Hindawi

Advances in Operations Research

Volume 2017, Article ID 7048042, 10 pages
https://doi.org/10.1155/2017/7048042

Research Article

Hindawi

Towards Merging Binary Integer Programming
Techniques with Genetic Algorithms

Reza Zamani

School of Computing and Information Technology, Wollongong University, Wollongong, NSW 2522, Australia

Correspondence should be addressed to Reza Zamani; reza@uow.edu.au

Received 10 June 2017; Revised 27 August 2017; Accepted 6 September 2017; Published 17 October 2017

Academic Editor: Demetrio Lagana

Copyright © 2017 Reza Zamani. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a framework based on merging a binary integer programming technique with a genetic algorithm. The
framework uses both lower and upper bounds to make the employed mathematical formulation of a problem as tight as possible. For
problems whose optimal solutions cannot be obtained, precision is traded with speed through substituting the integrality constrains
in a binary integer program with a penalty. In this way, instead of constraining a variable u with binary restriction, u is considered
as real number between 0 and 1, with the penalty of Mu(1 — u), in which M is a large number. Values not near to the boundary
extremes of 0 and 1 make the component of Mu(1—u) large and are expected to be avoided implicitly. The nonbinary values are then
converted to priorities, and a genetic algorithm can use these priorities to fill its initial pool for producing feasible solutions. The
presented framework can be applied to many combinatorial optimization problems. Here, a procedure based on this framework
has been applied to a scheduling problem, and the results of computational experiments have been discussed, emphasizing the

knowledge generated and inefficiencies to be circumvented with this framework in future.

1. Introduction

Combinatorial optimization problems are widespread. They
include important instances like network design, job shop
scheduling, flow shop scheduling, quadratic assignment,
protein alignment, resource-constrained project scheduling,
vehicle routing, and many other problems.

In general, the solution strategies used to solve these
problems are mainly classified into exact and heuristic meth-
ods. Whereas the well-known examples of exact methods are
binary integer programming techniques, effective instances
of heuristics are genetic algorithms.

One of the endeavours in integrating binary integer
programming with genetic algorithm is the one reported
in [1], and another work, with respect to this integration,
has been reported in [2]. Moreover, there are several other
general works related to integrating integer, and not neces-
sarily binary integer, programming with genetic algorithm
including those presented in [3-8].

Emphasizing that binary integer programs are very diffi-
cult to solve, and their execution times grow exponentially,
in [1], a genetic-binary combinatorial algorithm has been

presented with a method called “change-zero and add-
one.” In [2], the combination of a binary integer program
with a genetic algorithm has been used for the monitoring,
controlling, and protecting of power systems.

In this paper, we present a general framework based on
the integration of a binary integer programming technique
and a genetic algorithm. The framework converts a binary
integer programming problem to a quadratic programming
formulation and then by using a genetic algorithm revises the
solution obtained by the quadratic programming technique.

The presented framework is called QGA in which Q and
GA stand for quadratic programming and genetic algorithm,
respectively. In the QGA, the employed genetic algorithm
fine-tunes an infeasible solution produced by a quadratic
programming technique, which itself solves a relaxed binary
integer programming problem. In the corresponding binary
integer programming problem, the integrality constrains of
binary variables are relaxed, in the sense that they are allowed
to be in the range between 0 and 1.

When the integrality constraint is relaxed and a binary
variable u is considered as a real number between 0 and 1, a
penalty of Mu(1 — u), in which M is a large number, is added

https://doi.org/10.1155/2017/7048042

Total resource availability: 10

Duration, resource requirement

@H Number activity

FIGURE 1: A sample resource-constrained project.

to the minimization objective function. These penalties are
aimed at preventing those values not near to 0 or 1 from
being selected, as Mu(1 — u) becomes large for those values
of u which are not near to 0 or 1. The produced nonbinary
values are then fine-tuned through a genetic algorithm and is
converted to a feasible solution.

The QGA is also equipped with a tree search aimed at
finding a lower and upper bound for tightening the binary
integer programming formulation of the problem. In the
cases where the computed lower and upper bounds are
equal, the optimal solution has already been obtained and
no binary integer programming formulation is required to be
generated.

The QGA is a general algorithm which can be applied
to many combinatorial optimization problem. Because archi-
tecting effective software applications for project schedul-
ing is of prime importance [9], upon the development of
the QGA, as a general solution strategy, the Resource-
Constrained Project Scheduling Problem (RCPSP) has been
applied. As an NP-hard problem, the RCPSP is simply defined
as minimizing the duration of a project which includes
several activities each requiring a number of scarce resources.
All resources are renewable and, during the execution of the
project, the availability of each resource is constant.

Each activity has a set of predecessors as well as certain
duration and can start only when all of its predecessors
have been completed. Preemption is not allowed in the sense
that when an activity starts, it should be completed without
any interruption. Two starting and ending activities which
require no resources and have zero duration represent the
starting and ending of the project, respectively. Figure 1 shows
asample resource-constrained project and Figure 2 depicts its
optimal schedule.

Unlike heuristics, integer programming, as a systematic
search technique, cannot be applied to real-sized problems.
Heuristics provided for the RCPSP are categorically diverse.
Priority rules comprise a large portions of early heuristic

Advances in Operations Research

< 1014
g 7
S o6t 1 >
S
§ 41 6
L
K . 4 7
t t T t t t t t t T
2 4 6 8 10 12 14

Time

FIGURE 2: The optimal schedule of the sample project.

strategies for the RCPSP, and an extensive survey on these
methods has been provided in [10]. Priorities are simply
converted to a solution through a serial or parallel schedule
generation scheme. The first scheme has been presented in
[11], and the second one has been developed by Brooks and
published in [12].

A survey on serial and parallel schedule generation
schemes has been provided in [13]. Also a survey on deter-
ministic project scheduling has been provided in [14] and
extended in [15].

