same samples as the sensor
and noise-only samples are not necessary in the noise estima-
tion process.Without the noise-only slots, the transmitter can
make full use of time slots and further improves the spectrum
utilization.

The statistic of the noise power estimator is shown in

PW = 1𝑀 𝑀∑𝑛=1 󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨𝑃 (23)

in which 𝑃 ≥ 2 is the higher order and 𝑀 ≥ 𝑁 is the
estimation time window.

Due to the fact that the expectations of |𝑧(𝑛)|𝑃 and |𝑧(𝑛)+𝑥(𝑛)|𝑃 have very small differences at low SNR, this 𝑃th order
estimator can operate an unbiased estimation of the𝑃th order
absolute moment of 𝑧(𝑛) no matter whether the PU signal is
present or absent. The 𝑃th order absolute moment of 𝑧(𝑛) is
estimated by PW; that is,

2𝑃/2√𝜋 Γ(𝑃 + 12 ) ∞∑
𝑚=0

𝛽𝑚 (𝑚/𝐴 + 𝑇1 + 𝑇 )𝑃/2 𝜎̂𝑃𝑍 = PW, (24)

where 𝜎2𝑚 = ((𝑚/𝐴 + 𝑇)/(1 + 𝑇))𝜎2𝑍 is substituted.
It is worth mentioning that the estimated noise power 𝜎̂2𝑍

in the proposed estimator is not obtained directly when 𝑃 >2. But the value we need for calculating the threshold is 𝜎̂𝑍, so
estimating 𝜎̂2𝑍 or 𝜎̂𝑃𝑍 can both achieve this purpose. The only
difference between them is the estimation accuracy which
will be discussed in the following section.

Substituting (15) into (18) and replacing 𝜎𝑃𝑍 by the
estimated 𝜎̂𝑃𝑍 in (24), the corresponding threshold can be
obtained

𝛾 = (√𝛽 − 𝛼2𝑁 𝑄−1 (𝑃fa_DES) + 𝛼) 𝜎̂𝑝𝑍,
𝜎̂𝑝𝑍 = (𝜎̂𝑃𝑍)𝑝/𝑃 = (PW𝛿 )𝑝/𝑃 ,

(25)
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where

𝛼 = 2𝑝/2√𝜋 Γ(𝑝 + 12 ) ∞∑
𝑚=0

𝛽𝑚 (𝑚/𝐴 + 𝑇1 + 𝑇 )𝑝/2 ,
𝛽 = 2𝑝√𝜋Γ(2𝑝 + 12 ) ∞∑

𝑚=0

𝛽𝑚 (𝑚/𝐴 + 𝑇1 + 𝑇 )𝑝 ,
𝛿 = 2𝑃/2√𝜋 Γ(𝑃 + 12 ) ∞∑

𝑚=0

𝛽𝑚 (𝑚/𝐴 + 𝑇1 + 𝑇 )𝑃/2 .
(26)

Utilizing the threshold 𝛾, the real probability of false
alarm and probability of detection can be expressed as

𝑃fa_𝑟
= ∫∞
−∞

𝑓0 (pw) 𝑄(𝛾 (pw, 𝑃fa_DES) − 𝜇0,𝑝√𝜎20,𝑝/𝑁 )𝑑pw,
𝑃𝑑_𝑟
= ∫∞
−∞

𝑓1 (pw) 𝑄(𝛾 (pw, 𝑃fa_DES) − 𝜇1,𝑝√𝜎21,𝑝/𝑁 )𝑑pw
(27)

in which 𝑓0(⋅) and 𝑓1(⋅) denote the pdf of PW under𝐻0 and𝐻1, respectively.
The previous discussion indicates that PW also obeys

Gaussian distribution with a large𝑀. So

PW|𝐻0 ∼N(𝜇0,𝑃, 𝜎20,𝑃𝑀 ) ,
PW|𝐻1 ∼N(𝜇1,𝑃, 𝜎21,𝑃𝑀 ) , (28)

where

𝜇0,𝑃 = 2𝑃/2√𝜋 Γ(𝑃 + 12 ) ∞∑
𝑚=0

𝛽𝑚𝜎𝑃𝑚,
𝜇1,𝑃 = 2𝑃/2√𝜋 Γ(𝑃 + 12 ) ∞∑

𝑚=0

𝛽𝑚√𝜎2𝑚 + 𝜎2𝑋𝑃,
𝜎20,𝑃 = 2𝑃√𝜋Γ(2𝑃 + 12 ) ∞∑

𝑚=0

𝛽𝑚𝜎2𝑃𝑚 − 𝜇20,𝑃,
𝜎21,𝑃 = 2𝑃√𝜋Γ(2𝑃 + 12 ) ∞∑

𝑚=0

𝛽𝑚 (𝜎2𝑚 + 𝜎2𝑋)𝑃 − 𝜇21,𝑃.

(29)

Substituting (28) and (29) into (27), the value of 𝑃fa_𝑟 and𝑃𝑑_𝑟 can be got.

5. Simulation and Results

In this section, we give the simulations and analysis of the
theoretical results in Section 4.

