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Video event detection is a challenging problem in many applications, such as video surveillance and video content analysis. In this
paper, we propose a new framework to perceive high-level codewords by analyzing temporal relationship between different channels
of video features.The low-level vocabulary words are firstly generated after different audio and visual feature extraction. A weighted
undirected graph is constructed by exploring the Granger Causality between low-level words.Then, a greedy agglomerative graph-
partitioning method is used to discover low-level word groups which have similar temporal pattern. The high-level codebooks
representation is obtained by quantification of low-level words groups. Finally, multiple kernel learning, combined with our high-
level codewords, is used to detect the video event. Extensive experimental results show that the proposedmethod achieves preferable
results in video event detection.

1. Introduction

With the increasing popularity of digital cameras and mobile
phones, more and more consumer-generated web videos
recording real-life events are widely available on Internet.
For example, more than 100 hours of videos are uploaded to
YouTube every minute [1]. Consequently, how to effectively
manage and retrieve the unconstrained consumer videos
is becoming an urgent problem. In particular, video event
recognition is receiving increasing attention in the field of
computer vision [2]. However, it is an extremely difficult task
due to the different video content and the variable conditions
in lighting, camera motion, and occlusions. Figure 1 shows
some representative frames from events “bird” defined in
Columbia Consumer Video (CCV) Database [3]. We can see
that the contents of these six videos are dramatically different,
although they are all belonging to the same type of event.

The majority of existing event-recognition methods clas-
sified video mainly based on visual information. In general,
various visual features of key frames were extracted for event
classification [4, 5]. Some other event detectionmethods used
high-level visual feature representation which modeled the

relationship between low-level visual features and semantic
concepts [6, 7]. But in fact, besides visual features, audio
information of the same video also provides important cue
for event recognition [8, 9].

To better describe the underlying causality in videos, in
this work, we propose a high-level codebooks representation
utilizing the Granger’s Causality [10] between different chan-
nels of features. First, the low-level visual feature and audio
features are extracted, which are clustered to form visual bag-
of-words (BoW) and audio BoW, respectively. To model the
temporal causality between the two channels of information,
the vocabulary representation of video sequence is viewed as
the instantaneous of multivariate point process. By analyzing
the Granger Causality between low-level audio and visual
words, an undirected weighted graph is constructed tomodel
the temporal causality of the videos. After that, we split
the graph into low-level word groups which indicate the
temporal patterns in videos. Finally the high-level codebooks
are generated by quantifying low-level word groups, and then
video event is detected based on multiple kernel learning
framework (MKL) [11]. We evaluate our method on public
datasets and perform the comparison with a number of other
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Figure 1: Example video frames of event “bird” defined in Columbia Consumer Video Database.

state-of-the-art methods. The experimental results illustrate
that themethod proposed in this paper can achieve preferable
results in consumer videos. The general flowchart of our
proposed method is shown in Figure 2.

In summary, the main contributions of this paper are (1)
a proposed framework to perceive high-level codewords by
taking the temporal causality between low-level features into
account; (2) construction of a temporal relationship graph to
extract high-level codewords; (3) utilization of the multiple
kernel learning framework to detect video events.

The rest of the paper is organized as follows. We first
review related works, especially the popular feature fusion
method used in video event detection in Section 2. We con-
tinue with extraction of low-level video feature in Section 3.
In Section 4, we propose a high-level codewords framework
for event detection based on the temporal causality. Our
experimental results on public datasets are provided in
Section 5.The paper ends with conclusions and prospects for
future work in Section 6.

2. Related Work

Multiple feature fusion for multimedia analysis has been
extensively studied. Compared to using only single feature,
multifeature fusion has been proven to enhance the perfor-
mance for multimedia content analysis. General speaking,
early fusion and late fusion are the two popular ways for
feature combination [12]. Early fusion concatenates features
from different modalities into a single vector, while late
fusion combines the results of different classifier to obtain
the final classification score by a certain principle. However,
the question on how to construct suitable joint feature and
classifier combination still remains an open issue.