Regardless of whether a schedule is constructed by the
serial or parallel schedule generation scheme, the schedule
can be double justified for possible improvement [16]. By
double justification, the authors mean the left and right justi-
fication. The concept of the left and right justified schedules
dates back to sixties and was used towards facilitating the
computation of slack values of activities in the presence of
resource constraints [17].

Based on right and left justification of activities, the iter-
ative forward/backward scheduling technique presented in
[18] iteratively applies serial forward and backward schedul-
ing for several times. In effect, double justification mentioned
is an improvement over this iterative forward/backward
scheduling technique. Also nearly the same as double justi-
fication, in [19], a technique has been presented which, for
improving a schedule, uses a backward scheduling followed
by a forward schedule. In [15], the notion of “forward-
backward improvement” has been used to refer to both
approaches presented in [16, 19].

Point-based and population-based algorithms comprise
two main categories of heuristics, referred to as local searches
and evolutionary algorithms, respectively. A key point with
the efficiency of these two categories of algorithms in solving
the RCPSP is the concept of encoding or representation.
In this regard, the standardized random key representation
presented in [20] is of prime importance. This representation,
which is an improvement over the representation presented
in [21], assigns the same order to activities which have started
at the same time.

Heuristics and systematic searches, despite being tra-
ditionally used in two different contexts, can cooperate to
provide better solution strategies. In this cooperation, a
heuristic can use information generated in the middle of a
systematic search to steer the search more effectively.

Advances in Operations Research

The rest of the paper is as follows. Section 2 describes the
related work with respect to the RCPSP, and Section 3 dis-
cusses the QGA and its application to the RCPSP. Computa-
tional experiments are presented in Section 4. Section 5 pro-
vides concluding remarks and future directions for improving
the framework.

2. Related Work

The related work is presented in two subsections. The first
subsection discusses the related work to the integer linear
programming formulation of the RCPSP, and the second
subsection reviews the corresponding heuristics.

2.1. Integer Linear Programming Formulation of the RCPSP.
The basic discrete time formulation provided for the RCPSP
was presented in [22] and its disaggregated version was
late provided in [23]. These two formulations have been
compared in [24], and their difference has been highlighted.
The results indicate that formulating precedence constraints
makes the LP relaxation of the second formulation tighter
than that of the first one.

Based on a linear programming formulation, a procedure
has been presented in [25] which can be considered as
an improvement over the procedure developed in [26].
This improved procedure tightens the initial formulation of
the linear programs by an effective constraint propagation
mechanism and consequently solves the linear programming
formulation obtained. In this procedure, an RCPSP instance
is described through a set of starting times for activities,
with the constraints being actively propagated to reduce the
combinatorial effort needed to find the starting times.

As another effective method, we can name the linear
programming formulation provided in [27] which has been
further strengthened in [28] by additionally considering a
time window for each activity. Defined based on a hypothet-
ical upper bound as well as the heads and tails of activities,
these time windows make formulation highly effective. In this
method, a constraint propagation mechanism has been used
to facilitate the search process.

In [29], constraint programming is performed as a pre-
processing step for a linear program that relaxes integrality
constraints, adding valid linear inequalities to the resulting
relaxation towards strengthening the bound.

The flow-based continuous formulations presented in
[30-32], as three effective formulations for the RCPSP, have
been compared with one another in [24]. In the first for-
mulation, variables include (i) the starting time variables,
which show the starting time of activates, (ii) sequential
binary variables indicating whether an activity is processed
after another activity, and (iii) flow variables indicating the
amount of a particular resource transferred from one activity
to another.

On the other hand, in the second formulation, which is
based on rectangle packing, an effective insertion technique is
used. Unlike the first two formulations, the third formulation
is limited to handling projects requiring no more than 2
scarce resources.

After making these comparisons, the authors in [24] have
presented two linear programming formulations which work
based on the concept of event, namely, Start/End and On/Off.
Unlike both discrete time and flow-based formulations,
in event-based formulations, the emphasis is on indexing
variables based on events. The number of events cannot
exceed the number of activities plus one. In their Start/End
formulation, the left-shift rule is exploited in the sense that
the starting time of an activity beginning after time zero
should coincide with the finishing time of another activity.

In their Start/End formulation, two types of binary
variables have been used representing whether each activity
starts and ends at an event, respectively, assuming that each
activity starts at an event and ends at another event. Resource
conservation constraints enforce activities which end at an
event to release the resources they have taken and activities
which start at an event to seize their required resources.

In their On/Off formulations, on the other hand, only
one type of binary variables has been used, representing
whether, in an event, an activity starts or is still in-process. As
well as these single-type binary variables, a single continuous
variable is used to show the end of the project. The same
within the Start/End formulation, in this formulation, the
starting time of each event is shown with a continuous
variable.

An unintentionally omitted part of the aforementioned
Start/End formulation has been identified in [33] and then it
has been added to the formulation. Without this part, there
could be chances for an activity to end without even being
started.

In comparison with formulations indexed by time or
flow, event-based formulations have the advantage of being
involved with a smaller number of variables. That is why
these formulations work well for projects whose scheduling
horizon is comparatively long [24]. Interestingly, the authors,
based on their computational experiments, emphasized that
discrete time formulation is still one of the best formulations
possible and that they work better than other formulations on
many instances. That is why in our paper, the discrete time
formulation has been adopted.

2.2. Corresponding Heuristics. In this subsection, we classify
heuristics for the RCPSP into three classes of point-based
heuristics, population-based heuristics, and others. Point-
based heuristics simply maintain and manipulate a single
solution in each stage, whereas population-based heuristics
are based on maintaining and improving multiple candidate
solutions.