A = 0.01, T = 0.01
A = 0.1, T = 0.01
A = 0.01, T = 0.1

A = 0.1, T = 0.1
A = 0.01, T = 1
A = 0.1, T = 1
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Figure 5: Probability of detection 𝑃𝑑 versus 𝑝 for different 𝐴 and𝑇 with target probability of false alarm 𝑃fa_DES = 0.1; 𝑁 = 1000 at
SNR = −15 dB.
5.1. FLOM Based Spectrum Sensing. Let 𝑃fa_DES = 0.1 as
the target probability of false alarm; Figure 5 shows the
corresponding 𝑃𝑑 versus 𝑝 varying from 0.1 to 2 with SNR =−15 dB; 𝑁 = 1000. It can be seen that traditional ED based
sensing (𝑝 = 2) has very poor performance (𝑃𝑑 < 0.2)
when SNR is as low as −15 dB. However, the FLOM detector
shows large improvement and a satisfactory 𝑃𝑑 can be easily
achieved when an appropriate value for 𝑝 is chosen, 𝑝 = 0.4
as an example. The result also indicates that the performance
improvement also depends on𝑇.The larger improvementwill
be obtained when 𝑇 is getting smaller. In other words, the
FLOM detector is more suitable for the circumstances under
which the noise is more impulsive.

From another perspective, Figure 6 shows several
Receiver Operating Characteristic (ROC) curves of ED and
FLOM based sensing in both theory and simulation with𝐴 =𝑇 = 0.1; 𝑁 = 1000 at SNR = −15 dB. The simulation results
are well matchedwith theory results. Obviously, FLOMbased
sensing outperforms ED based one and a better performance
will be achieved when the value of 𝑝 is smaller.

The detection ability of the FLOM detector under dif-
ferent SNR is plotted in Figure 7. The similar conclusion is
drawn as those in Figures 5 and 6. In addition, take 𝑃𝑑 = 0.9
as a target probability of detection; FLOM based sensing can
work with SNR as low as −15 dB when 𝑝 = 0.4, but ED based
sensing will only work when SNR is not lower than −5 dB.
5.2. FLOM Detector with Noise Power Estimation. The per-
formance of the NPE based FLOM sensing approach must
be related to the estimation accuracy, so the relationship
between𝑃𝑑_𝑟,𝑃fa_𝑟, and the order𝑃 of the estimator is given in
Figure 8. Here we set a relatively low SNR that SNR = −20 dB,
in order to see the rate of change more clearly. The target
probability of false alarm 𝑃fa_DES = 0.1, 𝑁 = 1000, 𝐴 =
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Figure 6: ROC curves of FLOM detector with 𝐴 = 𝑇 = 0.1; 𝑁 =1000 at SNR = −15 dB.
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Figure 7: Probability of detection𝑃𝑑 versus SNR for different 𝑝with
target probability of false alarm 𝑃fa_DES = 0.1, 𝐴 = 𝑇 = 0.1, and𝑁 = 1000.
𝑇 = 0.1, and 𝑝 = 0.4. From Figure 8, it can be seen that𝑃𝑑_𝑟 and 𝑃fa_𝑟 are both increasing with different slopes as the
value of 𝑃 increases, but the change of 𝑃fa_𝑟 is slight. After𝑃 ≥ 3, 𝑃𝑑_𝑟 and 𝑃fa_𝑟 tend to be stable. Moreover, the order
of the estimator can be set as 𝑃 = 2 as a tradeoff to reduce
computational complexity.

Figure 9 demonstrates the theory and the simulation
results of 𝑃𝑑_𝑟 and 𝑃fa_𝑟 versus SNR of our proposed FLOM
detector.The threshold 𝛾 is calculated using 𝜎̂𝑃𝑍 and the target
probability of false alarm 𝑃fa_DES = 0.1, 𝑁 = 1000, 𝐴 =𝑇 = 0.1, 𝑝 = 0.4, and 𝑃 = 2. In these curves, ideal FLOM
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8 Mobile Information Systems

represents the noise power perfectly known. It is obvious
that a better sensing performance can be obtained when the
estimation timewindow𝑀 is getting larger, while it also takes
a longer processing time and the performance improvement
will slow down when𝑀 is larger than 10𝑁.

It is worth mentioning that the number of observed
samples has impact on the energy consumption and the
sensing time. As an example, the proposed sensing structure
works well at SNR = −15 dB with the set of parameters
(𝐴 = 𝑇 = 0.1) using in the simulation. In practice, the noise
power ratio𝑇 usually varies within [10−4, 0.1]. Figures 5 and 7
indicate that the better performance will be obtained when 𝑇
is getting smaller and SNR is getting larger. So in the case that
SNR is not as low as −15 dB or the noise is more impulsive(𝑇 ≪ 0.1), the number of the observed samples could be
drastically reduced. As a result, the energy consumption and
the sensing time will be reduced and the proposed detector
can be applied in IoT devices.

6. Conclusion

Cognitive Radio can be a helpful technology for utilizing and
allocating frequency spectrum in the IoT. The utilization of
the FLOM can successfully achieve spectrum sensing task for
CR under Middleton Class A noise in the IoT. We derive the
analytical expressions of the probability of false alarm 𝑃fa and
the probability of detection𝑃𝑑 demonstrating the relationship
between the performance enhancement and the value of the
fractional order 𝑝. For all circumstances, reasonable choices
of 𝑝 can be made to achieve a satisfactory performance using
the deflection coefficient. After an NPE module being added
to the sensing system, the problem of noise uncertainty at low
SNR has been resolved. Both the power estimation time win-
dow𝑀 and the order 𝑃 of the NPE module impact sensing
performance. By choosing reasonable 𝑀 and 𝑃, simulation
shows that our proposed sensing scheme has almost the same
performance as thatwhen the noise power is perfectly known.
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