In the fields of machine learning, many researchers have
been devoted to developmultiple view of learning algorithms
to achieve multiple feature fusion. In [13], a multiple feature
fusion algorithm is proposed by learning a generalized
subspace in which canonical correlation between low-level
features is measured. Oh et al. designed a multimedia event
detection framework based on Latent SVM model which
can learn high-level concepts [14]. Multistage feature strategy
has been exploited by Natarajan et al. for complex event

detection, such asmultiple kernel learning, score level fusion,
and weighted average fusion [15]. However, majority of these
methods may need a large amount of label training data,
but the real-world videos often lack exact labels, especially
in consumer video. The semisupervised learning method
has been proven to efficiently use unlabeled data to infer
an accurate classifier [16–18]. In [16], Yang et al. designed a
hierarchical regressionmodel to learning classifier which can
utilize unlabeled data to representmultiple features. Recently,
Ma et al. proposed a semisupervised learning framework
with little-labeled training data by integrating multifeature
learning and the Riemannian metric [17]. In [18], Xu et al.
designed a cross-feature learning model for complex event
detection based on themultilevel relevance learning of related
exemplars.

Some other works concentrated on the use of audio-
visual cue for tracking and recognition [19, 20]. Derbas and
Quénot proposed an audio-visual feature representation to
detect violent scenes in movies [19]. Ionescu et al. designed
a content descriptor which includes audio and color content
for video categorization [20]. However, the empirical results
of these methods are subject to many qualifications, such as
the category of the video and the environment of the video.

More recently, Jhuo et al. proposed an audio-visual
bimodal representation for video event detection [21]. The
audio-visual descriptors were firstly extracted to a construct
bipartite graph discovering the joint probability of audio
words and visual words. Bimodal words were then obtained
by graph partition. Different from the above methods based
on statistical relation, Prabhakar et al. firstly produced
space-time dictionary by temporal causality for visual event
analysis [22]. As an extension of this work, Jiang and Loui
introduced an audio-visual grouplets representation method
which uses the temporal audio-visual relation [23]. The
author constructed four types of grouplets between the
combination of foreground and background information.
Despite the close relationship with our work, the above
method requires visual foreground/background separation
and audio background/foreground extraction, which remain
extremely difficult and time consuming in consumer videos.
In this paper, the proposed method is suitable for general
Internet video and avoids region segmentation.
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Figure 2: Flowchart of the proposed method.

3. Low-Level Vocabulary Representation

BoW approach is a popular feature representation method
which had been proven to be surprisingly effective in video
analysis [3]. In this paper, two types of low-level features are
extracted from training videos and then generate two types of
BoW of videos. We used the following low-level descriptors
in our work.

SIFT. Scale-invariant feature transform (SIFT) has been
widely used in many researches of video content analysis,
such as object recognition and video concept detection [24],
since it is invariant to image scale, rotation, and changing
viewpoints. In this paper, the difference ofGaussians operator
was adopted to find local keypoint in the frames.Then, a 128-
dimensional feature descriptor at each point was formed to
capture the local gradients. In order to reduce of computation
cost, we extracted features from sampled frames with a
sample rate of 3 frames per second.

STIP. As an important cue for video content analysis, the
popular spatial-temporal interest point (STIP) extracts the
local space-time structure where the image values have
significant local variations in both space and time [25]. In this
paper, the Harris 3D detector was adopted to locate space-
time volume. Each volume was subdivided into a (𝑛

𝑥
, 𝑛
𝑦
, 𝑛
𝑡
)

grids of cuboids, and then 4 bins histograms of gradients
(HOG) and 5 bins histograms of optical flow (HOF) were
computed from the grids. The parameters are set as same
as paper [25], such as 𝑛

𝑥
= 𝑛
𝑦

= 3, 𝑛
𝑡

= 2. Finally, we
directly concatenated the HOG and HOF feature into a 162-
dimensional vector which represents the local motion.

DTF. Dense trajectories feature (DTF) has been shown to
be among the best visual feature in the application of video
analysis [26]. Following the set in [26], we extracted the dense

trajectories by the sampled feature points on a dense grid, and
the trajectory descriptors were obtained by𝑁∗𝑁∗ 𝐿 space-
time volume around the trajectory. Finally we extracted 96-
dimensional HOG feature of the trajectory.

MFCC. Acoustic features have been found to be very useful
for various recognition systems. Among different acoustic
features, mel-frequency cepstral coefficients (MFCC) [27],
which collectively represents short-term power spectrum of
sound based on a linear cosine transform, is one of the most
prevalent choice for audio recognition. For each video, we
extracted 36-dimensionalMFCCs feature over 20mswindow
size with 10ms overlap.

Four low-level codebooks were generated by clustering
the above features, respectively. For each video clip, the
four features are quantified to form four BoW histogram
representations. In order to discuss the temporal causality
between low-level features, we directly concatenated different
visual features to form visual BoW which provides the visual
information of the video, while the MFCC BoW represents
the audio information. They were used to extract high-level
codewords as discussed in the next section.