2.2.1. Point-Based Heuristics. Two Tabu search procedures
have been presented in [34]. The first procedure has a simple
neighbourhood structure aimed at eliminating critical paths.
On the other hand, the neighbourhood structure in the
second procedure is aimed at placing activities in parallel or
deleting parallelity relations. The second procedure is based
on the fact that each pair of activities can be in disjunction,
conjunction, parallel, or flexible relation and a heuristic can
convert new set of relations to a schedule.

Sampling methods employ a schedule generation scheme
and a priority rule and then generate different schedules by
biasing the priority rule and converting the biased rule to a
schedule. In [35], based on extensive computational experi-
ments, it has been indicated that the best metaheuristics per-
form consistently better than the best sampling approaches.

The bidirectional method presented in [36] and the
hybrid multipass method presented in [19] can be considered
as two effective point-based methods. The first procedure
simultaneously employs forward and backward partial sched-
ules and, in each iteration, among all eligible activities in the
forward and backward directions, selects an activity based on
a priority rule.

In the case where an activity can be scheduled in both
directions, some other rules are employed to determine the
direction in which the activity should be scheduled. Both
partially constructed forward and backward schedules join
to create a complete schedule. On the other hand, in the
second procedure, a biased random sampling component
is combined with forward-backward passes. The procedure
performs iteratively forward and backward passes and is
terminated as soon as no improvement is achieved.

An ant colony optimization procedure has been pre-
sented in [37] which employs artificial ants to search for
good solutions through making step-by-step probabilistic
decisions. These decisions, which are related to find the
order of activities, are made based on the latest finish times
of activities as well as positions in the activity list which
have been found promising by other ants for placing each
particular activity.

Using a simulated annealing method, the procedure pre-
sented in [38] employs an effective neighbourhood in which
for finding the neighbours of an activity list first an activity is
randomly selected and the positions of its latest predecessor
and earliest successor are found. Then the selected activity
can move to all the places between these two extreme points.

A large neighbourhood search presented in [39] fixes
some parts of a decision vector and finds suitable values
for the remaining variables as a subproblem. This can be
performed through either an exact method or a heuristic.
Since the method can be performed for several rounds, the
information obtained in previous rounds can be used in a new
round to improve the results.

A forceful move strategy, called enhanced move, has been
presented in [40] that shifts an activity forward (backward) in
any range along with its successors (predecessors), extending
the left (right) limit of a boundary that an activity can shift.

The insertion technique presented in [41] deletes a
number of activities from the activity list and inserts them
in the activity list based on an inserting module, causing
them to have a new and possibly more effective order. The
inserting module searches all feasible positions to find the
best insertion point for each activity to insert.

An annealing-like search procedure has been presented
in [42] which, by cooling an initial environment, based on
a decreasing temperature, converts the order of activities to
a schedule. In general, the better the quality of a solution,
the higher its chance of acceptance. In effect, when the
temperature is very low, only improving solutions can replace

Advances in Operations Research

the modified solution whereas when the temperature is high,
the chance of selecting nonimproving solutions is not small.
The authors have also used an effective jumping and walking
mechanisms to improve the performance of their procedure.

2.2.2. Population-Based Heuristics. A self-adapting genetic
algorithm has been presented in [43] in which the decoding
mechanism is determined through a gene in the sense
that depending on the value of this gene, the serial or
parallel schedule generation scheme is used for the decoding
purposes. In [21] a two-phase method has been presented
whose first phase consists of a combination of path relinking
and scatter search. Whereas the path relinking component
explores trajectories which connect elite solutions, the scat-
ter search component employs the linear combinations of
subsets of solution vectors, producing new schedules which
inherit from the high quality schedules. This is done in a high
quality population through using the spanned convex region
of its schedules. The vicinity of the solution produced in the
first phase is searched in depth to further improve its results
in the second phase.

In the schedules generated by the genetic algorithm
presented in [44], no resource is kept idle for more than
a predefined period if such resource could start at least
one activity. In other words, in this genetic algorithm, the
corresponding schedules vary between nondelay and active
schedules. On the other hand, through generating both
nondelay and active schedules, the population-based method
presented in [45] uses a population of size 2 and iteratively
replaces the individual with the worst quality with new
individuals generated.

The genetic algorithm presented in [46] uses a multiagent
model in which agents are placed in a lattice-like environment
and through communicating with their neighbours improve
their performance. In this lattice-like environment, each
agent has four neighbours which can be changed in the search
process.

Rather than using a lattice-like environment, the genetic
algorithm used in [47] uses a simple pool with biased random
keys as its representation and employs forward-backward
concept as well as chromosome adjustment to reflect the
improvement made in the solutions generated.

In general, crossover operators play a key role in the effi-
ciency of population-based procedures, and hence the efforts
made in [48, 49] in the development of peak crossover and
magnet-based crossover, respectively, are worth mentioning.

The particle swarm optimization technique presented
[50] adaptively eliminates invalidity of generated positions
and guarantees the feasibility of these new positions. An oper-
ator called valid particle generator, which uses the in- and
out-degree of activities shown in activity networks, performs
this elimination. An adaptive inertia weight determines the
effect of previous speed on the new speed.

2.2.3. Other Heuristics. Among other heuristics presented for
the problem are decomposition techniques. These heuristics
decompose a project into a number of subprojects, and,
after scheduling these subprojects separately, concatenate
the results to find a solution for the original project. The

Advances in Operations Research

decomposition procedures developed for the RCPSP are
those presented in [51-54].

The hybrids presented in [55-60] can also be classified in
this subsection.

Whereas the first hybrid combines neural networks with
genetic algorithms, the second hybrid combines greedy selec-
tion with simulated annealing and Tabu search, and the third
algorithm relies on forward-backward improvement in the
context of scatter search and bidirectional path relinking.

The fourth hybrid is a hyperheuristic operating based
on particle swarm optimization. By the term hyperheuristic,
their authors mean an upper level heuristic which controls
several other heuristics. The fifth hybrid is based on the
concept of A-Team, which is a set of agents with a shared
memory for keeping the best obtained solution obtained. The
employed agents in this software environment use a combi-
nation of a simple local search, Tabu search, path relinking,
and crossover-based techniques to produce solutions. In each
iteration, with the chance of p, the worst solution in the team
is replaced with a fresh random solution. The sixth hybrid
employs a simulated annealing technique which fine-tunes
the results obtained in a genetic algorithm using a pool of
solutions.

3. The QGA

Using both lower and upper bounds to make the employed
mathematical formulation of the problem as tight as possible,
the QGA seeks to find the optimal solutions of problems
through its tree search component. For problems whose
optimal solutions cannot be guaranteed, the QGA can effec-
tively trade precision with speed through substituting the
integrality constrains in the corresponding binary integer
linear programming model with penalties.

With removing the integrality constraints, the original
binary variables can be set to any real number, between
zero and one, and this makes the solution infeasible. The
employed genetic algorithm makes this infeasible solution
feasible with keeping makespan as low as possible. The
quadratic programming problem generated and its solution
strategy are aimed at keeping the relaxed binary variables near
to 0 or 1 as much as possible, preventing the even distribution
of these relaxed variables in their range of 0-1. Figure 3 depicts
the modules of the QGA and the order in which they are
employed.

As is seen the tree search module, which is aimed at
finding an initial lower and upper bound for the problem is
followed by an integer program, which tests whether or not
the problem can be solved. In the case the optimal solution
cannot be guaranteed within a specified time, a quadratic
programming problem is generated through substituting the
integrality constraints with a quadratic objective function.
This is done as follows.

Assume u is a variable which should be either 0 or 1
Instead of constraining u with binary restriction, we can
indicate that u is real number between 0 and 1 and then add
Mu(1-u),in which M is alarge number, to our minimization
objective function. Note that values which are not near 0 and

The tree search

Integer programming

Testing the simplicity of the problem

Quadratic programming

Replacing the integrality constraints with a quadratic objective function

Biased random sampling

Converting noninteger solutions to priorities

The genetic algorithm

Fine-tuning priorities and converting them to feasible schedules

FIGURE 3: The constituent modules of the QGA.

1 make the component of Mu(1 — u) large and are expected
to be avoided implicitly.

As is seen in Figure 3, upon generating a solution by
the quadratic programming, the braised random sampling
is used to convert the solution in which each activity has
different starting times with different weights to a feasible
solution. In the last stage, the genetic algorithm uses these
priorities to fill its initial pool and find a feasible schedule.
Algorithm 1 presents the pseudocode of the QGA.

As is seen in line (4) of the pseudocode, if the tree search
obtains a solution, the QGA is terminated.

Lines (7) through (14) of the pseudocode are performed
based on the upper and lower bounds produced. Whereas
finding the lower bound is involved with traversing the search
tree in line (2), the upper bound is found heuristically.

The objective function and constraints are constructed
in lines (7), (8), respectively. In line (9), the binary inte-
ger program is constructed. Line (10) converts the integer
programming model to the quadratic programming model
through removing all integrality constraints and adding the
penalty of Mu(1-u) to the objective function for each original
binary variable u, with M being a large number. Line (13)
converts the solution obtained by the quadratic programming
technique to the priorities guiding the genetic algorithm.
Finally, as line (14) indicates, these priorities are used by the
employed genetic algorithm to produce a feasible solution for
the problem.

Asline (2) of the pseudocode indicates, the first operation
performed by the QGA is the tree search. With respect to
applying the QGA to the RCPSP, the employed tree search
has been selected as the procedure presented in [61].

The employed tree search starts by putting the null sched-
ule at the root of tree and expanding partial schedules with
minimum lower bound one after another. With expanding a
partial schedule, new partial schedules are added to the tree as
its leaf nodes, and the lower bound associated with each new
partial schedule is calculated. The search stops when either a
complete schedule is obtained or the time limit prevents it

6 Advances in Operations Research
(1) PROCEDURE QGA()
(2) Do tree search and find a lower bound.
(3) IF (Tree search has found a solution)
(4) Print the solution as an optimal solution.
(5) ELSE
(6) Do Heuristic Search and find an upper bound.
(7) Construct the objective function of a binary integer program.
(8) Construct the constraints of the binary integer program.
9) Assemble the binary integer program.
10) In the integer program, replace all integerality constraints with the corresponding penalty.
1) Modify the objective function for preventing even distribution of variables in the range 0-1.
(12) Solve the quadratic program (linear program with quadratic objective function).
(13) Convert the solution obtained to the priorities directing the genetic algorithm.
(14) Print the obtained solution by the genetic algorithm.
(15) ENDIF
(16) ENDPROCEDURE

ALGORITHM 1: The pseudocode of the QGA.

(10) ENDFOR

(12) FOR each activity i

(25) ENDFOR
(26) ENDPROCEDURE

(1) PROCEDURE CreateObjectiveFunctions //Creating F1, F2, F3, F4, F5 as fiveobjective Functions

(2) //F1: Makespan

(3) //F2: AvgStartTimeOfActivities criterion subject to Makespan = lower bound

(4) //F3: AvgStartTimeofActivitiesWeightedByLongestPathRatio subject to Makespan = lower bound
(5) /IF4: uF1 + (1 — u)F2 without being subject to setting Makespan to lower bound

(6) /IF5: uF1 + (1 — pu)F3 without being subject to setting Makespan to lower bound

(7) SET TotalLongestPath to 0.

(8) FOR each activity i

9) Add TotalLongestPath by the longest path of activity i.

11) SET k to 1. //k is index of semi binary variables.