4. High-Level Codewords Representation

In this section the high-level codewords representation based
on Granger Causality is explained in detail. We first viewed
each word in the video as a point process and analyzed
the Granger Causality between low-level codewords. Then
we constructed a weighted undirected graph based on the
temporal relationship to extract high-level codewords. At the
end, we used multiple kernel learning framework to detect
video event.

4.1. Temporal Causality between Low-Level Codewords.
Audio information is an important cue for video event
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detection. The emergence of some type of visual objects
always accompanies some kinds of background sound. For
example, the audio background of a basketball match is
often the ball bouncing sounds, and the appearance of a dog
in video often follows barking. Therefore, we need to first
analyze the temporal causality between visual information
and audio information and then detect the video event based
on the audio-visual relevance.

Prabhakar et al. were the first to propose a method to
describe the temporal causality between the visual words
in videos by viewing the words sequence as multivariate
point process [22]. Here we use 𝑤

𝑎

= {𝑤
𝑎

1
, 𝑤
𝑎

2
, . . . , 𝑤

𝑎

𝑁
𝑎

} and
𝑤

V
= {𝑤

V
1
, 𝑤

V
2
, . . . , 𝑤

V
𝑁V
} to represent the sets of audio and

visual vocabulary, respectively, where 𝑁
𝑎
and 𝑁V denote the

number of audio and visual words. In order to investigate
the cooccurrence of 𝑤𝑎 and 𝑤

V, we compute the probability
of each word 𝑤

𝑎

𝑖
and 𝑤

V
𝑖
within each video frame. Firstly,

the amount of emergence of word 𝑤
𝑎

𝑖
in the interval (0, 𝑡] is

defined as

𝑑𝑁
𝑎

𝑖
(𝑡) = 𝑁

𝑎

𝑖
(𝑡 + 𝑑𝑡) −𝑁

𝑎

𝑖
(𝑡) , (1)

where 𝑑𝑡 denotes the time resolution. The mean intensity
of the process 𝑁

𝑎

𝑖
(𝑡) is defined as 𝐸{𝑁

𝑎

𝑖
(𝑡)} = 𝜆

𝑎

𝑖
𝑑𝑡. Then

we consider the zero-mean process 𝑁
𝑎

𝑖
(𝑡) − 𝜆

𝑎

𝑖
⋅ 𝑑𝑡 and

rename that process 𝑁
𝑎

𝑖
(𝑡). Therefore, all 𝑁

𝑎
visual words

create a 𝑁
𝑎
-dimensional multivariate point process 𝑁𝑎(𝑡) =

{𝑁
𝑎

1
(𝑡),𝑁

𝑎

2
(𝑡), . . . , 𝑁

𝑎

𝑁
𝑎

(𝑡)}. Similarly, 𝑁V-dimensional multi-
variate point process 𝑁V

(𝑡) = {𝑁
V
1
(𝑡),𝑁

V
2
(𝑡), . . . , 𝑁

V
𝑁V
(𝑡)} can

be created for visual words 𝑤V.
We use the method in [10] to estimate the Granger

Causality between any visual point process 𝑁
V
𝑖
(𝑡) and any

audio point process 𝑁𝑎
𝑗
(𝑡). Firstly, the spectral matrix of the

above two point processes is defined as follows:

𝑆 (𝑓) =

[

[

[

[

[

𝑆1,1 (𝑓) ⋅ ⋅ ⋅ 𝑆1,𝑁V (𝑓)

.

.

. d
.
.
.

𝑆
𝑁
𝑎
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𝑁
𝑎
,𝑁V

(𝑓)

]

]

]

]

]

, (2)

where elements represent the cross-spectrum between visual
point process 𝑁V

𝑖
(𝑡) and audio point process 𝑁𝑎

𝑗
(𝑡). We used

themultitapermethod [28] to estimate the spectral matrix. In
that method, 𝑀 data tapers {ℎ

𝑚
}
𝑀

𝑚=1
are applied sequentially

to the point processes 𝑁
𝑎

𝑖
(𝑡) and 𝑁

V
𝑗
(𝑡), and the Fourier

transform of𝑁𝑎
𝑖
(𝑡) is taken as follows:

𝑃̃
𝑎

𝑖
(𝑓,𝑚) = ∫

𝑇

0
ℎ
𝑚
(𝑡) exp (−𝑖2𝜋𝑓𝑡) 𝑑𝑁𝑎

𝑖
(𝑡)

= ∑

𝑗

ℎ
𝑚
(𝑡
𝑗
) exp (−𝑖2𝜋𝑓𝑡

𝑗
) .

(3)

The Fourier transform of𝑁V
𝑗
(𝑡), which denotes 𝑃̃V

𝑗
(𝑓,𝑚), can

be computed as same as (3).Then, the spectralmatrix element
𝑆
𝑖,𝑗
(𝑓) is estimated as follows:

𝑆
𝑖,𝑗
(𝑓) =

1
2𝜋𝑀𝑇

𝑀

∑

𝑚=1
𝑃̃
𝑎

𝑖
(𝑓,𝑚) 𝑃̃

V
𝑗
(𝑓,𝑚)

∗

. (4)

For the time series of multivariate point processes 𝑁V
(𝑡) and

𝑁
𝑎

(𝑡), we adopt the autoregressive model to fit the data. The
above 𝑆

𝑖,𝑗
(𝑓) is then factorized as follows:

𝑆
𝑖,𝑗
(𝑓) = 𝐻

𝑖,𝑗
(𝑓) Σ
𝑖,𝑗
𝐻
𝑖𝑗
(𝑓)
∗

, (5)

where 𝐻
𝑖,𝑗
(𝑓) is the transfer function determined by the

coefficient matrix of the autoregressive model and Σ is the
joint covariance of the error terms in the autoregressive
model. Finally, the Granger Causality from 𝑁

𝑎

𝑖
(𝑡) to 𝑁

V
𝑗
(𝑡) is

then estimated by the method developed in [29] to

𝐺
𝑁
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𝑖
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2) ,

(6)

where 𝑓 is all frequencies.
Notice that Granger Causality from𝑁

𝑎

𝑖
(𝑡) to𝑁

V
𝑗
(𝑡) is not

always equal to Grange Causality from𝑁
V
𝑗
(𝑡) to𝑁

𝑎

𝑖
(𝑡) due to

the directionality. Similarly, theGrangerCausality from𝑁
V
𝑗
(𝑡)

to𝑁
𝑎

𝑖
(𝑡) is defined as follows:

𝐺
𝑁
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V
𝑗
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= ln(
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𝑗𝑗
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󵄨
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2) .

(7)

Then the value of the Granger Causality between audio
words and visual words is defined as the max value of two
directions:

𝐶
𝑎↔V (𝑖, 𝑗) = max (𝐺

𝑁
𝑎

𝑖
→𝑁

V
𝑗

(𝑓) , 𝐺
𝑁
𝑎

𝑖
←𝑁

V
𝑗

(𝑓)) . (8)

4.2. Construction Audio-Visual Graph with Temporal Attribu-
tion. For all of the training videos, we extracted the visual and
audio features in Section 3 and then form visual words𝑤V and
audio words 𝑤

𝑎 by 𝑘-mean cluster method. In this section,
we then define a weighted undirected graph 𝐺 = (𝑉, 𝐸, 𝑤) to
describe the causality between each word. Here𝑉 is the set of
vertices which are represented as follows:

𝑉 = {𝑤
𝑎

, 𝑤
V
} = {𝑤

𝑎

1 , 𝑤
𝑎

2 , . . . , 𝑤
𝑎

𝑁
𝑎

, 𝑤
V
1, 𝑤

V
2, . . . , 𝑤

V
𝑁V
} . (9)

Each node in 𝑉 corresponds to a visual word or an audio
word.

The set 𝐸 is defined to measure the concurrence relation-
ship between each word in 𝑉. The concurrence relationship
between each word can be classified into three types, such
as the relationship between visual words, the relationship
between audio words, and the relationship between audio
words and visual words. The Granger Causality between
audio words and visual words is defined as (8). Similarly, the
Granger Causality of the other types can bewritten as follows:

𝐶V↔V (𝑖, 𝑗) = ∑

𝑓

𝐺
𝑁

V
𝑖
→𝑁

V
𝑗

(𝑓) , ∀𝑖 ̸= 𝑗,

𝐶
𝑎↔𝑎

(𝑖, 𝑗) = ∑

𝑓

𝐺
𝑁
𝑎

𝑖
→𝑁
𝑎

𝑗

(𝑓) , ∀𝑖 ̸= 𝑗.