(13) FOR each t between the earliest and the latest start ofactivity i
(14) IF (activity 7 is the ending activity of project)

15) SET F1[k] to ¢.

(16) ELSE

17) SET F1[k] to 0.

(18) ENDIF

(19) SET F2[k] to 1 divided by the number of activities.

(20) SET F3|[k] to thelongest path of activity i divided by TotalLongestPath.
(21) SET F4[k] to uF1[k] + (1-p)F2[k].

(22) SET F5[k] to uF1[k] + (1-u)F3[k].

(23) Add k by 1;

(24) ENDFOR

ALGORITHM 2: The pseudocode of the CreateObjectiveFunctions component of the QGA.

from expanding any partial schedule. Whereas, in the first
case, it guarantees the optimality of the complete schedule
constructed, in the second case, it provides a lower bound for
the problem.

Upon the completion of the tree search and if the
tree search has not guaranteed the optimality of the
obtained schedule, the QGA, as is shown in lines (6)-(9)
of the pseudocode presented in Algorithm 1, first computes
an upper bound and then, based on this upper bound,

constructs the objective function and constraints of the
integer programming model. Substituting all integrality con-
straints with penalties, it then modifies the objective function
to prevent the even distribution of variables in the range
0-1. Algorithm 2 presents the pseudocode of the module
performing such modification.

As is seen in Algorithm 2, five different criteria are used,
namely, F1 through F5. The first criterion, Fl, is the original
makespan criterion. The second criterion, F2, is the average

Advances in Operations Research

starting times of activities, and associated with this criterion
there is a constraint that forces makespan to be the same as the
lower bound. Note that the removal of integrality constraints
highly has relaxed the entire constraints and adding this new
constraint cannot overtight them.

The third criterion, F3, is the weighted version of F2, in
which the starting time of each activity is weighted by its
corresponding longest path. This is aimed at forcing activities
with larger longest path values to be started sooner.

The fourth criterion, F4, is a linear combination of the
first and third criteria. As is seen in the pseudocode, the value
of u, which is between 0 and 1, determines the similarity of
this criterion with each of its two components. The same is
with the fifth criterion, F5, which is a linear combination of
the first and fourth criteria.

As is shown in line (13) of the pseudocode presented in
Algorithm 1, after modifying the objective function and solv-
ing the quadratic programming model, the QGA converts
the obtained solution to the priorities guiding the genetic
algorithm. Having completed the description of the QGA,
the following discussion only applies to the application of the
QGA to the RCPSP.

As a result of solving the quadratic programming model,
avector X is obtained which can be portioned into n portions,
with each portion allocated to one of the activities. Assuming
that the earliest start and latest finish times of activity 7 are
represented with ESi and LSi, respectively, then the first LS, —
ES, + 1 elements of X are associated with activity 1, its next
LS, — ES, + 1 elements are associated with activity 2, and so
forth.

Note that, in X, the sum of elements associated with
each activity is one, because, after all, an activity needs to
be started between its earliest and latest start times, and
removing integrality constraints eliminates the binary nature
of starting time variables. The employed biased random
sampling guarantees that the higher the value of a starting
time for an activity, the higher the chance that the activity
receives the corresponding starting time as its priory.

In the employed genetic algorithm, we have used the
decoding discussed in [20]. Moreover, in line with [43], a two-
point crossover operator has been employed and the genetic
algorithm uses either serial or parallel schedule generation
scheme as its decoding mechanism. In the same fashion
stated in [43], a gene determines whether the serial or
parallel schedule generation scheme should be used, and
another gene determines whether the forward or backward
scheduling should be used.

Regardless of whether a serial or parallel schedule gener-
ation scheme is employed for the decoding purposes, a triple-
justification mechanism has been applied to possibly enhance
the result. By triple-justification, we mean a modification
made on double justification [16]. For a schedule generated
in a forward manner, in this modified structure, a backward
scheduling is followed by a forward one which is followed by
a second backward scheduling. For the schedules generated
in the backward manner, the directions are reverse. In other
words, for these cases, a forward scheduling is followed by
a backward one, which is followed by a second forward
scheduling.

4. Computational Results

A PC under Windows operating system with 2.5 GHZ speed
and 8 MB RAM has been used to test the performance of the
QGA on 600 benchmark instances with 120 activities in [62].
These instances are available in the PSPLIB, and in all of them
the duration of activities has been drawn from the interval
[1,10], with each instance including 4 types of resources.

As Figure 3 shows, the QGA have 5 components. MAT-
LAB has been used for coding the quadratic programming
component, and C++ has been used to program other four
components.

First, with all of its five components, we tested the QGA
on a small number of benchmark instances to find the speed
of these components as well as of the effect of different param-
eters on their performance. Since the computer programs for
these components are currently separate from one another,
testing is a time-consuming task.

The experiments showed that whereas the combination of
the first and last components, as boundary modules, works
comparatively fast, adding the three middle components
causes the QGA to require orders of magnitude more time
than that required by those two boundary modules.

In effect, for nearly all tests performed, the quadric
programming component could not solve an instance within
20 minutes. It seems this is mainly because of the concave
components, in the form of Mu(l — u), in the objective
function of the quadratic program.

One promising strategy to circumvent this difficulty
could be to set a time limit and asking MATLAB to stop
its quadratic programming process and send its intermediate
output as soon as this time limit is reached. After all, we are
not looking for an exact or even feasible solution; as such
a solution is fine-tuned by the genetic algorithm module.
Because, at this stage, the modules are separate from one
another; this strategy, despite all of its merits, was not used,
and. for practicality purposes, we simply bypassed the three
middle components, combining only components 1 and 5,
in a single procedure. Note that in the cases where the first
component can find an optimal solution, the fifth component
is not called at all. Moreover, the fifth component has to
create its initial genomes randomly without using the results
obtained in the first or middle components.