(10)
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In order to reduce the computation cost, we used a
statistic threshold to discover the causal relationship in
the Granger Causality matrix. Here we adopted three dif-
ferent thresholds Th

𝑎↔𝑎
, Th
𝑎↔V, and ThV↔V for matrix

𝐶
𝑎↔𝑎

, 𝐶
𝑎↔V, 𝐶V↔V, respectively. The value of Granger Causal-

ity scores that is less than the given threshold is regarded as a
nontemporal relationship. After that, the score values that are
larger than then threshold are normalized.

Based on above analysis, the weight 𝑤
𝑖𝑗
of any edge 𝑒

𝑖𝑗
∈

𝐸 (𝑖 ≤ 𝑗) of the undirected graph 𝐺 is defined as follows:

𝑤
𝑖𝑗

=

{
{
{
{

{
{
{
{

{

𝐶
𝑎↔𝑎

(𝑖, 𝑗) , 𝑖 < 𝑗 ≤ 𝑁
𝑎

𝐶
𝑎↔V (𝑗 − 𝑁

𝑎
, 𝑖)
∗

, 𝑁
𝑎
< 𝑖 ≤ 𝑁

𝑎
+ 𝑁V, 𝑗 ≤ 𝑁

𝑎

𝐶V↔V (𝑖 − 𝑁
𝑎
, 𝑗 − 𝑁

𝑎
) , 𝑁

𝑎
< 𝑖 < 𝑗 ≤ 𝑁

𝑎
+ 𝑁V,

(11)

where𝐶
𝑎↔V(𝑗 − 𝑁

𝑎
, 𝑖)
∗ denotes the transpose ofmatrix𝐶

𝑎↔V.

4.3. High-Level Codewords Representation for Event Detection.
For the audio-visual graph 𝐺 = (𝑉, 𝐸, 𝑤) we constructed
in Section 4.2, a greedy agglomerative graph-partitioning
method [30] is adopted to extract low-level word groups.
Given the partition of the vertex set 𝑉 into 𝐾 groups 𝑉

𝑘
=

{𝑉
1
, . . . , 𝑉

𝑘
}, the maximum intragroup similarity is defined as

follows:

Assoc (𝑉
𝑘
) =

𝑘

∑

𝑖=1

𝑆 (𝑉
𝑖
, 𝑉
𝑖
)

𝑑 (𝑉
𝑖
)

, (12)

where 𝑆(𝑉
𝑖
, 𝑉
𝑖
)denotes sumof theweight of all edges in subset

𝑉
𝑖
and 𝑑(𝑉

𝑖
) denotes the sum of degree of all the vertex in

subset 𝑉
𝑖
.

We start hierarchical clustering based on an improved
association matrix which is defined on each edge of the
weighted graph. The element in the improved matrix is
defined as follows:

Delta (𝐴, 𝐵) =

2𝑆 (𝐴, 𝐵)

(𝑑 (𝐴) + 𝑑 (𝐵))

, (13)

where 𝐴 and 𝐵 denote the different cluster in the graph.
Initially, 𝐴 or 𝐵 is any vertex in the graph 𝐺. In each stage of
clustering, we select the vertex pair (𝐴∗, 𝐵∗), which has the
maximum element in the matrix Delta, to form the a larger
cluster 𝐴𝐵

∗. Then, matrix Delta is updated by removing the
row and column related to 𝐴

∗ and 𝐵
∗; at the same time, new

row and column which denote the cluster 𝐴𝐵
∗ are inserted

into matrix Delta. In order to continue the next iteration
steps, the weight matrix 𝑆 and improved matrix are updated
as follows:

𝑆 (𝐴𝐵
∗

, V) = 𝑆 (𝐴
∗

, V) + 𝑆 (𝐵
∗

, V) ,

Delta (𝐴𝐵
∗

, V)

=

𝑆 (𝐴𝐵
∗

, 𝐴𝐵
∗

) + 𝑆 (V, V) + 2𝑆 (𝐴𝐵
∗

, V)
𝑑 (𝐴𝐵

∗

) + 𝑑 (V)

−

𝑆 (𝐴𝐵
∗

, 𝐴𝐵
∗

)

𝑑 (𝐴𝐵
∗

)

−

𝑆 (V, V)
𝑑 (V)

.