The population size and the number of generations in
the fifth component were set to 200 and 63, leading to the
generation of 50400, 200 * 4 = 63, schedules. The number
4 in this calculation has appeared because triple-justification
increases the number of each schedule from 1to 4,1 + 3. We
also assigned 0.5 seconds to the first component. In this way,
it takes, on average, 5 seconds for each of 600 instances to be
solved. For this setting, the average percentage deviation from
the CPM (Critical Path Method) lower bound is 30.76%.

The results produced for these 600 instances have also
been compared with the best available solutions in the
PSPLIB. This comparison shows that, for 297 of these
instances, the produced solution is equal to the best available
solution in the literature. Moreover, on average, the percent-
age deviation from the best available solutions for other 303
instances is 1.9%.

5. Conclusion

The binary integer programming technique and the genetic
algorithm are two distinctly different solution strategies for
solving combinatorial optimization problems. In this regard,
the keystone of the QGA is its ability of combining binary
integer programming with a genetic algorithm.

The QGA uses quadratic programming, which is the
process of solving a special type of mathematical optimiza-
tion problem with linear constraints but quadratic objective
function. It is aimed at managing an exploration-exploitation
trade-off by activating its quadratic programming component
for identifying a high quality area, which is thoroughly
searched by its genetic algorithm component.

The QGA can be applied to many combinatorial opti-
mization problem, like the flow shop [63] and job shop
scheduling [64], but in this paper, it was solely applied to the
RCPSP.

Its application to the RCPSP showed that, among its five
components, the combination of the first and last compo-
nents works comparatively fast. It also showed that the main
problem with the QGA is that Mu(1-u) is a concave function
of u, and this increases the execution time of its quadratic
programming component.

This means that the genetic algorithm cannot use the
solutions produced by the middle components to guide its
search and has to create its initial pool randomly. Two
solutions to this issue may be envisaged.

The first solution is to set a time limit and force the
quadratic program to stop and output the intermediate
solution upon reaching that time limit. After all, the solutions
produced by the quadratic program need not be exact, or even
feasible, as it is the responsibility of the genetic algorithm to
make these solutions feasible. The second solution is to find
penalties that are easier to handle.

The performance of the framework can also be improved
by augmenting a module which can learn the best values of
the parameters. This learning process can occur based on the
characteristics of the problem at hand. For instance, a new
genetic algorithm can be employed in which different genes
represent different parameters. In such a modified algorithm,
the solution obtained through the corresponding parameters
determines the fitness of parameters.

In many circumstances, binary integer programs are
extremely time-consuming. On the other hand, genetic
algorithms, if guided correctly, can produce high quality
solutions in short time. Integrating binary integer program-
ming techniques with genetic algorithms, as two distinct
but powerful solution strategies, is of prime importance and
requires considerable attention.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

[1] Y. Yan, “Genetic-binary combinatorial algorithm for 0-1 integer
programming,” in Proceedings of the International Workshop

2

(10]

(11

(12]

(13]

(16]

Advances in Operations Research

on Autonomous Decentralized System, pp. 205-209, September
2000.

N. P. Theodorakatos, N. M. Manousakis, and G. N. Korres,
“Optimal placement of PMUs in power systems using binary
integer programming and genetic algorithm,” in Proceedings
of the 9th Mediterranean Conference on Power Generation,
Transmission Distribution and Energy Conversion, MedPower
2014, November 2014.

J. A. Joines, C. T. Culbreth, and R. E. King, “Manufacturing
cell design: an integer programming model employing genetic
algorithms,” IIE Transactions, vol. 28, no. 1, pp. 69-85, 1996.

T. Yokota, M. Gen, and Y.-X. Li, “Genetic algorithm for non-
linear mixed integer programming problems and its applica-
tions,” Computers ¢ Industrial Engineering, vol. 30, no. 4, pp.
905-917, 1996.

Y.-C. Lin, K.-S. Hwang, and E-S. Wang, “A mixed-coding
scheme of evolutionary algorithms to solve mixed-integer
nonlinear programming problems,” Computers & Mathematics
with Applications. An International Journal, vol. 47, no. 8-9, pp.
1295-1307, 2004.

K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, “A real
coded genetic algorithm for solving integer and mixed integer
optimization problems;” Applied Mathematics and Computa-
tion, vol. 212, no. 2, pp- 505-518, 2009.

C. E M. Toledo, L. De Oliveira, R. De Freitas Pereira, P. M.
Franga, and R. Morabito, “A genetic algorithm/mathematical
programming approach to solve a two-level soft drink produc-
tion problem,” Computers & Operations Research, vol. 48, pp.
40-52, 2014.

L. Poli, G. Oliveri, and A. Massa, “An integer genetic algorithm
for optimal clustering in phased array antenna,” in Proceedings
of the 2017 International Applied Computational Electromagnet-
ics Society Symposium - Italy (ACES), pp. 1-2, Florence, March
2017.

R. Zamani, R. B. Brown, G. Beydoun, and W. J. Tibben,
“The Architecture of an Effective Software Application for
Managing Enterprise Projects,” The Journal of Modern Project
Management, vol. 5, no. 1, 2017.

R. Kolisch, “Efficient priority rules for the resource-constrained
project scheduling problem,” Journal of Operations Manage-
ment, vol. 14, no. 3, pp. 179-192, 1996.

J. Kelley, “The critical-path method: resource planning and
scheduling,” in Industrial Scheduling, J. E. Muth and G. L.
Thompson, Eds., pp. 347-365, Prentice-Hall, Upper Saddle
River, NJ, USA, 1963.

D. D. Bedworth and J. E. Bailey, Integrated Production Control
Systems-Management, Analysis, Design, Wiley, New York, NY,
USA, 1982.