(14)

The problem of determining the number of cluster is
important in graph partition. In this paper, we adopted an
effective method to determine order selection after initial
hierarchical clustering [30]. In each step of the clustering, we
define a new metric Curv to describe the similarity of the
partition. The value of Curv is defined as follows:

Curv (𝑘) = (Assoc (𝑉∗
𝑘
) −Assoc (𝑉∗

𝑘−1
))

− (Assoc (𝑉∗
𝑘+1

) −Assoc (𝑉∗
𝑘
)) ,

(15)

where 𝑉
∗

𝑘
denotes the partition which has the maximum

normalized association over the partition of vertex set𝑉 into
𝐾 clusters. Then the number of cluster is defined as follows:

𝐾
∗

= argmax
𝑘

Curv (𝑘) . (16)

In practice, the value of 𝐾∗ can be obtained by (16) or be
provided by the user.

Each cluster in the graph partition forms a low-level
word group which contains the temporal causality patterns
between audio and visual features in the videos. And all the
low-level groups form a high-level audio-visual dictionary,
which is represented as 𝐻𝐷 = {𝐻𝐷

1
, . . . , 𝐻𝐷

𝑘
}. Each audio-

visual 𝐻𝐷
𝑖
is represented as the combination of the audio

words subset ℎ𝑑𝑎
𝑖
and the visual words ℎ𝑑V

𝑖
in those high-level

codewords.
For a given video 𝑉

𝑖
, the extracted visual feature and

audio feature should bemapped into new audio-visual groups
and then generate a high-level dictionary-based feature
representation. Here we adopted an average pooling principle
to aggregate original feature. The bag of high-level words is
defined as follows:

𝐻
𝑔

𝑖
(𝑘) =

∑
𝑤
𝑎

𝑚
∈ℎ𝑑
𝑎

𝑘
,𝑤

V
𝑛
∈ℎ𝑑

V
𝑘

ℎ
𝑎

𝑖
(𝑚) + ℎ

V
𝑖
(𝑛)

𝑁 (ℎ𝑑
𝑎

𝑘
) + 𝑁 (ℎ𝑑

V
𝑘
)

, (17)

where 𝑁(ℎ𝑑
𝑎

𝑘
) and 𝑁(ℎ𝑑

V
𝑘
) represent the number of audio

words and visual words in the high-level codeword ℎ𝑑
𝑘
, 𝑤𝑎
𝑚

denotes the 𝑚th audio words, 𝑤
V
𝑛
denotes the 𝑛th visual

words, ℎ𝑎
𝑖
(𝑚) denotes the value of the 𝑚th bin in the audio

words histogram representation of video𝑉
𝑖
, and ℎ

V
𝑖
(𝑛)means

the value of the 𝑛th bin in the visual words histogram
representation of video𝑉

𝑖
. As seen from (17), the bag of high-

level words representation is for all training videos, which is
represented as follows:

𝐻
𝑔

= {𝐻
𝑔

1 , . . . , 𝐻
𝑔

𝑖
} . (18)

4.4. Video Event Detection Based onMultiple Kernel Learning.
Multiple kernel learning frameworks have been intensively
applied in video analysis [11, 16–18]. In this paper, we combine
our high-level codewords into the common used simpleMKL
algorithm [11]. Since our high-level codewords include the
temporal causality between visual and audio words, it is
very difficult to decide the optimal size of our codewords.
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We adopt different size of codewords representation in sim-
pleMKL framework. The simpleMKL framework is defined
to solve the following optimization problem:

min
{𝑓
𝑛
,𝑏,𝜉,𝑑}

1
2
∑

𝑛

1
𝑑
𝑛

󵄩
󵄩
󵄩
󵄩
𝑓
𝑛

󵄩
󵄩
󵄩
󵄩

2
𝐻
𝑛

+𝐶∑

𝑖

𝜉
𝑖

st. 𝑦
𝑗
∑

𝑛

𝑓
𝑛
(𝑥
𝑗
) + 𝑦
𝑗
𝑏 ≥ 1− 𝜉

𝑗
∀𝑗

𝜉
𝑗
≥ 0 ∀𝑗

∑

𝑛

𝑑
𝑛
= 1 𝑑

𝑛
≥ 0, ∀𝑛.