R. Kolisch, “Serial and parallel resource-constrained project
scheduling methods revisited: Theory and computation,” Euro-
pean Journal of Operational Research, vol. 90, no. 2, pp. 320-333,
1996.

R. Kolisch and R. Padman, “An integrated survey of determinis-
tic project scheduling,” Omega , vol. 29, no. 3, pp. 249-272, 2001.
R. Kolisch and S. Hartmann, “Experimental investigation
of heuristics for resource-constrained project scheduling: an
update,” European Journal of Operational Research, vol. 174, no.
1, pp. 23-37, 2006.

V. Valls, E Ballestin, and S. Quintanilla, “Justification and
RCPSP: A technique that pays,” European Journal of Operational
Research, vol. 165, no. 2, pp. 375-386, 2005.

Advances in Operations Research

(17]

(18]

(21]

(22]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

(33]

J. D. Wiest, “Some Properties of Schedules for Large Projects
with Limited Resources,” Operations Research, vol. 12, no. 3, pp.
395-418, 1964.

K. Y. Li and R. J. Willis, “An iterative scheduling technique for
resource-constrained project scheduling,” European Journal of
Operational Research, vol. 56, no. 3, pp. 370-379, 1992.

P. Tormos and A. Lova, “A competitive heuristic solution
technique for resource-constrained project scheduling,” Annals
of Operations Research, vol. 102, pp. 65-81, 2001.

D. Debels, B. De Reyck, R. Leus, and M. Vanhoucke, “A hybrid
scatter search/electromagnetism meta-heuristic for project
scheduling,” European Journal of Operational Research, vol. 169,
no. 2, pp. 638-653, 2006.

V. Valls, E Ballestin, and S. Quintanilla, “A population-based
approach to the resource-constrained project scheduling prob-
lem,” Annals of Operations Research, vol. 131, pp. 305-324, 2004.

A. A. B. Pritsker and L. J. Watters, A zero-one programming
approach to scheduling with limited resources, RAND Corpo-
ration, Santa Monica, Calif, USA, 1968.

N. Christofides, R. Alvarez-Valdes, and J. M. Tamarit, “Project
scheduling with resource constraints: a branch and bound
approach,” European Journal of Operational Research, vol. 29, no.
3, pp. 262-273, 1987,

O. Koné, C. Artigues, P. Lopez, and M. Mongeau, “Event-
based MILP models for resource-constrained project schedul-
ing problems,” Computers & Operations Research, vol. 38, no. 1,
pp. 3-13, 2011.

P. Baptiste and S. Demassey, “Tight LP bounds for resource
constrained project scheduling,” OR Spectrum, vol. 26, no. 2, pp.
251-262, 2004.

P. Brucker, S. Knust, A. Schoo, and O. Thiele, “A branch
and bound algorithm for the resource-constrained project
scheduling problem,” European Journal of Operational Research,
vol. 107, no. 2, pp. 272-288, 1998.

A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco, “An
exact algorithm for the resource-constrained project scheduling
problem based on a new mathematical formulation,” Manage-
ment Science, vol. 44, no. 5, pp- 714-729, 1998.

P. Brucker and S. Knust, “Linear programming and constraint
propagation-based lower bound for the RCPSP; European
Journal of Operational Research, vol. 127, no. 2, pp. 355-362,
2000.

S. Demassey, C. Artigues, and P. Michelon, “Constraint-
propagation-based cutting planes: an application to the
resource-constrained project scheduling problem;” INFORMS
Journal on Computing, vol. 17, no. 1, pp. 52-65, 2005.

R. A.-V. Olaguibel and J. T. Goerlich, “The project scheduling
polyhedron: Dimension, facets and lifting theorems,” European
Journal of Operational Research, vol. 67, no. 2, pp. 204-220,1993.
C. Artigues, P. Michelon, and S. Reusser, “Insertion techniques
for static and dynamic resource-constrained project schedul-
ing, European Journal of Operational Research, vol. 149, no. 2,
Pp. 249-267, 2003.

M. Sabzehparvar and S. M. Seyed-Hosseini, “A mathemati-
cal model for the multi-mode resource-constrained project
scheduling problem with mode dependent time lags,” The
Journal of Supercomputing, vol. 44, no. 3, pp. 257-273, 2008.

C. Artigues, P. Brucker, S. Knust, O. Koné, P. Lopez, and
M. Mongeau, “A note on “Event-based MILP models for
resource-constrained project scheduling problems”’ Computers
& Operations Research, vol. 40, no. 4, pp. 1060-1063, 2013.

(34]

(37]

(38]

(39

(41]

(42]

(43]

(44]

(45]

(47]

(48]

T. Baar, P. Brucker, and S. Knust, “Tabu search algorithms and
lower bounds for the resource-constrained project scheduling
problem,” in Meta-heuristics: advances and trends in local search
paradigms for optimization (Sophia-Antipolis, 1997), pp. 1-18,
Kluwer Acad. Publ., Boston, Mass, USA, 1999.

S. Hartmann and R. Kolisch, “Experimental evaluation of
state-of-the-art heuristics for the resource-constrained project
scheduling problem,” European Journal of Operational Research,
vol. 127, no. 2, pp. 394-407, 2000.

R. Klein, “Bidirectional planning: Improving priority rule-
based heuristics for scheduling resource-constrained projects,”
European Journal of Operational Research, vol. 127, no. 3, pp.
619-638, 2000.

D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony opti-
mization for resource-constrained project scheduling,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 4, pp.
333-346, 2002.

K. Bouleimen and H. Lecocq, “A new efficient simulated anneal-
ing algorithm for the resource-constrained project scheduling
problem and its multiple mode version,” European Journal of
Operational Research, vol. 149, no. 2, pp. 268-281, 2003.