(19)

Due to the diversity of consumer videos in practical
application, only a few properly labeled training data is given.
Recently, Xu et al. proposed an event detection method to
solve the problem of unlabeled training data, which can
discriminate the positive and negative exemplars by learning
multirelevance level label [18]. The multirelevance levels
learning problem is given as follows:

min
𝑓
𝑚
,𝑦
𝑚
∈𝑌
𝑚

𝑀

∑

𝑚=1
(
󵄩
󵄩
󵄩
󵄩
𝑓
𝑚󵄩
󵄩
󵄩
󵄩

2
+𝐶

𝑛

∑

𝑖=1
ℓ (𝑓
𝑚

, 𝑥
𝑚

𝑖
, 𝑦
𝑚

𝑖
)) . (20)

The above learning problem can be reformulated as

min
d∈D

{

{

{

max
𝛼∈A

−

1
2
𝛼
𝑇

( ∑

𝑛:𝑦
𝑛∈𝑌

𝑑
𝑛
𝐾⨀𝑦

𝑛
𝑦
𝑇

𝑛
)𝛼

}

}

}

. (21)

We use the matrices 𝐾 ⊙ 𝑦
𝑛
𝑦
𝑇

𝑛
as the basic kernels in MKL

problem.

5. Experiment and Discussion

5.1. Experimental Setup. In this work, we evaluated our
proposed high-level codewords representation for event
detection over the large scale Columbia Consumer Video
Dataset [3], which contains 9,317 consumer videos from
YouTube (210 hours in total).These consumer videos contain
diverse content without postediting, meanwhile the original
audio tracks of the consumer videos are preserved. All of
videos are manually labeled to 20 semantic categories. As
same as the setting in [3], we use the same 4,659 videos for
training and the remaining 4,658 videos for testing.

All our experiments were performed on a server machine
with Intel Xeon 2.4GHz CPUs and 32GB RAM by using a
single thread. For performance evaluation, we use average
precision (AP, the area under precision-recall curve) and
mean average precision (MAP,mean average precision across
all event categories) as our evaluation metric [3].

In order to demonstrate the effectiveness of our method,
we systematically perform the following methods:

(1) Individual feature: we performed our experiments
on the four features (SIFT, STIP, MFCC, and DTF);
however we will only report the result of STIP and
DFT.
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Figure 3: Performance of low-level features on CCV dataset.

(2) Early fusion: in order to evaluate the influence of
audio information, we compared the performance of
different manners of audio and visual combination,
such as SIFT + MFCC, DTF + MFCC, and SIFT +
DFT + MFCC.

(3) MKL based joint audio-visual codewords (MKL A-
VC), where we use the joint audio-visual codewords
in [21], especially, we just adopted the method of
audio-visual graph construction in [21], and the
method of graph partition is as described in this
paper.

(4) MKL based high-level codewords (MKL HLC): we
used simpleMKL framework [11] to combine our
high-level codewords based on temporal causality.

(5) Multilevel relevance labels and MKL based on high-
level codewords (MLMKL HLC): we used the mul-
tirelevance levels learning method in [18] to learn
training label and then combined our high-level code-
words to carry on event detection. In this experiment,
each semantic category was labeled with 𝑅-level, and
label 𝑅 is for positive samples and label 1 is for
negative samples. We fixed the parameter 𝑅 as 4 for
the multirelevance levels.

5.2. Performance of Low-Level Features. In the experiments of
evaluating the performance of low-level feature, we trained a
classifier for each semantic category by adopting one-versus-
allx2 kernel SVM, which has been proven by its outstanding
performance for classifying BoW-based features.The AP and
MAP results are shown in Figure 4.

As for the individual feature experiment, we can see that
the four individual features have different advantages across
different categories. In Figure 3, we present only the MAP of
DTF and STIP, which achieved better performance in the four
individual features. It can be observed that our results fall
behind with the results in [3]. This because the bag-of-words
histogram used here is normal, while the primary spatial
layout representation is used in [3].
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Figure 4: Performance of high-level features on CCV dataset.

As for the early fusion of individual feature, we can see
that the combination of audio and visual feature representa-
tion through early fusion improves the detection result. For
example, the AP of all categories is obviously improved by
the combination of the three single features (SIFT + DFT +
MFCC), and theMAP is improved by nearly 10% on a relative
basis.

5.3. Performance of High-Level Features. In the experiments
of evaluating the performance of high-level feature, we
compared our high-level codewords and the audio-visual
codewords in [21]. Furthermore, we evaluated the perfor-
mance of our high-level codewords under the simpleMKL
framework in [11] and themultirelevance levels learningMKL
framework in [18], respectively. According to the results of
Section 5.2, we just incorporated SIFT, DTF, and MFCC into
our high-level codewords.

As for the performance of methods based on high-level
feature, we can see that the three methods (MKL AVC,
MKL HLC, and MLMKL HLC) outperform the methods
based on individual feature and feature combinationmethod.
Such results were within our expectations because of the
importance of the relationship between low-level codewords.
Particularly, our proposedmethod (MKL HLC) outperforms
the baseline method MKL AVC by nearly 3% in terms of
MAP,which proves the effectiveness of our proposedmethod.
For instance, on events “dog,” our method (MKL HLC)
outperforms the individual feature STIP by 15% and out-
performs the baseline method MKL AVC by 9%. Besides,
compared with the best baseline method MKL AVC, our
high-level codewords method achieves the highest relative
performance gain on categories “birds” and “dogs.”This may
be because the emergence of visual object (bird or dog) often
accompanies with the bark or warble. However, our method’s
performance is normal on the category “wedding reception,”
and this may be due to the large amount of background noise
following people’s actions. We also combine our high-level
codewords into the multilevel relevance learning framework
in [18]. We can see that MLMKL HLC outperforms our
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Figure 5: Performance of different codebook size for CCV dataset.

MKL HLC method by nearly 1% in terms of MAP, which
indicate the effectiveness of themultirelevance levels learning
in [18].

In general, we can expect a relative higher performance
of the proposed method on other types of event which has
obvious audio-visual association.

5.4. Codebook Analysis and Visualization. The different size
of codebook can obviously impact the performance of event
detection [21]. We hope each vocabulary can reflect a higher
relativity between low-level words. Therefore, in the stage
of high-level codewords representation (Section 4.3), the
different number for order selection is manually selected. We
compare the performance of different codebook sizes and dif-
ferent methods (MKL AVC, MKL HLC, and MLKL HLC).
The MAP performance is shown in Figure 5. We can
see that the performance of the three methods gradu-
ally increases with the increasing codebook size. For this
method, 6000 words seem to be the good choice for method
MLMKL HLC. The results of event detection in Section 5.3
are the performance using the best codebook size for our pro-
posed method (MKL HLC, MLMKL HLC) and the baseline
method (MKL AVC).

We also compare the distribution of audio words and
visual words in each high-level vocabulary of the two meth-
ods. For methods MKL HLC and MKL AVC, it is shown
that the portion of audio-visual vocabulary, which contains
both audio word and visual word, is found to be 45% and
34%, respectively. This proves that our high-level codewords
can capture more association between audio word and visual
word, compared to the bimodal words based on probability
relationship in [21]. As indicated in the introduction of this
paper, our high-level codewords are impactful for video
events that contain audio-visual correlations. Figure 6 gives
an example of this type of correlation. In the event “Birthday,”
the appearance of cake and candle often accompany with the
birthday song, and then in the end of the song, there are some
sounds of clapping and cheering. Figure 7 shows the high-
level codeword of that video. Visual words in those high-level
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Figure 6: An example of audio-visual correlations in the event “Birthday” of CCV dataset.
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Figure 7: An example of high-level codeword in the event “Birthday” of CCV dataset.

Figure 8: An example of high-level codewords which include only visual words.

codewords are shown as sampled local points in the frame
which are extremely close to the codebook vocabulary. Also
the audio words in the high-level codewords are shown as
the spectrogram of the sound over 500 s windows, where the
MFCC features in that window are similar to the codebook
vocabulary.

It is also observed that there are large numbers of
vocabularies which contain only visual words or only audio
words. The existence of these single channel vocabularies

is reasonable because not every visual word is correlated
to another audio word. Specifically, the audio words or the
visual words in our method, which compose the single
channel vocabularies, are also grouped together by the
Granger Causality between them. We think that the effective
single channel vocabularies which have the similar temporal
patterns are also important cues for event detection. Figure 8
illustrates the effect of single channel vocabularies which
only include visual words. For the video sequence of the
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category “Wedding Dance,” the visual words are shown in
the first row, and different color circles are used to represent
different visual words. The temporal high-level codewords in
our method are shown in the second row. From Figure 8, we
can see that the large majority of visual words produced by
the hag action of the two characters are grouped into the same
temporal group.

6. Conclusion

In this paper, we have introduced a high-level codewords
representation framework for video event detection which
can effectively utilize the low-level features in the video. By
viewing the set of low-level words as the instantiation of
multivariate point-process, we developed aGrangerCausality
graph to model the relationship between the low-level words
of the videos. Then the graph is partitioned into low-level
words groups which have the similar temporal patterns.
Extensive experiments consistently show that the proposed
high-level codewords representation outperforms the state-
of-the-artmultimodal fusionmethod.With these findings we
can conclude that high-level codewordsmodel representation
will play important role in the future video event detection
system.At the same time, advancedmodel representationwill
be worth to be intensively studied in the future to meet the
practical application needs.
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