M. Palpant, C. Artigues, and P. Michelon, “LSSPER: solving
the resource-constrained project scheduling problem with large
neighbourhood search;” Annals of Operations Research, vol. 131,
no. 1, pp. 237-257, 2004.

K. Fleszar and K. S. Hindi, “Solving the resource-constrained
project scheduling problem by a variable neighbourhood
search,” European Journal of Operational Research, vol. 155, no.
2, pp. 402-413, 2004.

I. Pesek and J. Zerovnik, “Best insertion algorithm for resource-
constrained project scheduling problem,” in 1Ith International
Conference on Operational Research, Pula, Croatia, 2006.

A. Lim, H. Ma, B. Rodrigues, S. T. Tan, and F. Xiao, “New
meta-heuristics for the resource-constrained project scheduling
problem,” Flexible Services and Manufacturing Journal, vol. 25,
no. 1-2, pp. 48-73, 2013.

S. Hartmann, “A self-adapting genetic algorithm for project
scheduling under resource constraints,” Naval Research Logistics
(NRL), vol. 49, no. 5, pp. 433-448, 2002.

J. J. Mendes, J. F. Goncalves, and M. G. Resende, “A random
key based genetic algorithm for the resource constrained project
scheduling problem,” Computers & Operations Research, vol. 36,
no. 1, pp. 92-109, 2009.

R. Zamani, “An accelerating two-layer anchor search with appli-
cation to the resource-constrained project scheduling problem,”
IEEE Transactions on Evolutionary Computation, vol. 14, no. 6,
pp. 975-984, 2010.

X. Pan and H. Chen, “A multi-agent social evolutionary algo-
rithm for resource-constrained project scheduling;” in Proceed-
ings of the 2010 International Conference on Computational
Intelligence and Security, CIS 2010, pp. 209-213, chn, December
2010.

J. E. Gongalves, M. G. C. Resende, and J. J. M. Mendes, ‘A
biased random-key genetic algorithm with forward-backward
improvement for the resource constrained project scheduling
problem,” Journal of Heuristics, vol. 17, no. 5, pp. 467-486, 2011.

V. Valls, E Ballestin, and S. Quintanilla, “A hybrid genetic
algorithm for the resource-constrained project scheduling
problem,” European Journal of Operational Research, vol. 185, no.

2, pp. 495-508, 2008.

R. Zamani, “A competitive magnet-based genetic algorithm for
solving the resource-constrained project scheduling problem,”

10

(50]

(51]

(52]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

(60]

(61]

European Journal of Operational Research, vol. 229, no. 2, pp.
552-559, 2013.

N. Kumar and D. P. Vidyarthi, “A model for resource-
constrained project scheduling using adaptive PSO,” Soft Com-
puting, vol. 20, no. 4, pp- 1565-1580, 2016.

A. Sprecher, “Network decomposition techniques for resource-
constrained project scheduling,” Journal of the Operational
Research Society, vol. 53, no. 4, pp. 405-414, 2002.

R. Zamani, “An efficient time-windowing procedure for
scheduling projects under multiple resource constraints,” OR
Spectrum, vol. 26, no. 3, pp. 423-440, 2004.

D. Debels and M. Vanhoucke, “A decomposition-based genetic
algorithm for the resource-constrained project-scheduling
problem,” Operations Research, vol. 55, no. 3, pp. 457-469, 2007.

R. Zamani, “A hybrid decomposition procedure for schedul-
ing projects under multiple resource constraints,” Operational
Research, vol. 11, no. 1, pp. 93-111, 2011

A. Agarwal, S. Colak, and S. Erenguc, “A neurogenetic approach
for the resource-constrained project scheduling problem,” Com-
puters & Operations Research, vol. 38, no. 1, pp. 44-50, 2011.

P. P. Das and S. Acharyya, “Hybrid local search methods
in solving resource constrained project scheduling problem,”
Journal of Computers (Finland), vol. 8, no. 5, pp. 11571166, 2013.

E Berthaut, R. A. Pellerin, N. Hajji, and Perrier., A Path
Relinking-Based Scatter Search for the Resource-Constrained
Project Scheduling Problem, Interuniversity Research Centre on
Enterprise Networks, Logistics and Transportation, Canada,
2014.

G. Koulinas, L. Kotsikas, and K. Anagnostopoulos, “A particle
swarm optimization based hyper-heuristic algorithm for the
classic resource constrained project scheduling problem,” Infor-
mation Sciences, vol. 277, pp. 680-693, 2014.

P. Jedrzejowicz and E. Ratajczak-Ropel, “Reinforcement Learn-
ing strategies for A-Team solving the Resource-Constrained
Project Scheduling Problem,” Neurocomputing, vol. 146, pp. 301-
307, 2014.

O. H. Bettemir and R. Sonmez, “Hybrid genetic algorithm with
simulated annealing for resource-constrained project schedul-
ing,” Journal of Management in Engineering, vol. 31, no. 5, Article
ID 04014082, 2015.

R. Zamani, “An evolutionary implicit enumeration procedure
for solving the resource-constrained project scheduling prob-
lem,” International Transactions in Operational Research, vol. 24,
no. 6, pp. 1525-1547, 2017.

R. Kolisch and A. Sprecher, “PSPLIB—a project scheduling
problem library,” European Journal of Operational Research, vol.
96, no. 1, pp. 205-216, 1997.

M. Amirghasemi and R. Zamani, “An effective evolutionary
hybrid for solving the permutation flowshop scheduling prob-
lem,” Evolutionary Computation, vol. 25, no. 1, pp. 87-111, 2017.

M. Amirghasemi and R. Zamani, “An effective asexual genetic
algorithm for solving the job shop scheduling problem,” Com-
puters & Industrial Engineering, vol. 83, article no. 3956, pp. 123—
138, 2015.

Advances in Operations Research

Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization

